IceCube Mid-Term Review Q&A

John Kelley IceCube Director of Operations

NSF Mid-Term Review 30 April 2024

Questions

- Is the additional required power for the Upgrade of 11–13 kW an issue given the current power usage at South Pole?
- What is the current breakdown of Gen1 and Upgrade power consumption, and what are some opportunities for power savings?
- Has there been or will there be coordination with the other major South Pole science groups on power usage?

South Pole Power Delivery

Power Plant Excess Capacity (Unofficial)

- South Pole power provided by AN-8-fueled generators
 - 1 primary generator + 1 peaking generator
 - 1 backup generator
 - 1 generator under service
- "1MW capacity" with some caveats
 - primary generator efficiency drops above 660 kW
 - max recommended for continuous operation: 680 kW
 - peaking generator kicks in at 712 kW but cannot be run continuously due to insufficient cooling capacity
- Current power usage average 600 kW
 - max sustained 625-650 kW
- Excess capacity estimated to be 30–50 kW
 - overhead is sufficient for the Upgrade
- **NB:** these are our own conclusions, compiled with information from ASC experts

South Pole power, 2013–2019

Gen1 Power Estimated Breakdown

Component	Power / ea. (W)	Quantity	Total power (kW)	
DOMs	5.7	5404	30.6	
DOMHubs	128	97	12.4	
Core servers	200	8	1.6	
Data Acquisition and Control servers	250	6	1.5	
Monitoring / Verification	200	5	1.0	
Processing / Filtering master	270	1	0.27	
Processing / Filtering slaves	300	20	6.0	

Table 1: Power usage of key IceCube components. Total power usage is approximately 53 kW.Figures include efficiency and transmission losses.

- Power numbers from a 2013 analysis of emergency power-down contingency plans
- Surface array, ARA, IceACT etc. 1–2 kW
- Coarse estimate: ICL environmental is an additional 8–10 kW

Upgrade Power Estimated Breakdown

Nominal Upgrade power estimates

		NOMINAL	
Item	Power (W)	Quantity	Total (kW)
String power	1251	7	8.76
DOM supply AC-DC losses	963.27	1	0.96
UPS	4	2	0.01
PDU	10	2	0.02
network switch	350	2	0.70
weather goose	20	1	0.02
FieldHub	75	7	0.53
WR switch	80	1	0.08
Total			11.07

Estimate an additional ~1 kW from DAQ servers

6

Opportunities for Power Savings

- Upgrade the primary ICL transformer
 - raw increase in efficiency: 97.8% -> 99%
 - more savings expected because of better handling of non-linear loads (e.g. our many switching power supplies)
 - when we investigated this in 2014:
 - estimated savings was 2–3 kW
 - cost was ~\$20k, payback time in fuel costs was 2 years
 - upgrading this would be an ASC task / responsibility
- Transition servers to ARM64 architecture (esp. PnF)
 - expect will be more power efficient, but savings would need to be quantified
 - estimate 1–3 kW
- Accelerating waveform unfolding with GPUs
 - efficiency gains possible, but longer-term effort research is underway
- Gen1 DOMHub to FieldHub replacement
 - first estimate: 6-7 kW savings (lower power / hub and half as many hubs)

Coordination with Other Science Groups

- Long term: ongoing discussions with CMB-S4 regarding <u>renewable energy</u> <u>generation</u> at South Pole
 - in preliminary discussions about a joint workshop
- We are anticipating a stable long-term power draw from SPT+BICEP and CMB-S4
 - CMB-S4 AoA plan fits within current SPT+BICEP power envelope
- We regularly coordinate with SPT and BICEP groups on several topics
 - joint satellite bandwidth planning exercise
 - EMI activities in the Dark Sector (radio, WiFi usage during Upgrade construction)
 - Starlink testing at South Pole
 - we can expand this to discuss short- to medium-term power usage
- Regular updates from NSF and ASC on power generation / usage would be most welcome
 - we will still rely on NSF and ASC for coordination and guidance

8

IceCube-Gen2

from the Gen2 Technical Design Report (plus unofficial limit band)

9