IceCube Upgrade: Cost and Schedule IceCube Upgrade NSF Rebaselining Review April 26-28, 2022

Vivian O'Dell University of Wisconsin

Charge Question L1

From the November Logistics Review...

		-			Last update 4/07/2022
ID	Recommendation	Responsible	Status	Estimated Date for closing	Response
LR1	Project team should perform their own schedule analysis using the 10 Best Practices for a high-quality and reliable schedule discussed in the GAO Schedule Assessment Guide	Vivian O'Dell / Jim Lowe	closed		Schedule cleanup performed to implement GAO best practice.
LR2	Produce graphic that shows all planning tools being used and how they feed and/or link with each other. Additionally, identify who is the single point of contact and/or manager for	Lowe	closed		Produced document that has all of this information
LR7	Planning should identity the schedule float that exists between the earliest and latest dates when deliverables must be ready to enter the USAP logistics system. Add a float column with conditional formatting (red, yellow, green; based on number of days) in the cargo spreadsheet.	Vivian O'Dell /Ian McEwen/Delia	closed		Float calculations are now included in the Cargo Master as Shipment Float & South Pole Float. Total time between Shipment and need by date at South Pole is calculated additionally.
LR13	The risk register should include both technical risks and programmatic risks. An analysis of the risk register should include looking for pairs of risks that are correlated (i.e., if Risk A happens, then the probability of Risk B increases).	Vivian O'Dell/Farshid Feyzi/Mike Duvernois/Mike Zernick	closed		Risk Register includes both technical and programmatic risks. Risk workshop conducted with all L2s in January. Correlated risks have been identified and analyzed
ISFLR3	Develop the software toolset to meet the requirements of an integrated master schedule including linkages and dependencies	Jim Lowe	closed		Have made a new bottom up estimate of cost and schedule, including dependencies and linkages.
ISFLR4	Provide better visualization such as float associated with tasks and cargo	Jim Lowe, Ian McEwen, Delia Tosi	In progress		Cargo Master as Shipment Float & South Pole Float. Total time between Shipment and need by date at South Pole is

JBE

6 / 17 (35%) of the recommendations referred to cost / schedule / risk methodologies

I will talk about cost & schedule, MikeD will talk about risk

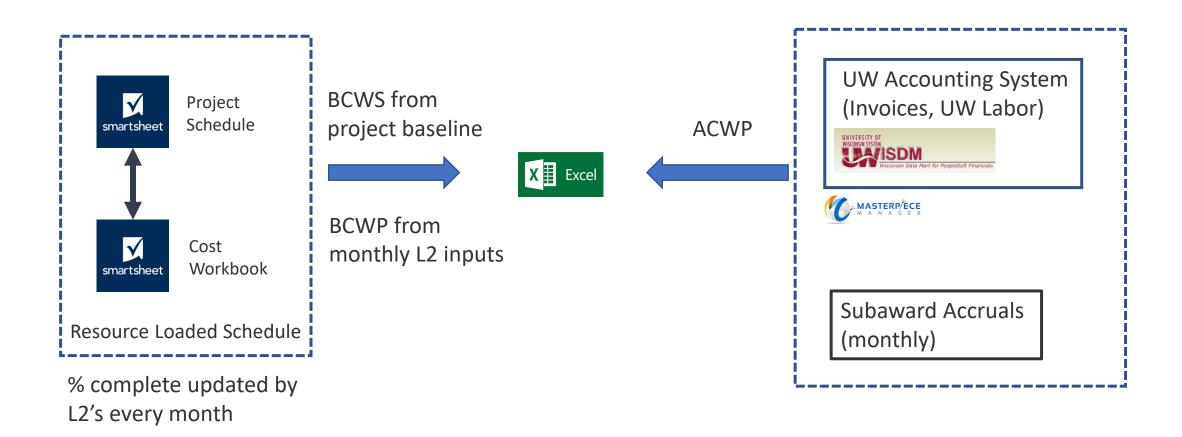
Basically...

We need to explain our tools better We need to use our tools better We need to standardize tools and best practices

Project Management Tools Used by the IceCube Upgrade Project

Explaining tools: documentation

Contents


CONTENT 1. PURP	HISTORY S POSE OF THIS DOCUMENT REQUIREMENTS OF THE PROJECT MANAGEMENT TOOLS	
2.1 Overv	view of GAO Schedule Best Practices	3
2.2 Overv	view of the requirements of the Project Management Tools	4
	UBE UPGRADE PROJECT MANAGEMENT TOOLS	
3.1.1	Introduction	
3.1.2	SmartSheets	
3.1.3	Risk Register and Risk analysis	
4. SUMM	MARY / CONCLUSION	12
4.1 Summ	nary	
REFEREN	CES	13

Overview of tools/EVMS

Charge Question S2, L1 [LR2]

Project Management Tools Used by the IceCube Upgrade Project

Using Smartsheets as Resource Loaded Scheduling tool

- Pros
 - Lightweight / Cloud based / Platform independent
 - Easy to navigate for novices
 - Allows all CAMS to collaborate both in putting the schedule together and in inputting % completes
 - Keeps history of changes by cell, and who changed it
 - Supports critical path / Project Management Baseline
- Cons
 - The schedule + costworkbook is a little clunky
 - Require manual intervention in both the schedule and the cost workbook when rescheduling tasks
- Upshot
 - Clunky, but works. CAMS are used to using it.
 - Was a good choice for the original 5 year project

Smartsheets as RLS tool

Here I've tried to boil down core requirements for the RLS toolset to meet GAO scheduling guidelines

	Critical Requirements	
S.1	support task dependencies (i.e. predecessor / successor dependencies) and task durations.	Yes
S.2	support milestones (i.e. zero duration tasks)	Yes
S.3	support critical path analysis.	Yes*
S.4	support resource loading (personnel / equipment)	Yes
S.5	support named / critical resources. Flag when these resources are overcommitted.	Yes*
E.1	allow task statusing	Yes
E.2	support calculation of schedule & cost variances against a project baseline cost and schedule	Yes
E.3	support spending and resource profiles by funding source	Yes
G.1	mechanism for CAMS to update task status and actual costs while maintaining the project baseline.	Yes
G.2	user-friendly views / outputs in order to monitor how the project is doing in terms of cost and schedule.	Yes
G.3	backed up regularly.	Yes (cloud based)

Table 2 List requirements and smartsheets capabilities. Items marked with * require some manual intervention.

Project Management Tools Used by the IceCube Upgrade Project

Using our tools better

- Since December, we have been reviewing and reworking our project schedule
 - Working with Project Controls Jim Lowe, who helped the project set up the smart sheet system in the beginning
 - Going through the schedule, and implementing the GAO schedule best practices
- Complete bottom up estimate of cost and schedule for work to go
 - All costs estimated according to our Cost Estimating Plan and Key Assumptions Document.
 - New bases of estimates for all project costs
- The cost workbook has been updated for new schedule, costs, contingencies
- Much more detail is now contained in both the schedule and in the cost workbook
- This includes an overhaul of the smartsheet scheduling tool and how we were using it

Charge Question C2

Standardizing tools, best practices

• Cost Estimating Plan, Key Assumptions document

Cost Estimating Plan, IceCube Upgrade

Version 4.8

Contents

APPROVALS	
CHANGE LOG	3
CONTENTS	4
1. PURPOSE	5
2. RESPONSIBILITIES	5
2.1 Project Manager (PM)	5
2.2 Cost Managers (CMs)	5
2.3 Project Controls	5
3. PROCEDURE	6
3.1 Cost Estimate Development	7
3.2 Cost Estimating	8
3.3 The GAO Twelve Steps to Producing a Quality Cost Estimate	9
Step 1 – Define the estimates purpose	9
Step 2 – Develop an estimating plan	
Step 3 – Define the program (i.e. technical baseline, assumptions)	
Step 4 – Determining the estimate structure (e.g. WBS)	
Step 5 – Identify ground rules and assumptions	
Step 6 – Obtain data	
Step 7 – Develop point estimate	11
Step 8 – Conduct sensitivity analysis	
Step 9 – Conduct risk and uncertainty analysis	
Step 10 – Document the estimate	
Step 11 – Present the estimate for management approval	
Step 12 – Update the estimate to reflect actual costs and changes	
3.4 Basis of Estimate Documentation	13
REFERENCES	14

IceCube Upgrade Key Assumptions Document

Version 1.11

Contents

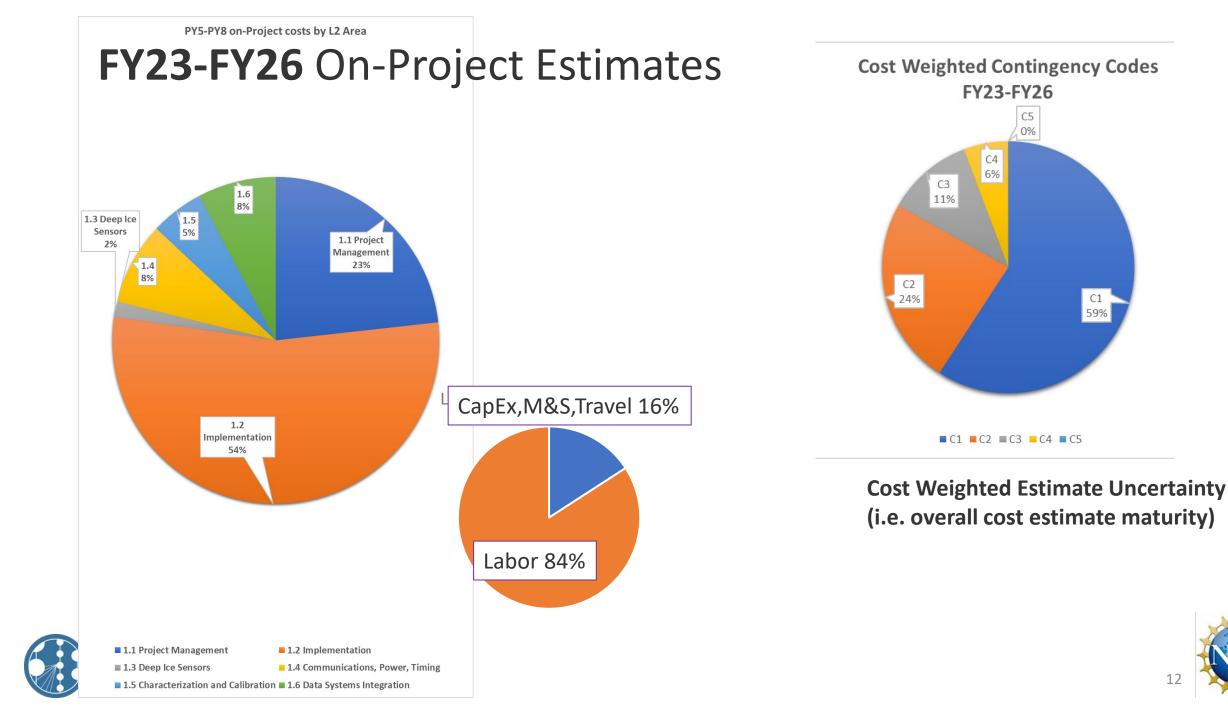
REVISION HISTORY CONTENTS	
2.1 Funding	4
2.1 running	
2.3 Decommissioning and Decontamination (D&D)	
3. KEY TECHNICAL ASSUMPTIONS	5
3.1 Prototypes, Spares, and Test Stands	5
3.2 Performance Margins	6
3.3 Production and Storage	6
4. KEY COST ASSUMPTIONS	
4.1 Cost Estimating Guidance	7
4.2 Labor Cost Assumptions	8
4.3 Institute Labor and Overhead Rates	9
4.4 Equipment Costs	10
4.5 Travel Costs (non-South Pole)	10
4.6 South Pole deployment costs	11
4.7 Escalation Rates for Labor	11
4.8 Indirect Costs on NSF funds managed through WIPAC	12
4.9 Facilities and Administration (F&A) Indirect Costs at Institutes	12
4.10 Cost Estimate Uncertainty Contingency	12
5. KEY SCHEDULE ASSUMPTIONS	15
5.1 General Scheduling Guidance	15
5.2 Partner (in-Kind) Milestone Dates	15

Key Assumptions for the IceCube Upgrade Project

Cost Estimating Plan for the IceCube Upgrade Project

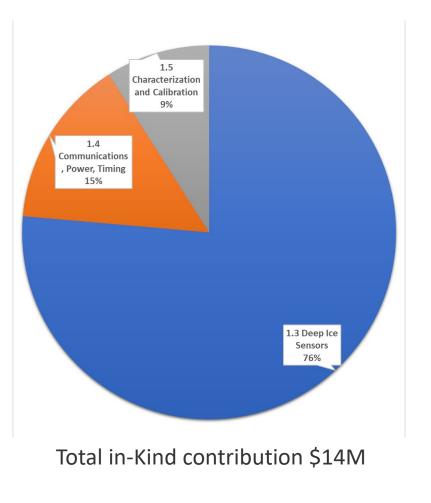
Contingency Table from Key Assumptions Document

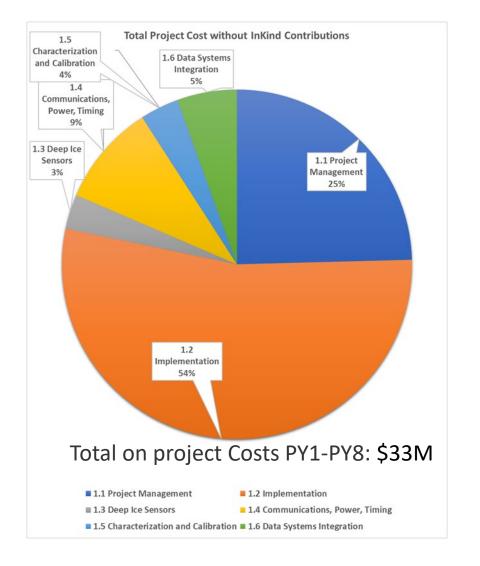
Code	Type of Estimate	Contingency % range	Description
C1	Levelof	3%-15%	Labor: Support type activities that must be done to support other work activities or the entire project office, where estimated effort is based on the activities it is supporting.
CI	Effort Tasks	570-1370	M&S/Equipment items such as travel, software purchases and upgrades, computers, etc. estimated to support LOE efforts and other work activities.
C2	A	5%-20%	Labor based on experience with documented identical or nearly identical work. Development of activities, resource requirements, and schedule constraints are highly mature. Technical requirements are very straightforward to achieve.
C2	Advanced		M&S/Equipment items for which there is a catalog price or recent vendor quote based on a completed or nearly completed design or an existing design with little or no modifications and for which the costs are documented.
62		100/ 200/	Labor: Based on direct experience with similar work. Development of activities, resource requirements, and schedule constraints are defined at a preliminary (beyond conceptual) design level. Technical requirements are achievable and with some precedent.
C3	Preliminary		M&S/Equipment items that can be readily estimated from a reasonably detailed but not completed design; items adapted from existing designs but with moderate modifications, which have documented costs from past projects. A recent vendor survey (e.g. budgetary quote, vendor RFI response) based on a preliminary design belongs here.
C4	Concentral	200/ 500/	Labor based on expert judgment using some experience as a reference. Development of activities, resource requirements, and schedule constraints are defined at a conceptual level. Technical requirements are moderately challenging.
C4	Conceptual	20%-50%	M&S/Equipment items with a documented conceptual level of design; items adapted from existing designs which have documented costs from past projects, but with extensive modifications.
C5	Pre-	40%-60%	Labor based only on expert judgment without similar experience. Development of activities, resource requirements, and schedule constraints are defined at a pre-conceptual level. Technical requirements are moderately challenging.
C5	conceptual		M&S/Equipment items that do not have a documented conceptual design, but do have documented costs from past projects. Use of this estimate type for M&S/Equipment indicates little confidence in the estimate. Should be minimized when completing the final estimate.
66	Rough	60%-80%	Labor based only on expert judgment without similar experience. Development of activities, resource requirements, and schedule constraints is largely incomplete. Technical requirements are challenging.
C6	Estimate		M&S/Equipment items that do not have a documented conceptual design, and have no documented costs from past projects. Use of this code for M&S/Equipment should be minimized when completing the final estimate.


Charge Question C1

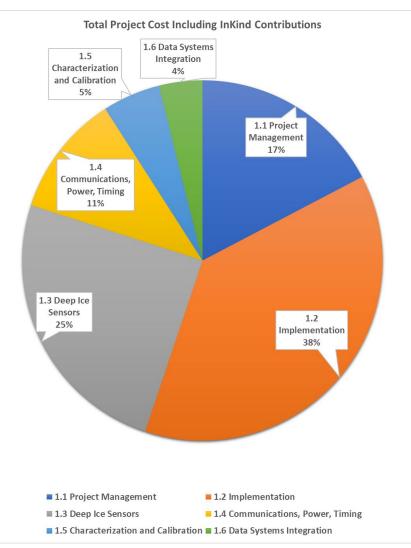
Example of Estimates in Cost Workbook

									_
			ŧ	1.2.3 CapEx	7				<u>م</u>
÷ 6		🖥 Grid View 🔹 🛛 C 🛛 🖉 🗍 🖓 2 SI	heets 🗍 10 Columns	s	Group Summari	ze 1 Sort			
	WBS	Activity	12mo Subtotal PY5	12mo Subtotal PY6	12mo Subtotal PY7	12mo Subtotal PY8	Institution	Estimating Technique	Contingen
1	1.2.3.1.10	Tower Ops: Identify/Procure: TOS & Tower Hardware, Repair Parts (PY7)	\$0	\$0	\$22,992	\$0	PSL	C - Engineering Builc	C3
2	1.2.3.1.5	Tower Ops: Crescent Emergency Repair Kit Assembly	\$0	\$2,500	\$0	\$0	PSL	D - Expert Opinion	C3
3	1.2.3.1.6	Tower Ops: Examine Interface between Dust Logger and Tower & Address as Needed	\$2,400	\$0	\$0	\$0	PSL	D - Expert Opinion	C4
4	1.2.3.1.7.2	Tower Ops: Load Cell Calibration	\$1,789	\$0	\$0	\$0	PSL	C - Engineering Builc	C2
5	1.2.3.1.7.3	Tower Ops: Identify/Procure: Load Cell Rigging Calibration	\$1,220	\$0	\$0	\$0	PSL	C - Engineering Builc	C2
6	1.2.3.1.8	Tower Ops: Identify/Procure: TOS & Tower Hardware, Repair Parts (PY5)	\$10,232	\$0	\$0	\$0	PSL	C - Engineering Builc	C3
7	1.2.3.1.9	Tower Ops: Identify/Procure: TOS & Tower Hardware, Repair Parts (PY6)	\$0	\$9,232	\$0	\$0	PSL	C - Engineering Builc	C3
8	1.2.3.3.10	Reels & Winches: TU20 Sliprings - spec, procure, test	\$8,413	\$0	\$0	\$0	PSL	D - Expert Opinion	C3
9	1.2.3.3.11	Reels & Winches: Reel Components & Spares (PY6). TU20 brakes)	\$0	\$8,770	\$0	\$0	PSL	D - Expert Opinion	C3





Total Project Costs (excluding discrete Risks)

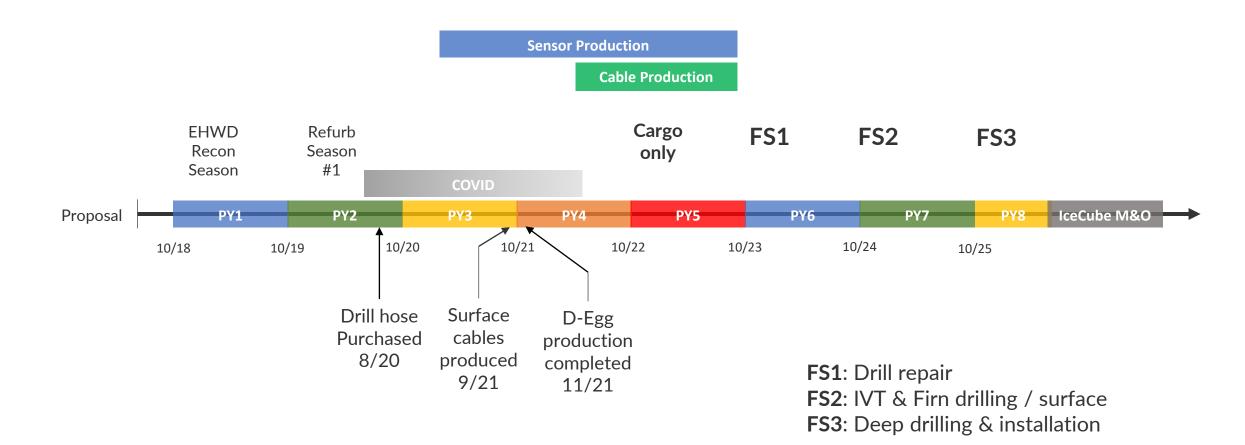


IceCube Upgrade CCB December 22, 2021

13

Charge Question C3

Overall Total Project Costs with InKind



JBE

- Overall project costs, including in Kind, excluding discrete risks (an additional \$1.8M) but including estimate uncertainties: \$48M
- Project Office is ~17% of the total

Schedule

Schedule Methodology

- A complete bottom-up schedule estimate was done
- In-Kind and on-project activities are included in the schedule
 - In general In-Kind activities are not resource loaded
 - However, In-Kind activities are linked to on project activities where appropriate
- Task durations and order were estimated by SMEs without additional schedule contingency
- Tasks are logically linked; traceable
- Have a comprehensive set of milestones

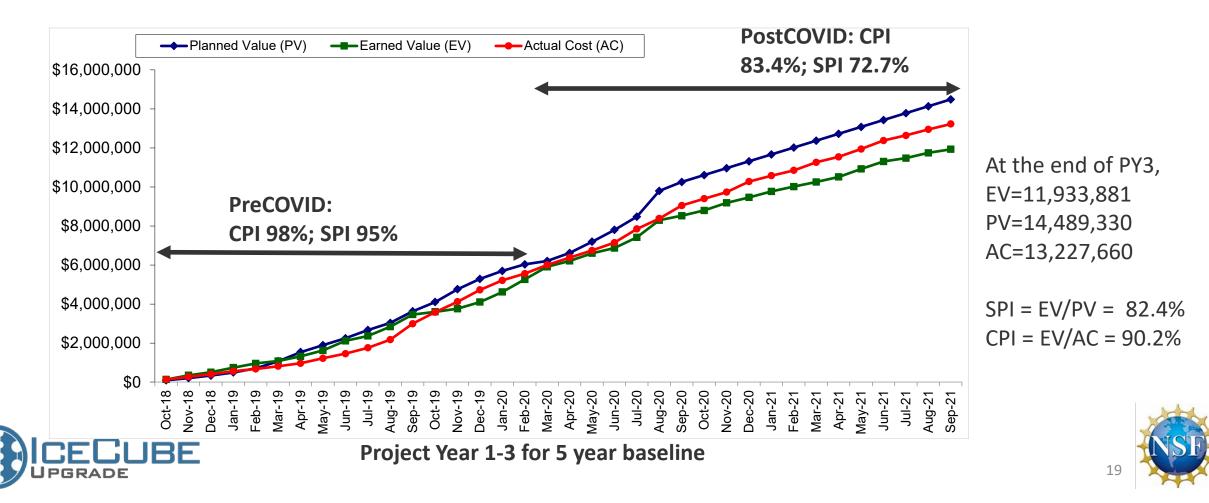
Full Schedule

- Developed in smartsheets; 3563 activities in total
- Activities logically linked

L2	WBS	Task Name	Started					022			202				2024			20
∇	∇		f×	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 G	4 Q)1 Q2	Q3	Q4	Q1	Q2
4 1.4	1.4.1.2.1.1	BCA preliminary design	Started		-		-	Г										
5 1.4	1.4.1.2.1.2	BCA preliminary design review	Not Started				Ļ		Snir	ppet	tof	Sche	dule	e fro	m S	mart	tShe	eet
6 1.4	1.4.1.2.1.3	BCA prototype procurement	Not Started				•	L	•r									
7 1.4	1.4.1.2.1.4	BCA prototype production	Not Started				Ì		.									
_B 1.4	1.4.1.2.1.5	BCA prototype testing	Not Started						İ,									
9 1.4	1.4.1.2.1.6	BCA prototype testing complete	Not Started						•									
1 1.4	1.4.1.2.2.1	BCA final design	Not Started						i,									
2 1.4	1.4.1.2.2.2	BCA final design review	Not Started						ė,									
3 1.4	1.4.1.2.2.3	BCA final design complete	Not Started						, ě,									
4 1.4	1.4.1.2.2.4	BCA procurement	Not Started						Ĺ	1								
5 1.4	1.4.1.2.3.1	BCA manufacturing	Not Started							•								
7 1.4	1.4.1.2.3.2	BCA pre-ship review	Not Started								Ĭ,							
в 1.4	1.4.1.2.3.3	Shipping to PTH (FY24 vessel, RDD 12/1/23 - ROS 2/1/25 to pre-position)	Not Started								Į.							
9 1.4	1.4.1.2.3.4	BCAs for first two strings shipped	Not Started															
1 1.4	1.4.1.2.4.1	BCA manufacturing - final five strings	Not Started															
2 1.4	1.4.1.2.4.2	Shipping to PTH (FY24 vessel, RDD 12/1/23 - ROS 12/1/25)	Not Started									i						
3 1.4	1.4.1.2.4.3	BCA manufacturing complete	Not Started									•						

Resource loading in separate smartsheet

- "Cost workbook" smartsheet linked to the schedule smartsheet
- Connects to schedule smartsheet via WBS assignment


				🕞 Rebaseline Cost	W	orkbook F	PY4-PY8 v	v/o 1.2 🄺	r						
ew	Filter Off •	≡⇒		Arial • 10 • B <u>I</u> <u>U</u> S & • <u>A</u> •	Ξ	• =	⊘ ₽		Θ 🗠	ie oj	Σ.	\$•%	¶.0_	.00, 🛅	•
L2	WBS	P/C	Ins	Schedule Task Name		10-2022	11-2022	12-2022	01-2023	02-2023	03-2023	04-2023	05-2023	06-2023	1
		f×		fx											
1.4	1.4.1.1.1.2.3.4	0	MOO	Thoron prototype main cable communications testing	*										
1.4	1.4.1.1.1.2.3.4	С	< MSU	Fibron prototype main cable communications testing	•)										
1.4	1.4.1.1.1.2.4	С	MSU	Hexatronic main cable final design review / decision	-3										
1.4	1.4.1.1.1.2.4	С	MSU	Hexatronic main cable final design review / decision	-3										
1.4	1.4.1.1.1.2.4	С	MSU	Hexatronic main cable final design review / decision	•)										
1.4	1.4.1.1.1.3.1	с	MSU	Main cable procurement	•)										
1.4	1.4.1.1.1.3.2.1	С	MSU	Fabrication	3	16	16	16							
1.4	1.4.1.1.1.3.2.2	С	MSU	Acceptance testing	•)				32						
1.4	1.4.1.1.1.3.2.2	с	MSU	Acceptance testing	.)				32						
1.4	1.4.1.1.1.3.2.4	С	MSU	First article shipping to breakout installation facility	J				16	16					
1.4	1.4.1.1.1.3.3	с	MSU	Production readiness review	.)					56					
1.4	1.4.1.1.1.3.3	с	MSU	Production readiness review	•)					56					
1.4	1.4.1.1.1.3.4	С	MSU	Production of final six main cables	•)					16	16	16			
1.4	1.4.1.1.1.3.6	С	MSU	Production main cable shipping to breakout installation facility	•)							8	8	16	5
14	1411211	C	MSU	Breakout preliminary design											

Earned Value

- For EV, CAMs are estimating % complete of each activity every month
- For AC, we get cost reports from UW, Universities; PV comes from the PMB

Conclusions

- We have gone through a complete bottom up estimate of cost, schedule, risk for the project to go (PY5-PY8)
 - Using common methods and assumptions (Cost Estimating Plan, Key Assumptions Document)
- Our project tools are standardized: all managers are using smartsheet schedule and resource sheets
- We have standard Basis of Estimates, typically at L3, for the on-project cost elements
- Our new cost and schedule is conservative; gives us confidence we can complete the project on budget and on schedule
- We have appropriate tools for supporting EVMS and to use it as a management tool

Charge Question M2

Milestones

rimary	2022 2023 2024 2025 2026	
		11 L
mDOM Final Design Review	mDOM Final Design Review Control Systems - 60% Design Review Complete	
Control Systems - 60% Design Review Complete	Control Systems - 60% Design Review Complete A Delivery of Camera mDOM to DESY Completed	80 L
Delivery of Camera mDOM to DESY Completed SCAs shipped to PTH	SCAs shipped to PTH	60 L
Main cable final design review complete	Main cable final design review complete	
78 + 18 spares D-Eggs for Strings 87-88 ready to	A 78 + 18 spares D-Eggs for Strings 87-88 ready to ship to CHC	604
ship to CHC		001
MMB Rev3 delivered	♦MMB Rev3 delivered	
mDOM Production Readiness Review (in Germany)	mDOM Production Readiness Review (in Germany)	
FS1 Field Season Readiness Review	FS1 Field Season Readiness Review	
PDOM Final Design Review	PDOM Final Design Review	IceCube U
POCAM Design complete, Final Design Review	POCAM Design complete, Final Design Review	iceouse o
Sweden Camera Final Design Review	Sweden Camera Final Design Review	
mDOM Production Readiness Review (in US at MSU)		Primary
Acoustic Design complete, Final Design Review	Acpustic Design complete, Final Design Review	
All components for mDOM Mainboard production	All components for mDOM Mainboard production available	EHWD System Ready for Drilling
available	Delivery of Camera mDOM to MSU Completed	DAQ software ready for deployment including support for all new OMs
Delivery of Camera mDOM to MSU Completed	Belivery of Camera mDOM to MSU Completed Breakout final design review complete	Hole 1 Drilling Complete, Turn Over to Installation
Breakout final design review complete 2 + 2 spare PDOMs for Strings 87-88 ready to ship	2 + 2 spare PDOMs for Strings 87-88 ready to ship to Pt. Hueneme	Team Install String 87 / Hole 1 Complete
to Pt. Hueneme 12 + 4 spare PDOMs for Strings 89-93 ready to	12 + 4 spare PDOMs for Strings 89-93 ready to ship to Pt. Hueneme	Hole 2 Drilling Complete, Turn Over to Installation Team
ship to Pt. Hueneme		Install String 88 / Hole 2 Complete
Production readiness review complete	Production readiness review complete	Hole 3 Drilling Complete, Turn Over to Installation
Pencil Beam Final Design Review	Pencil Beam Final Design Review	Team
Main Cable Production Complete	Main Cable Production Complete	Install String 89 / Hole 3 Complete
197 + 11 spare D-Eggs for Strings 89-93 ready to ship to CHC	♦197 + 11 spare D-Eggs for Strings 89-93 ready to ship to CHC	Hole 4 Drilling Complete, Turn Over to Installation Team
128 mDOMs for Strings 87-88 ready to ship to CHC	128 mDOMs for Strings 87-88 ready to ship to CHC	Install String 90 / Hole 4 Complete
FieldHub design complete	FieldHub design complete	Hole 5 Drilling Complete, Turn Over to Installation Team
POCAM ready to ship	OCAM ready to ship	Install String 91 / Hole 5 Complete
PencilBeam Batch 1 Ready to Ship	PencilBeam Batch 1 Ready to Ship	Hole 6 Drilling Complete, Turn Over to Installation
96 mDOMs for Strings 89-93 ready to ship to CHC	#96 mDOMs for Strings 89-93 ready to ship to CHC	Team
Sweden Camera Ready to Ship	Sweden Camera Ready to Ship	Dust Logging Complete
Acoustic Modules Ready to Ship	Acoustic Modules Ready to Ship	Install String 92 / Hole 6 Complete
FS2 Field Season Readiness Review	FS2 Field Season Readiness Review	Hole 7 Drilling Complete, Turn Over to Installation Team
200 mDOMs for Strings 89-93 ready to ship to Pt. Hueneme	200 mDOMs for Strings 89-93 ready to ship to Pt. Hueneme	Install String 93 / Hole 7 Complete
MCAs shipped to PTH	MCAs shipped to PTH	Drilling & Installation Complete
BCA manufacturing complete	BCA manufacturing complete	Drill and Safety Lessons Learned Complete
FieldHub production complete	FieldHub production complete	Installation and Safety Lessons Learned
SES Initial Setup Complete	SES Initial Setup Complete	Complete
Review ExpControl/Special devices operations plan for new calibration devices	Review ExpControl/Special devices operations plan for new ca	SPS computing system for Upgrade complete at pole
Review SPAT testing plans for Pole	Review SPAT testing plans for Pole	DAQ software ready for deployment including
PencilBeam Batch 2 Ready to Ship	PencilBeam Batch 2 Ready to Ship	support for all new Calibration devices
Dust Logger and IDP Winch - Ready to Ship	Dust Logger and IDP Winch - Ready to Ship	ExpControl ready for deployment including support for all new Calibration devices
FS3 Field Season Readiness Review	FS3 Field Season Readiness Review	Deliver commissioned OMs to detector operations
9 Holes Drilled, Covered and Flagged	9 Holes Drilled, Covered and Flagged	team for integration
FieldHubs installed in ICL	FieldHubs installed in ICL	Delivery of Preliminary Timimg and Geometry Calibration
Wet-Test Operations Complete	Wet-Test Operations Complete	Preliminary Delivery of Dust Logger Data
Storage and Retrograde Complete	Storage and Retrograde Complete	Detector complete and handed off to M&O
Retrograde (USAP)	Retrograde (USAP)	Deliver commissioned calibration devices to
Drill Readiness Review (PSL)	Drill Readiness Review (PSL)	detector operations team for integration
	♦TOS1/Tower2 Site Read	Final Drill Completion Report

11 L1 Milestones 80 L2 Milestones (shown) 604 Internal Milestones

IceCube Upgrade All L2 Milestones

P	rimary								
									Q4 Q1 Q2 Q3 Q4
	EHWD System Ready for Drilling								EHWD System Ready
	DAQ software ready for deployment including support for all new OMs								DAQ software ready fo
	Hole 1 Drilling Complete, Turn Over to Installation Team								Hole 1 Drilling Complet
	Install String 87 / Hole 1 Complete								Install String 87 / Hole
	Hole 2 Drilling Complete, Turn Over to Installation Team								Hole 2 Drilling Complet
	Install String 88 / Hole 2 Complete								Install String 88 / Hole
	Hole 3 Drilling Complete, Turn Over to Installation Team								Hole 3 Drilling Comple
	Install String 89 / Hole 3 Complete								Install String 89 / Hole
	Hole 4 Drilling Complete, Turn Over to Installation Team								Hole 4 Drilling Comple
	Install String 90 / Hole 4 Complete								Install String 90 / Hole
	Hole 5 Drilling Complete, Turn Over to Installation Team								Hole 5 Drilling Comple
	Install String 91 / Hole 5 Complete								Install String 91 / Hole
	Hole 6 Drilling Complete, Turn Over to Installation Team								Hole 6 Drilling Comple
	Dust Logging Complete								Dust Logging Comple
	Install String 92 / Hole 6 Complete								Install String 92 / Hole
	Hole 7 Drilling Complete, Turn Over to Installation Team								Hole 7 Drilling Comple
	Install String 93 / Hole 7 Complete								Install String 93 / Hole
	Drilling & Installation Complete								Drilling & Installation
	Drill and Safety Lessons Learned Complete								Drill and Safety Less
	Installation and Safety Lessons Learned Complete								Installation and Safet
	SPS computing system for Upgrade complete at pole								SPS computing system
	DAQ software ready for deployment including support for all new Calibration devices								DAQ software read
	ExpControl ready for deployment including support for all new Calibration devices								ExpControl ready f
	Deliver commissioned OMs to detector operations team for integration								Deliver commiss
	Delivery of Preliminary Timimg and Geometry Calibration								Delivery of Prelivery of Prelivery
	Preliminary Delivery of Dust Logger Data								Preliminary Deliv
	Detector complete and handed off to M&O				 				Detector completion
	Deliver commissioned calibration devices to detector operations team for integration								Deliver commiss
	Final Drill Completion Report			_					♦Final Drill Corr
	Final String Installation Completion Report				 				Final String In:

Total Project Cost

	PY4		PY5	PY6	PY7	PY8	Total
Rebaseline estimate (w/o contingency)		\$ 4	4,769,325	\$ 3,774,471	\$ 3,799,270	\$ 2,383,917	\$ 14,726,983
Anticipated actual cost PY1 thru PY4	\$ 17,426,108						\$ 17,426,108
Total rebaseline (w/o contingency)							\$ 32,153,091
Cost uncertainty		\$	683,102	\$ 487,010	\$ 419,023	\$ 259,733	\$ 1,848,869
Risks MC(80%)		\$	620,414	\$ 620,414	\$ 620,414		\$ 1,861,241
Total contingency to go							\$ 3,710,110
Total with contingency							\$ 35,863,201
Contingency on cost to go							25.2%

	PY1	PY2	PY3	PX4	sts PY5	Total
Baseline estimate (w/o contingency)	\$ 4,069,958	\$ 5,130,418	\$ 3,638,071	\$ 3,002,047	\$ 3,685,017	\$ 20,127,511
Contingency	\$ 664,979	\$ 575,002	\$ 362, 23	464,748	\$ 788,853	\$ 2,855,811
Total cost with contingency		I DI	ojecc			\$ 22,983,322
Overall Contingency		siginal r				14.2%
	0	rig				

GAO Ten Best Practices for Project Schedules (GAO-16-89G)

- 1. Capturing all activities needed to achieve the project's scope (WBS)
- Sequencing all activities activities must be logically sequenced and linked. Date constraints should be minimized and justified.
- 3. Assigning resources to all activities
- 4. Establishing the duration of all activities
- 5. Verifying that the schedule can be traced horizontally and vertically
- 6. Confirming that the critical path is valid
- 7. Ensuring reasonable total float
- 8. Conducting a schedule risk analysis
- 9. Updating the schedule using actual progress and logic

10. Maintaining a baseline schedule

Requirements for a mid-scale project

- EVMS Requirements Define control accounts at a level that suits management needs
- Change Control Major changes to the project plan should be implemented with change control and incorporated into the performance measurement baseline through the established change control process.
- **Risk Assessment** The project is responsible for doing a comprehensive risk assessment and maintaining a risk register. A risk Monte Carlo is not needed for a mid-scale project.

Total On-Project Costs PY5-PY8 (FY23-FY26)

• Total Cost = Point Estimate + Contingency Estimate Uncertainty Contingency + Discrete Risk Contingency

L2 Area	Point Estimate	Estimate Uncertainty Contingency	% Total
1.1 Project Management	\$3,534,132	\$318,072	23.2%
1.2 Implementation	\$7,906,611	\$1,055,429	54.1%
1.3 Deep Ice Sensor Modules	\$218,668	\$30,415	1.5%
1.4 Communications, Power, Timing	\$1,147,559	\$206,913	8.2%
1.5 Characterization and Calibration	\$801,145	\$72,103	5.3%
1.6 Data Systems Integration	\$1,118,868	\$165,937	7.8%
Sub Total	\$14,726,983	\$1,848,869	\$16.575.851
Discrete Risks		\$1,861,241	\$18,437,093
Total Contingency		\$3,710,110	25.2%

Bottom Line: Estimate for FY23-FY26 = \$18,437,092 which includes a 25.2% contingency

Cost and Contingency Methodology

- Used a standard set of assumptions for all cost elements
 - Key Assumptions Document, Cost Estimating Plan
- Estimate techniques based on GAO 20-195G (Cost Estimating and Assessment Guide)
 - A=Analogy; C=Engineering build-up; D=Expert opinion; E=Extrapolation from actuals; F=Parametric; L=Learning Curves.
- Estimate Uncertainty based on the maturity of the estimate (coded C1-C6 in the KA document)
 - Estimate Uncertainty codes are assigned at each activity level
- Standard BOE documentation
- Contingency for discrete risk events is done separately (see talk by MikeD)
- Total Contingency is the sum of the Estimate Uncertainty + Risk

Cost Estimating Plan for the IceCube Upgrade Project

Key Assumptions for the IceCube Upgrade Project

