

Outline

- Overview
- Computing Infrastructure
- Production and Physics Software
- Data Processing
- Non-M&O Funding
- Summary

Deliverables

- Data Warehouse and Storage Infrastructure for experimental, simulation, and analysis data, including data retrieval from Pole
- Computing cluster for timely offline data analysis and simulation production, including GPU computing
- Data Center Infrastructure, i.e. infrastructure to maintain data warehouse and cluster
- Provide infrastructure and support to utilize collaboration computing resources
- Offline/analysis software support and maintenance, including distributing workloads across a global computing grid

IceCube Computing

- Global heterogeneous resources pool
- Mostly shared and opportunistic resources
- Atypical resources requirements and software stack
 - Accelerators (GPUs)
 - Broad physics reach with high uptime- Lots to simulate
 - "Analysis" software is produced in-house
 - "Standard" packages, e.g. GEANT4, don't support everything or don't exist
 - Niche dependencies, e.g. CORSIKA (air showers)
- Significant changes of requirements over the course of experiment Accelerators, Multimessenger Astrophysics, alerting, etc.

GPU Cloudburst Experiments

- Original Goal: Create an ExaFLOP compute pool in the cloud (80,000 NVIDIA V100) and address SCAP recommendations
- Cloud provider(s) do not have those resources available We were promised they do
 - Pre-allocated resources
 - Single cloud provider does not have those resources

First Experiment – On Nov 16 2019 we bought all GPU capacity that was for sale in Amazon Web Services, Microsoft Azure, and Google Cloud Platform worldwide - Creating The Largest Cloud Simulation in History

- 51k NVIDIA GPUs in the Cloud
- 380 Petaflops for 2 hours (90% of DOE's Summit, No. 1 in Top 500)
- Distributed across, US, EU, and Asia-Pacific
- Second Experiment More realistic test
 - Most cost-efficient GPUs for 8 hours
 - Achieve 1 ExaFLOP-hour of compute
 - Distributed across, US, EU, and Asia-Pacific
- More experiments planned Half the funds are left
- Predominately funded through non-M&O awards
 - Required a total of 2 FTE for ~6 months
 - E-CAS for IceCube personnel
 - CESER for UCSD personnel
 - EAGER for cloud credits

Asia-

Pacific

Europe

US

West

US

East

K520

M60

K80

V100

P100

Challenges

- IceCube is in transition Discovery to Precision Science
- Diminishing returns of more hardware
 - More hardware will not solve resource shortfall
 - More hardware will be used inefficiently
- Significant "<u>technical debt</u>"* to address
 - Evolving landscape for scientific computing, code, etc.
 - Data movement in simulation and data processing
 - CPU and GPU efficiency
 - Adjusting for resource pool Larger resources for shorter time
- Machine Learning/Artificial Intelligence on the rise:
 - Specialized hardware required Some only available in the cloud
 - More interactive computing Iterative rather than batch computing

Computing Infrastructure

Compute Infrastructure – UW

- WIPAC and UW resources are the backbone of computing infrastructure for IceCube
- WIPAC hosts the central data warehouse for IceCube detector and simulation data, and central data analysis facility
 - 10 PB of storage available (1 PB more storage already purchased, not deployed)
 - ~6000 CPU cores (90+% usage), ~300 GPUs (90+% usage) dedicated to IceCube
 - Interactive analysis and support infrastructure
- Resources are split between UW Physics Department, and <u>OneNeck</u> facility in Madison
 - UW Physics Department Compute cluster and ancillary storage
 - OneNeck Core services, storage infrastructure, etc.
 - OneNeck replaced 222

Computing Infrastructure – UW

- Storage infrastructure needs re-design
 - More storage for users
 - R&D area to study feasibility of different storage technologies: Ceph, dCache, etc.
- GPU capabilities stagnating Will decrease soon
 - Demand outpacing supply of GPUs compute Machine learning, new reconstructions, etc. require GPUs, e.g. student estimated needing half the GPU resources of the entire collaboration for a single analysis
 - Largest expansion of GPU/accelerator resources through applying to outside resources, e.g. NSF's XSEDE program Not guaranteed (recently saw a decrease in XSEDE allocation)
- CPU resources are showing their age Last significant refresh 7 years ago

Computing Infrastructure – Collaboration

- Computing pledge system has had
 - Positive effects:
 - Investment from international partners
 - World-wide distributed resource pool
 - Additional GPU resources from collaboration.
 - Negative effects:
 - In-kind contributions require significant management overhead
 - Cost per resource significant
 - Inefficiently resource utilization More on this later
- Established long-term archive at NERSC for IceCube raw data
- Working on substituting resources: People rather than CPU/GPU

Computing Infrastructure – National

- Significant invest in GPU resources on national-scale HPC resources
- USA
 - Open Science Grid (OSG) infrastructure and resources are essential
 - NSF high performance compute program XSEDE (Comet, Bridges), leadership-class
 - DOE resources an option Question how to access and motivate access
- EU
 - Significant number of possible resources targets, e.g. LHC facilities, supercomputers, etc. Some come with significant restrictions
 - Lots of issues boil down to "Who will pay for it?" or "Who paid for it?" Not used to sharing
 - PRACE (EU-version of XSEDE) support requested No results yet
- Race to Exa-Scale
 - Heterogenous and "new" architectures become the norm
 - Unclear how to address

Physics Software

Physics Software – Crossroads

- Physics Software is at a crossroads
 - Lack of Support Bus Factor* ≤ 1
 - Some essential packages have limited to no official support
 - Some software has grown too complex to be maintained by in-kind contributions (read: grad student, post doc, faculty)
 - Improvements take years to implement
 - "Herding cats" Death by fractional FTE (0.1 + 0.15 + 0.1 + ... = 0)
 - In-kind model is not sustainable 100+ packages of "physicist" code to maintain
 - Lack of sense of responsibility
 - Unsupported software with unknown impact being used
 - "IceCube Software: where asking the absolute bare minimum is asking too much."
 - Participation is lacking Spending significant resources trying to get people involved
 - Major releases take 1.5 2 years of development
 - "Bit rot"
 - No support to explore improvements
 - Large fraction of "donated" resources No control over base software stack, not frozen in
 - Hardware not used efficient More hardware just a waste
- To reduce scope or not reduce scope? Reduce scope is current answer
- What has led us here?
 - Number of software interested students and postdocs leaving, graduating, becoming faculty, etc.
 - Software complexity increasing Hard to make meaningful contributions without significant investment

Physics Software – Technical Debt/Complexity

- Dynamic Stack CORSIKA
 - Example of lack of support, and complexity of software
 - Initial simple settings show factor of 2 reduction in CPU across all energy ranges
 - > 1.5 years of development Still not production
- Photon Propagation/Ray Tracing
 - Current GPU interface hard to maintain or vendor lock-in Newer interfaces available from exa-scale efforts
 - Newest generation GPUs have "ray-tracing" capabilities
 - Could be beneficial
 - Compatible resources available No support within collaboration

Physics Software – Upgrade

- Upgrade physics software has many open issues
 - Lack of support for new modules in software Today can not simulate IceCube + Upgrade in full fidelity
 - Upgrade integration will need to address some fundamental assumptions in the software Shape, dimension, properties of module
 - New reconstruction algorithms needed for Upgrade
 - "Analysis software" is more resource intense than IceCube Needs to be addressed given resource pool
- In-kind contributions can only cover small fraction of effort
 - Experts needed for photon propagation, reconstruction, etc.
 - No clear timeline given in-kind-only support May have detector without software to analyze data
 - Quality of software will suffer Physics results will suffer as well Reproducibility, long-term viability, etc.

Production Software

Production Software – Keeping afloat-ish

- Non-production users using production systems
 - Good in moving people to using distributed resources
 - Requires more support than currently allocated
- Essential pieces of software have no to bare minimum support Inefficient resources utilization (50+%) due to lack of support
- Maintenance and operations the focus
 - Making choices what "fires" to attend to
 - Not moving forward in terms of efficiency, new technologies, etc.
- Upgrade production will exasperate issues
- Addressing SCAP recommendations very slowly

Production Software – Cloud

- Cloud have impactful, but limited uses:
 - Off-loading compute-intensive, short-term tasks Real-time reconstruction
 - Specialized machine learning hardware Either commercially or to test capability
- Scaling exercises
 - Is the infrastructure ready for X% scaling SCAP 2018 recommended 10x scaling in resources
 - Understanding shortcomings in infrastructure Networking to Europe, etc.
- Too expensive for most services

Production Software – Current Projects

- Moving cloud real-time scan into production
- Single-Sign On and new user management SCAP recommendation
- Transition to G Suite (Google) Email, documents, calendars, etc.
- Maintenance and operations of current infrastructure

Data Processing

Data Processing – Status

- Transition to new workflow management system on-going > 1 year development, goal is Run Start 2020 (April/May 2020)
- Near real-time data processing continues
 - Bugs in processing have led to repeated reprocessing campaigns Limited in compute effort, significant human effort
 - Significant delays possible
- Pass 3 postponed indefinitely

Non M&O Funding

Non M&O Funding

- Awarded
 - CESER Award Funds Long-Term Archive development
 - Exploring Cloud for the Acceleration of Science Phase 1 Cloud funds
 - EAGER for Exa-Scale Demo Awarded through UCSD, only cloud credits
- Not awarded
 - Convergence Accelerator Data portal combining neutrino events and gamma-ray catalog
 - Humans Advancing Research in the Cloud
 - Mid-Scale R1 GPU cluster hosted at UCSD
- Submitted
 - 3 Al Institutes @ UW, 1 Al Institute @ MSU
 - CC* with UW HEP group
- Planned
 - 3 proposals planned for later this year
 - "Event Management Service" EvMS
 - Data Portal
 - Upgrade Software development
 - MRI with UW IT

Summary

- IceCube Computing is at a crossroads Reduction in services and/or service quality imminent
- Unable to keep up with recent developments Significant technical debt
- Computing landscape is changing at an accelerating pace Falling behind quickly
- In-kind model is not sustainable in maintaining software essential to IceCube
- External funding has only slowed the accumulation technical debt

Thank you!

Questions?

BACKUP

Data Processing

- Pole Filtered Data arrives via satellite -Arrives at UW-Madison and is processed further
- Raw data is written to archival disk at pole, retrieved once a year
- Raw data is archived at National Energy Research Scientific Computing Center (NERSC)
- Filtered data is archived at Deutsches Elektronen-Synchrotron (DESY)

Simulation Chain

- Fairly straightforward particle physics-like workflow
- Big constraint is lack of dedicated resources
 - No data aware scheduling
 - Lots of data movement Lots of time wasted to move data
- Different steps can have drastically different requirements

