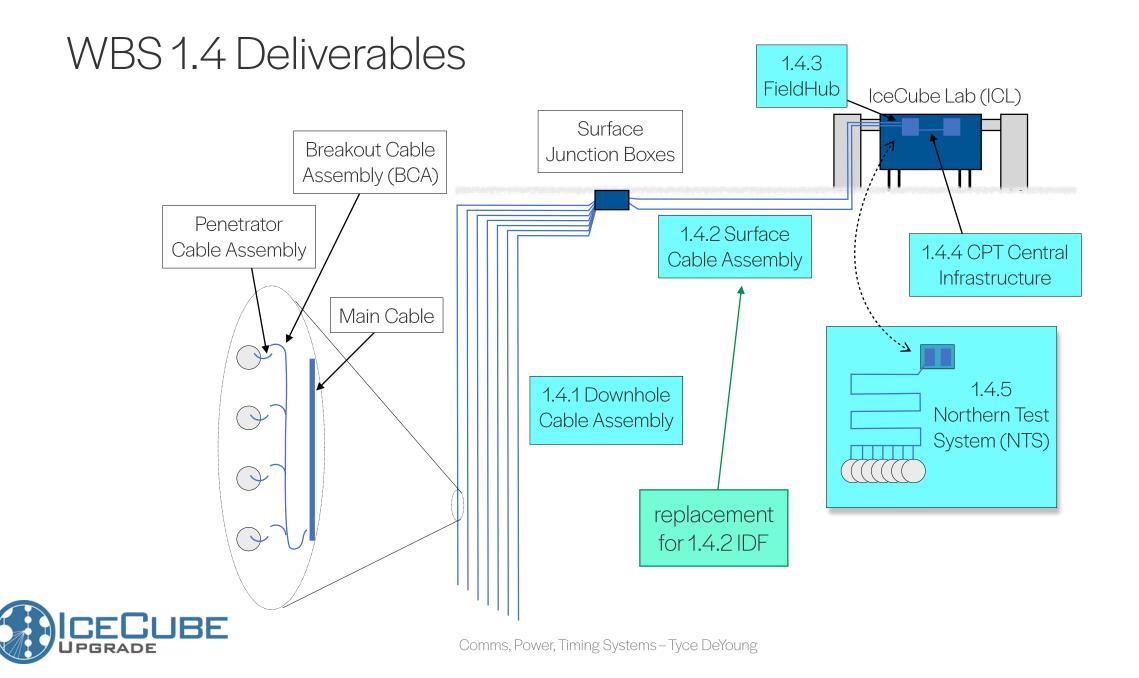
IceCube Upgrade Comms, Power, Timing Systems

Tyce DeYoung WBS 1.4

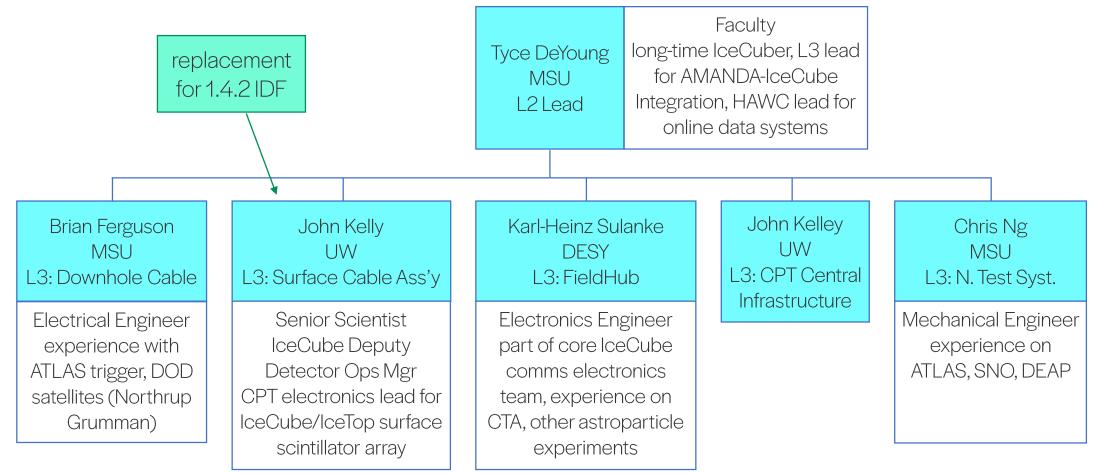
ICNO/Upgrade Project - NSF Site Visit Review March 17, 2020

Outline

- Scope, organization, deliverables, requirements
- Schedule and milestones
- Costs and in-kind contributions
- Risks and mitigation strategies
- Technical progress
- Review schedule
- Issues and Challenges
- Summary

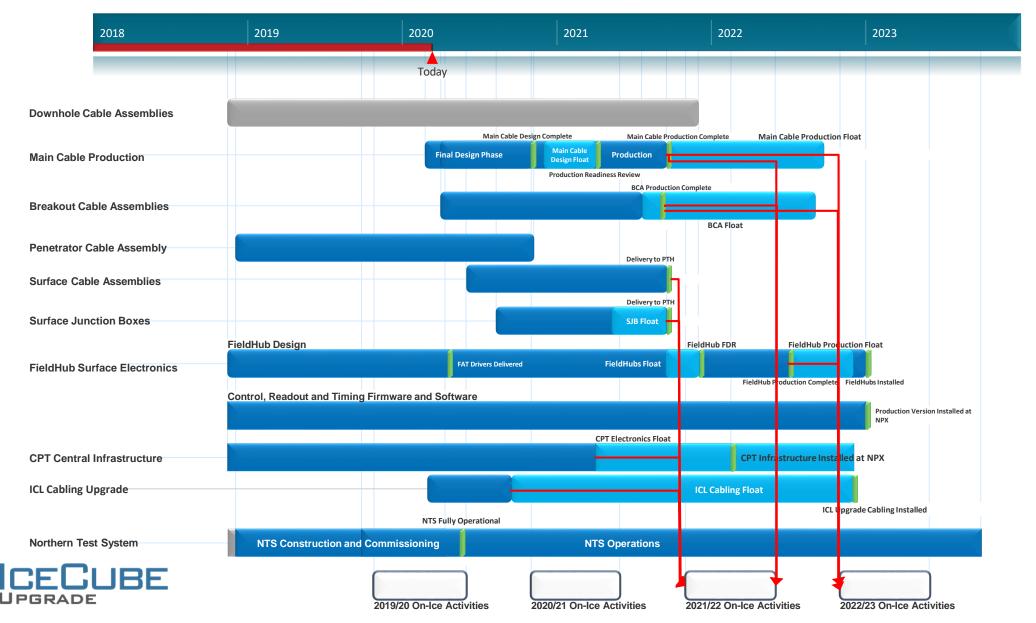


WBS 1.4 Scope


- The physical and electronic systems providing the interface between new sensor and calibration instrumentation and ICL/station infrastructure (power, communications for control and readout, global timing). Deliverables include the physical cables and structures to which new instruments are connected, the surface readout electronics, software, and firmware, and the systems for connecting these readout electronics to the station network and power system and the IceCube master clock. This category also includes construction of a test system in the Northern Hemisphere for testing DAQ and control software and firmware prior to deployment at Pole.
- Note: the surface readout electronics module (FieldHub) uses the Ice Comms Module to provide underlying communications and synchronization functionality for the in-ice devices. The ICM and its associated firmware are part of WBS 1.3 due to tight integration with the DOM electronics. After review, it was decided to move the FieldHub software systems to WBS 1.6. A CR updating the WBS Dictionary and clarifying this division of responsibility is in process.

WBS 1.4 Organization

WBS 1.4 Key Requirements



- Main cable bandwidth
 - 1.5 Mbps (8b10b) per wire pair (baseline comms bandwidth available with IceCube quads)
 - Verified with test quads, to be confirmed with first-article cable inspection
- Main cable crosstalk (soft requirement)
 - 50 dB min. NEXT, 30 dB min. ELFEXT from 100 kHz to 2.0 MHz (baseline specification from IceCube, affects bandwidth and RapCal timing)
 - Verified with test quads, to be confirmed first-article cable inspection
- Synchronization to IceCube Master Clock
 - 1 ns precision on global timing sync (required to be subdominant relative to RapCal DOM timing precision)
 - To be verified at NTS
- Integration with IceCube DAQ
 - Must operate under experiment control, global trigger, PnF data pipeline identically to IC
 - To be verified at NTS/SPTS
- FieldHub comms
 - Must communicate with/control all in-ice instruments (DOMs and calibration devices)
 - To be verified at DOM assembly sites, Northern Test System (NTS)

WBS 1.4 Schedule

WBS 1.4 – Milestones and Key Activities

WBS	Milestone or Activity	Sched	uled Finish Date	Forecast Date (Actual if Finished)	Margin (Days)
1.4.1.1	Main Cable Design Complete	10/30	/20	5/29/20	154
1.4.1.1	First Article Main Cable Delivered for Evaluation	2/1/2:	1	10/30/20	94
1.4.1.1	*Main Cable Production Readiness Review	4/2/2	1	12/4/20	122
1.4.1.1	*Main Cable Production Complete	9/16/2	21	4/30/21	139
1.4.1.1	*Main Cable Shipping to PTH	9/30/2	21	5/14/21	139
1.4.1.2	Breakout Cable Assembly Design Review	2/1/2	1	1/4/21	28
1.4.1.2	Breakout Cable Assembly Production Complete	9/1/2	1	7/19/21	44
1.4.1.3	Penetrators Shipped to DOM Assembly Facilities	2/25/2	20	4/20/20	-56
1.4.2.1	*Surface Cable Assembly Delivery to PTH	9/16/2	21	5/31/21	108
1.4.2.2	*Surface Junction Box Delivery to PTH	9/16/2	21	5/31/21	108
1.4.2.3	ICL Upgrade Patch Cabling Installed	2/1/22	2	1/21/22	11
1.4.3.1	FAT Drivers Delivered	4/16/2	20	4/1/20	15
1.4.3.1	FieldHub Final Design Review	12/1/2	21	9/14/21	78
1.4.3.1	FieldHub Production Complete	7/1/22	2	4/1/22	91
1.4.4.2	Power Supply Final Design Review	8/2/2	1	4/2/21	122
1.4.5.4	Northern Test System Fully Operational	5/15/2	20	5/15/20	0

*Late finish directly delays project schedule

Comms, Power, Timing Systems – Tyce DeYoung

WBS 1.4 NSF Supported Cost Estimate to L3

1.4 Communication, Power and Timing						
WBS L3	Year 1* Actuals	Year 2	Year 3	Year 4	Year 5	WBS Total
1.4.0 Management	\$26,100	\$27,940	\$25,670	\$27,778	\$25,536	\$106,925
Labor		\$21,585	\$19,983	\$21,741	\$22,167	\$85,476
M & S		\$775	\$694	\$736	\$732	\$2,937
Travel		\$5,580	\$4,994	\$5,301	\$2,637	\$18,512
1.4.1 Downhole Cable Assembly	\$189,457	\$461,528	\$173,634	\$6,037	\$732	\$641,931
CapEx		\$62,000	\$0	\$0	\$0	\$62,000
Labor		\$281,418	\$140,085	\$0	\$0	\$421,503
M & S		\$57,350	\$6,243	\$736	\$732	\$65,061
Travel		\$60,760	\$27,306	\$5,301	\$0	\$93,367
1.4.2 Surface Cables	\$6,510	\$31,825	\$343,013	\$727	\$0	\$375,565
CapEx		\$0	\$286,400	\$0	\$0	\$286,400
Labor		\$29,510	\$40,597	\$0	\$0	\$70,107
M & S		\$2,315	\$11,022	\$727	\$0	\$14,064
Travel		\$0	\$4,994	\$0	\$0	\$4,994
1.4.4 CPT Central Infrastructure	\$26,708	\$97,421	\$46,385	\$11,649	\$0	\$155,455
CapEx		\$12,484	\$14,947	\$0	\$0	\$27,431
Labor		\$78,664	\$27,841	\$9,178	\$0	\$115,683
M&S		\$765	\$1,132	\$727	\$0	\$2,624
Travel		\$5,508	\$2,465	\$1,744	\$0	\$9,717
1.4.5 Northern Test Systems	\$29,234	\$39,525	\$694	\$736	\$732	\$41,687
Labor		\$31,620	\$0	\$0	\$0	\$31,620
M & S		\$7,905	\$694	\$736	\$732	\$10,067
Annual Total	\$278,009	\$658,239	\$589,396	\$46,927	\$27,001	\$1,321,563

* - Year 1 is presented for informational purposes only

WBS Contributions in Kind

WBS	Contribution
1.4.1 Downhole Cable Assembly	Production main cables (MSU) Penetrator cable assemblies for DEgg production (Chiba) Penetrator cable assemblies for mDOM production (DESY)
1.4.3 FieldHub	FieldHub electronics design (DESY) FieldHub production (DESY) FieldHub firmware (DESY) FieldHub control software (UW)-moving to 1.6.1 via CR
1.4.5 Northern Test System	NTS facility (MSU)

WBS 1.4 Risks and Mitigation

- Main cable electrical performance may be worse than anticipated
 - Working with Hexatronic and partners to develop option based on Gen1-type twisted quads – nearly complete
 - Otherwise, additional comms firmware engineering effort required to accommodate higher levels of noise or cross talk
- Main cable production delays
 - Aggressively pushing schedule for first-article main cable production by fall/winter 2020
 - Main cable production deadline of Sept 2021 based on pre-staging two cables on ice over winter
- ICM (DOM/FieldHub) firmware delays impacting DOM production schedule
 - Scope clarified w.r.t. WBS 1.3, 1.6, and Ops, additional FTEs committed

- Penetrator cable assembly prototypes tested to 700 bar by manufacturer and in DEggs
- Production now underway with minor design tweaks

CUBE

 Some coronavirus-related delays but delivery anticipated before planned DEgg assembly date

- New main cable design from Hexatronic based on triplets of Gen1-type twisted quads
 - Final assembly by partner company (possibly combined with breakout connector installation) discussions moving forward productively
 - Short prototype cable in production, pull test planned in coming weeks

Cable design

- Conductor	solid bare copper wire Ø 0.9mm	Subunit 3x Quad
- Insulation	Solid PE	Jacketed cable
- Pair		Jucketeu cubie
- Quad jacket		
- Sub unit		
- Water blocking	Water swellable yarn	
- Sub unit jacket	_PE-LLD (marked Quad 01-03, 04-06, ie) 🛛 📑	
- Lay up	7 subunits concentric stranded	
- Strength member	5x bundles aramid yarn (each 6x8050 dtex)	
- Water blocking	PIB filling compound	
- Auxiliary pairs	1 Quad unjacketed,1 signal pair	
- Jacket	PE-LLD	
- Screen	Copper tape thickness =0.1 mm 2 tapes 0,1x45mm sp	iral 25% overlap
- Drain wire	Tinned stranded copper wire 2x 20 AWG (0.5mm ²)	
- Strength members	30 bundles aramid yarn 8050 dtex spiral in two opposit	te layers
- Jacket	TPE-U compound.	

min 5000 Mohm

nom 100 nF

max 20 dB

min 30 dB

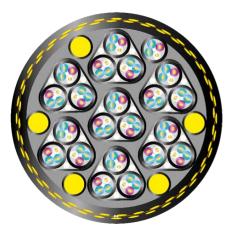
max 400 V DC

max 280 V AC max 200 mA DC

max 140 mA AC

145 ±10 ohm

General data


Operating temp	–55 to +80 °C
Handling temp	-40 to +80 °C
Storage temp	-80 to +80 °C

1 to 250 bar Operating pressure 450 bar Over pressure

Black Color

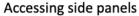
- Evaluation of bandwidth requirements and data budget:
 - DOM Comms Bandwidth Worksheet

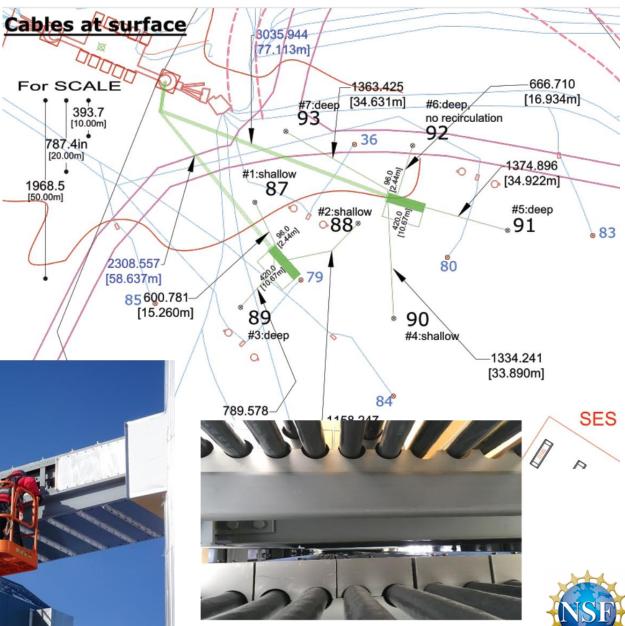
(https://uwprod.sharepoint.com/:x:/r/sites/icecubeupgrade/_layouts/15/Doc.aspx?sourcedoc=%7BE94F091E-230E-4DC3-9943-6B003C6D0433%7D&file=DOM%20Comms%20Bandwidth%20Worksheet.xlsx&action=default&mobileredirect=true)

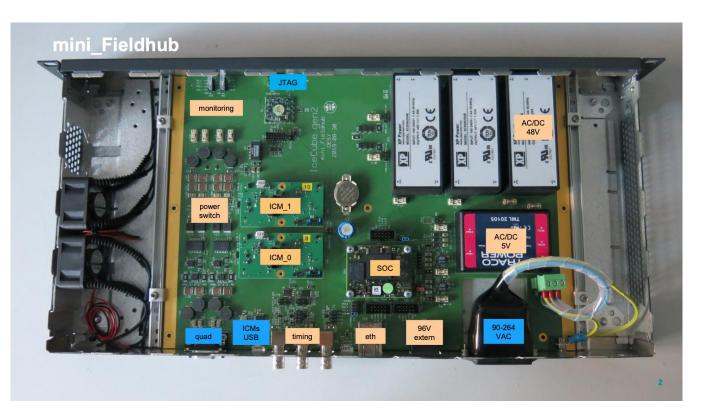
- Performance demonstrated on evaluation triplet no observable crosstalk, 2 Mbit performance demonstrated w/ no errors observed in 720 MB of transmitted data
- Currently predict 27% bandwidth margin on busiest pairs (much more on typical pairs)
 - Increase to 3 Mbit appears feasible, if needed, without extensive work

Net data bandwidth	1,552	kb/s	
mDOM data rate	529.8	kb/s	
DEgg data rate	157.5	kb/s	
Total data rate	1,217	kb/s	Highest data rate is for pairs with 2 mDOMs plus one DEgg

Maximum-rate pair bandwidth




- IDF replaced by surface cables and junction boxes (installation 21/22)
- Design and installation plan being finalized based on 19/20 recon w/ ASC
- Plan to procure surface cables from Hexatronic following Gen1 design



- First surface readout electronics modules ("mini-FieldHubs") produced
 - Distributed to DOM production sites and firmware developers
- ICM-related firmware development lags behind aggressive DOM production schedule
 - No current impact on overall project schedule
 - Detailed replanning just completed with clarification of responsibilities betw. 1.3, 1.4, 1.6 and additional resources brought to bear (CR in process)

CUBE

WBS 1.4 Previous and Future Reviews

- 08 / 2019
- 12 / 2019
- spring 2020
- late spring 2020
- summer 2020
- fall 2020
- fall 2020
- fall 2020
- winter 2020
- Nov/Dec 2020
- spring 2021
- spring 2021
- winter 2021

Penetrator cable assembly PDR Penetrator cable assembly FDR/PRR Main cable PDR Power supply and distribution PDR Main cable FDR Timing infrastructure FDR FieldHub PDR Surface cable and junction box FDR Breakout cable PDR Main cable PRR Breakout cable FDR Power supply and distribution FDR FieldHub FDR

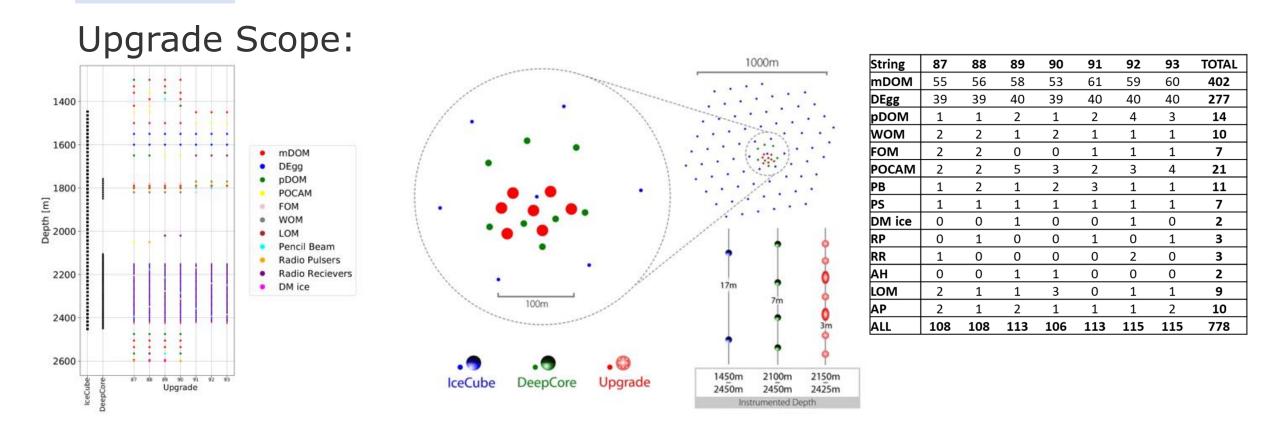
report

WBS 1.4 Remaining Issues and Challenges

- New Hexatronic main cable design
 - Mechanical validation of cable next month, then finalize breakout connector design and procurement
 - First-article production in fall/winter 2020, remaining strings in 2021 six months of schedule float but delays would have major impact
- Rapid design/review schedule for surface cables and junction boxes
 - ICL cable tower reconnaissance completed in 19/20, no issues identified awaiting GPR confirmation of cable routing plan
- ICM/FieldHub comms firmware development is lagging
 - Scope at the boundary of 1.3, 1.4 and 1.6 distributed efforts
 - Detailed replanning will accelerate progress

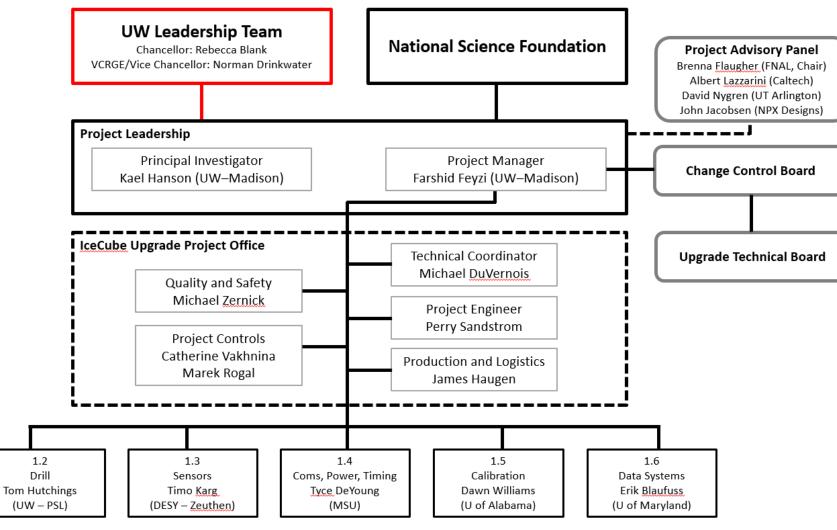
WBS 1.4 Summary

- Shift away from SPOT provided important schedule margin for main cable development
 - New design from Hexatronic under evaluation: electrical tests excellent, mechanical test this spring
 - On track for RFP and contract in late spring / early summer
- Penetrator cables in production, SCA and BCA design beginning
- FieldHub hardware on track, firmware development plan clarified
 - Low-level hardware tests of ICM and cable indicate sufficient bandwidth available based on DOM performance measurements
- CPT power, timing infrastructure development proceeding well
- NTS ready to begin operations as components are delivered
 - DAQ servers installed on private network connection to SPTS
 - GPS clock installed, mini-FieldHub en route from DESY, Hexatronic quad available
 - Dark boxes under construction for first DOMs (DEggs) to arrive

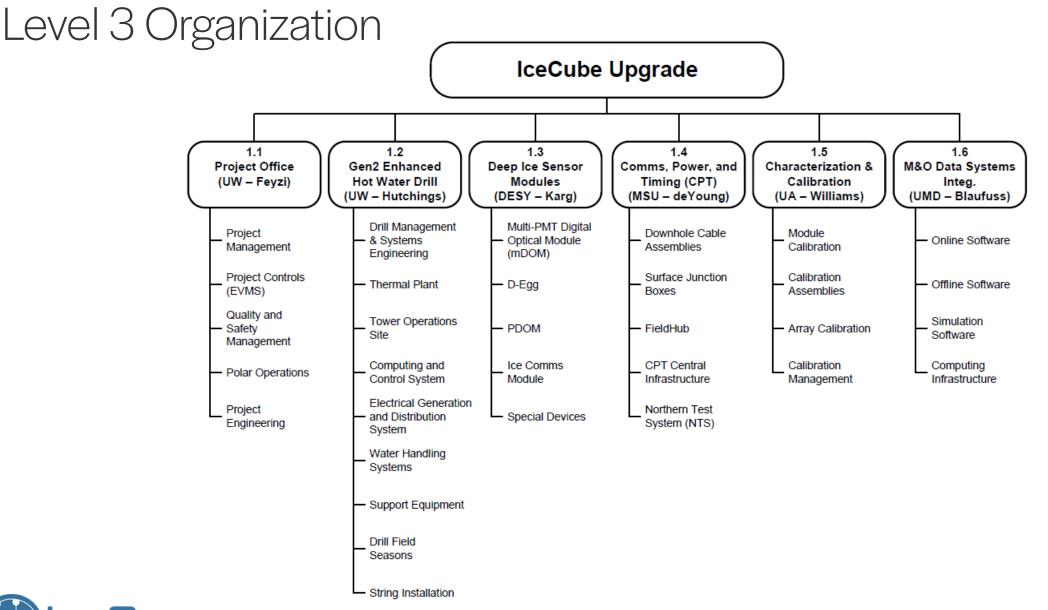


Comms, Power, Timing Systems – Tyce DeYoung

Upgrade Objectives:

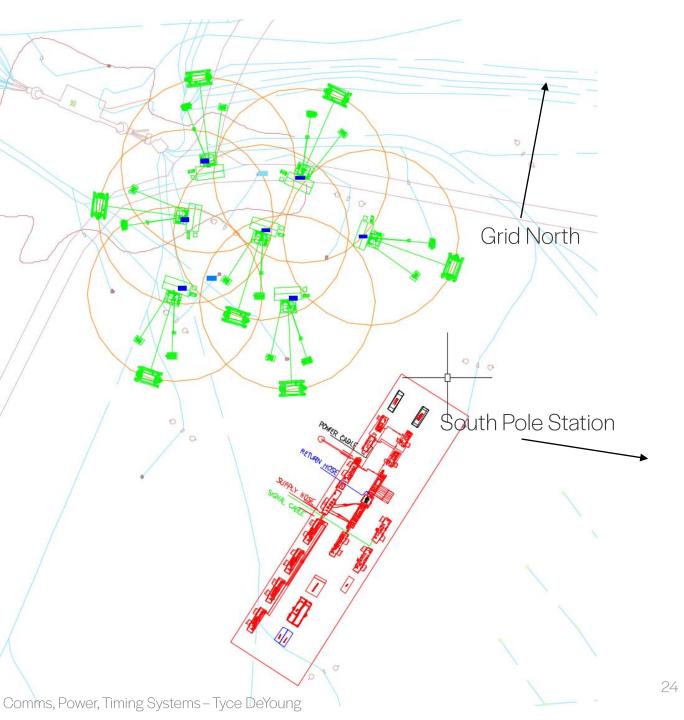

- 1. Neutrino Properties
- 2. Recalibration and Reanalysis of IceCube Data
- 3. IceCube-Gen2 Research and Development (not directly funded)

Comms, Power, Timing Systems – Tyce DeYoung

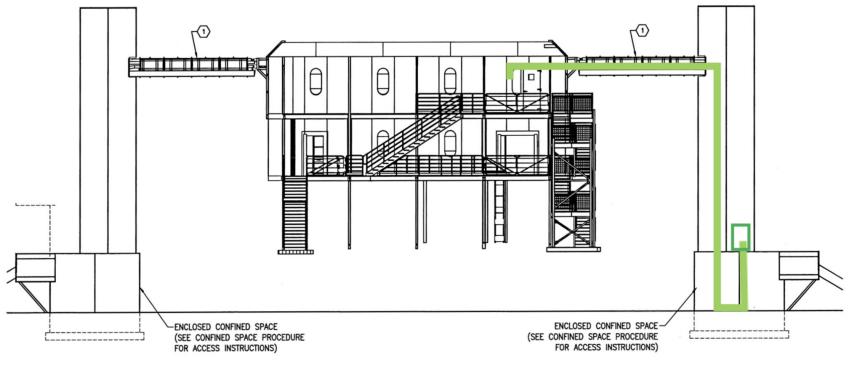


Project Office and Level 2 Organization

22

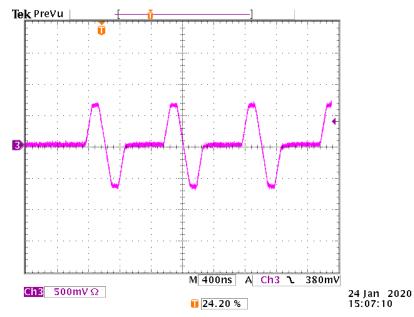


Surface Plan


- Very close holes compared to IceCube Gen1
- Integration with IceCube holes and cables need close attention
- Logistics and cable management planning starting this year
- Integration with ICL, assess how we could do this. Is there a clear path

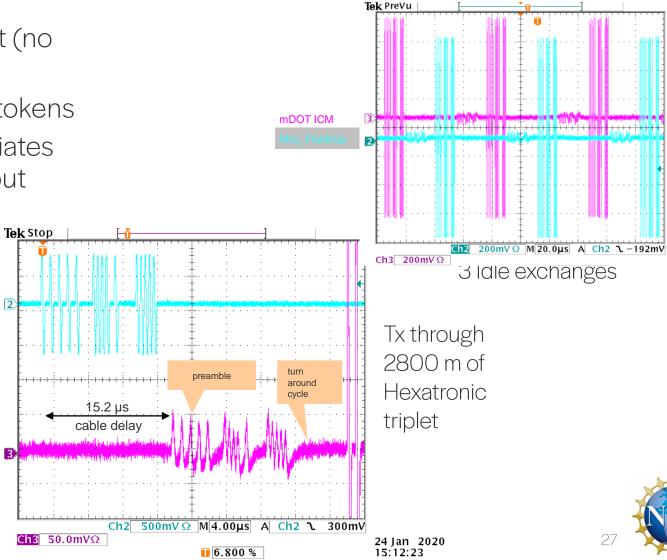
Surface Cable Route into ICL

• Tower modifications planned for 20–21 season, detailed discussion of plans with ASC on March 5



ICM / mini-FieldHub Comms Status

- Firmware Rev. 019
- 2MBd data rate
- Data bytes on the wire are 8b10b encoded (different to gen1)
- Data bits are ASK encoded ('1' = bipolar pulse, '0' = quiet line)
 - AFE-friendly trapezoidal waveform, e.g. 001010101 sequence
- Point to point connection, mini_Fieldhub buffer <-> xDOM buffer
- Transparent replacement of the local xDOM USB connection by the mini_Fieldhub USB demonstrated successfully
- Full hardware flow control between the mini_Fieldhub and the MCU
- No communications parameter adjustment required (different to gen1)
 - Works with cable lengths between 1m to 3000m


ICM / mini-FieldHub Comms Status

ΤХ

RX

- Current packet format is point-to-point (no addressing, packet size info, etc....)
 - Half-duplex, ICMs exchange idle tokens
 - No retransmission, mini-FH re-initiates communication after 40 µs timeout
- Planned final data format has 1-3% packet overhead (dep. on packet size)

Final Comms Format (Preliminary)

Control Packet Format – used as acknowledge, data read request, DOM power enable, etc.

	8b10b code	# of bytes	remark
Preamble	D21.5	1	B"1010101010" for baseline flattening and decoder teach-in
Start of Frame	K28.0	1	more robust than a single start bit (gen1)
DOM address &_sequence		1	DOM address and sequence number, used for retransmits
Function Code		1	Up to 256 functions
CRC_32		4	
End of Frame	K28.7	1	Unique pattern in a 8b10b encoded data stream

Data Packet Format

	8b10b code	# of bytes	remark
Preamble	D21.5	1	B"1010101010" for baseline flattening and decoder teach-in
Start of Frame	K28.0	1	Comma operator, more robust than a single start bit (gen1)
DOM address &_sequence nr.		1	DOM address and sequence number, used for retransmits
Packet Length		2	12048, 16bit words always
Data Bytes	Dxx.y	2 to 4096	2 to 4096 bytes
CRC_32		4	Like Gen1
End of Frame	K28.7	1	Unique pattern in a 8b10b encoded data stream

Maximum-rate pair bandwidth

Raw bit rate	2.0	Mbps	
Byte transmission time	5.0	μs	8b10b encoding, 10 bits transmitted per byte
Planned data packet format			
Preamble	1	bytes	B"1010101010" for baseline flattening and decoder teach-in
Start of frame	1	bytes	Comma operator, more robust than a single start bit (gen1)
DOM address & sequence	1	bytes	DOM address and sequence number, used for retransmits
Packet length	2	bytes	12048, 16 bit words always
Data bytes	4096	bytes	from 2 to 4096 bytes per packet
CRC_32	4	bytes	as in gen1
End of frame	1	bytes	Unique pattern in a 8b10b encoded data stream
Total data packet size	4106	bytes	
Communications overhead			Calculated for maximum packet size (i.e. minimum overhead)
Packet + frame transmit time	20,530	μs	
Cable delay	16	μs	
Turnaround cycle	4	μs	quiet time between Rx and Tx
Acknowledgement packet	45	μs	9 bytes
Total time per packet	20,615	μs	
Net data bandwidth	1,552	kb/s	
mDOM data rate	529.8	kb/s	
DEgg data rate	157.5	kb/s	
Total data rate	1217	kb/s	Highest data rate is for pairs with 2 mDOMs plus one DEgg

mDOM Data Rate Estimator

Base Data			
Dark rate per PMT	500	s-1	enter the dark rate per PMT in your module
Frequency of DOM clock	40	MHz	local clock in DOM
Full time stamp	48	bit	Assume we will use an 81-day clock rollover for byte-aligned timestamps (as Gen1)
Delta t between full time stamps	1.0E+06	ns	change this value until the data rate is minimal
SPE pulse time resolution	0.7	ns	enter time resolution of pulse templates used for unfolding - same as Gen1
Number of PMTs	24		enter the number of PMTs in your module
Group Header			group defined by consecutive sampling bins with amp. > threshold (0.25 pe)
DOM # on wire pair	0	bit	not needed as probably each module has its own channel
PMT #	5	bit	automatically calculated
Delta t relative to full time stamp	21	bit	automatically calculated
Feature extraction	1	bit	0 = not feature extracted; 1 = feature extracted
Complex Pulse Sampling			
Samples for baseline	3		samples prior to waveform start for baseline determination
Waveform sampling rate	100	MSPS	
Waveform length	200	ns	average length of a complex waveform
Amplitude resolution	12	bit	resolution of ADC
Feature extraction			
Amplitude resolution	12	bit	enter resolution of feature-extracted amplitude
Data Rates per DOM			
Complex waveform rate	2	s-1	Rate of complex multi-PE waveforms per PMT
Complex waveform size	303	bit	
Waveform data rate per PMT	0.59	kb/s	
Waveform data rate for all PMTs	14.2	kb/s	
Extracted SPE size	39	bit	Assuming pulses which look like scaled SPE templates will be extracted in FPGA
Byte-aligned SPE size	40	bit	Assume we will avoid bit-packing, so SPE data will use whole bytes
SPE data rate per PMT	19.5	kb/s	
SPE date rate for all PMTs	468.8	kb/s	
Absolute time stamp data rate	46.9	kb/s	
Total data rate per module	529.8	kb/s	this is the required data bandwidth per module after feature extraction assuming that ALL pulses are (scaled) single PE pulses (distribution of amplitudes needs to be checked in measurements)

30 **NSE**

DEgg Data Rate Estimator

Base Data			
Dark rate per PMT	1300	s-1	enter the dark rate per PMT in your module
Frequency of DOM clock	40	MHz	local clock in DOM
Full time stamp	48	bit	Assume we will use an 81-day clock rollover for byte-aligned timestamps (as Gen1)
Delta t between full time stamps	1.0E+06	ns	change this value until the data rate is minimal
SPE pulse time resolution	0.7	ns	enter time resolution of pulse templates used for unfolding - same as Gen1
Number of PMTs	2		enter the number of PMTs in your module
Group Header			group defined by consecutive sampling bins with amp. > threshold (0.25 pe)
DOM # on wire pair	0	bit	not needed as probably each module has its own channel
PMT #	1	bit	automatically calculated
Delta t relative to full time stamp	21	bit	automatically calculated
Feature extraction	1	bit	0 = not feature extracted; 1 = feature extracted
Complex Pulse Sampling			
Samples for baseline	3		samples prior to waveform start for baseline determination
Waveform sampling rate	240	MSPS	
Waveform length	300	ns	average length of a complex waveform
Amplitude resolution	12	bit	resolution of ADC
Feature extraction			
Amplitude resolution	12	bit	enter resolution of feature-extracted amplitude
Data Rates per DOM			
Complex waveform rate	5	s-1	Rate of complex multi-PE waveforms per PMT
Complex waveform size	923	bit	
Waveform data rate per PMT	4.5	kb/s	
Waveform data rate for all PMTs	9.0	kb/s	
Extracted SPE size	35	bit	Assuming pulses which look like scaled SPE templates will be extracted in FPGA
Byte-aligned SPE size	40	bit	Assume we will avoid bit-packing, so SPE data will use whole bytes
SPE data rate per PMT	50.8	kb/s	
SPE date rate for all PMTs	101.6	kb/s	
Absolute time stamp data rate	46.9	kb/s	
Total data rate per module	157.5	kb/s	this is the required data bandwidth per module after feature extraction assuming that ALL pulses are (scaled) single PE pulses (distribution of amplitudes needs to be checked in measurements)

