

Mike DuVernois, Technical Coordinator WBS 1.1

ICNO/Upgrade Project – NSF Site Visit Review 17 March 2020

Outline

- Scope of the project and of Technical Coordination
- Processes controlling the Technical Baseline
- Status of important systems and subsystems

Scope

IceCube Upgrade Project Scope

- Neutrino Oscillation Physics ("Physics")
 - Primarily with a dense array of photosensor modules in the deep, clear ice
 - Modules of two types (D-Egg and mDOM)
- Ice & Detector Calibration Improvements ("Calibration")
 - Enhances the science return of the full IceCube array, including prior data
 - Devices on each optical module (cameras, LED pulsers, inclinometers, etc.) and stand-alone modules (POCAM, Pencil beam, Acoustics, pDOM)
- Research & Development toward Gen2 IceCube ("R&D")
 - Small numbers of various R&D sensors, potential optical modules, test stands for radio detection, and tools for managing the Gen2 strings

Projected improvements with the Upgrade

- 3x improvement in atmospheric tau neutrino appearance sensitivity
- 4x/2x improvement in astrophysical cascade/track events
- 2x more astrophysical cascade events
- 3σ observation of astrophysical tau neutrinos in 12 years of recalibrated lceCube data

FieldHub

IceCube Lab

ICECUBE UPGRADE OPTICAL SENSORS 1600 m calibration PDOM 1 x 10" PMT 2150 m neutrino physics MDDM24 x 3" PMT 2425 m D-EGG

2 x 8" PMT

Optical Sensors

mDOM

Gen1 + DeepCore + Upgrade Layout

- IceCube
- DeepCore
- Upgrade

String

"Many module types, one project"

- mDOM & D-Egg
 - Primary optical modules (concentrated in physics region)
- pDOM, Pencil Beam, POCAM, & Acoustics
 - Calibration modules
- Others
 - Special devices or R&D modules for IceCube-Gen2
- All devices
 - Common comms, power, timing, DAQ & mechanical interfaces

Cable and Communications

- See more in the WBS 1.4 Talk
- New production quads support 2 Mbps on a wire pair with IceCube Upgrade (ICM and FieldHub) devices
- All in-ice modules have an ICM and are readout on the surface with a FieldHub
- On-module feature extraction to compress hits
- 20% overhead for multi-PE, 5% protocol overhead
- 8b10b encoding
- ~14kHz of compressed hits per 1 Mbps in pair
- This is sufficient for two mDOMs per pair

Field	Bits required						
Channel ID	5						
Trigger flag	0–2						
Clock LSBs	20–25						
Pulse amplitude	7–8 7–8						
Pulse offset							
Total	39–48 (5–6B)						

WBS 1.1: Tech Coordination, Project Engineering, Production Coordination, &

Scope of Technical Coordination & Project Engineering

- Design Baseline Library Defines the technical design of the project System Engineering scheme using four document templates
 - Configuration Management Document (CMD): hierarchical subsystems listing
 - Engineering Requirements Document (ERD): traceable to physics requirements
 - Design Status Notes (DSN): ongoing change log, links to meeting updates, vendor links
 - Interface Description Document (IDD): manages interfaces
- Project Technical Board weekly call with Issue Tracking
- Project Change Control Board weekly L2 call plus change control process
- Design Reviews
- Production Coordination, assistance with vendor relations, contracting, and purchasing

Processes

Weekly calls

- Technical Board Call (0730 Madison Tuesdays)
 - General updates of technical progress (D-Egg reporting recently for example)
 - Managing the technical issue tracker
 - Connects Europe, US, and Asia groups, open attendance
- Change Control Board (CCB/L2) (1100 Madison Wednesdays)
 - L2 Reports, Change Control, Budgets & schedules
- Gen2 Hardware Call (0800 Madison Thursdays)
 - Mainboard electronics have been a major topic recently
- Calibration Group, mDOM Group, Mainboard Firmware & Software, IceCube "Extensions," NSF Coordination, ASC Coordination Calls
- Local WIPAC Upgrade and Drill meetings

TB Call Agendas Examples

Agenda 2/18:

- -Issue Tracker
- D-Egg Final Design Review
- D-Egg Review Action Items/Questions/Issues for the wider group
- D-Egg Mainboard Noise: Perry/Ryo/et al.
- D-Egg Harness finalize: Aya/Chris Ng
- Upgrade String Design Complete (May 1 deadline): Mike
- -mDOM harness: Anna P.

Agenda 2/25:

- mDOM PMTs (Hamamatsu visiting DESY): Timo
- Camera mounting finalized post-shock tests: Carsten
- Discussion of the Upgrade String finalization: Mike
- Implementation Update: Terry
- Revisit D-Egg action items

Agenda 3/3

- Issue Tracker Update: Mike
- New call time starting next week: Mike
- D-Egg Status: Aya
- Cable Update: Ty
- microBase Update: Chris W.
- FAT workshop report & plans: Erik
- AOB

Change Management Process

- Change Request Form filled out by L2
- Change Request presented at weekly Technical Board Call
- Technical Board sends recommendations to L2/Change Control Board
- Recommendations discussed by CCB, they make a go/no-go recommendation to Project Manager
- Project Manager makes the decision and, if necessary, coordinates with the Pls, the host institutions, and the funding agencies
- Baseline costs, schedule, and technical documentation are updated
- Change Request Log is kept up to date with signatures obtained/logged
- Process documented in the Change Request Form maintained by Quality Control

Reviews

- Designs pass through conceptual, preliminary, final, and (for some mass-produced systems) production reviews
 - Due diligence and another opportunity to catch issues, prevent complacency
 - Later there are shipping readiness & deployment readiness reviews
- Most recent reviews:
 - Final Design Review for the D-Eggs (Feb 2020) with *
 - Preliminary Design Review for the POCAM (Oct 2019)
 - Preliminary Design Review for the mDOM electronics (Aug 2019)
- Reviewers are a mix of internal (IceCube) and external people
- Will show overall status of critical systems in "Status"
- Design flow through the reviews on next slide...

Design Flow

Instrumentation Design Deliverable	Work Product/Baseline Document	to exit Conceptual Design, you need	to exit Preliminary Design, you need	to exit Final Design, you need	to exit Production Readiness, you need	Comment
Description	Design Status Notes (DSN) and ConfCMD	Initial	Update	Update and controlled		
Requirements	ERD	Initial	Update	Update and controlled		
Block Diagram	slide 4 in DSN	Initial	Update	Update and complete		
Mechanical Drawings	slide 5 in DSN	Initial	Update	Update and controlled		integrate with Bill of Materials if possible
Schematic Circuit Diagrams	slide 5 in DSN	Initial	Update	Update and controlled		ifapplicable
Circuit Board Layout	slide 5 in DSN	Initial	Update	Update and controlled		ifapplicable
Bill of Materials	slide 5 in DSN	Initial	Update	Update and controlled		integrate with Mechanical Drawings if possible
Interfaces Identified	IDD	Initial	Update	Complete		
Design Verification	Coordinate with Project Engineer	Initial	Update	Update and controlled		
Investigate alternatives, rationale for design	Slide 6 in DSN, if needed	Initial	Complete			
Risk Assessment	Risk Register	Initial	Update	Update	Update	Document changes throughout lifetime of product, apply to project
Conceptual Design Review		Completed Review				Exit to Preliminary Design with meeting minutes 'approval' or Skip review and proceed with Preliminary Design with L2 / CCB OK
Integration Procedure	Integration PCR		Initial	Update and controlled		must include materials, tools, process, training
Test Procedure	Test PCR		Initial	Update and controlled		must include materials, tools, pass/fail criteria, process
Shipping Procedure	Shipping PCR		Initial	Update	Finalize	must consider all transport modes for delivery
Installation Procedure	Installation PCR		Initial	Update and controlled		if needed
Production Plan	slide 11 in DSN		Initial	Update	Finalize	include labor, sites, rate, equipment, capacity, bottleneck indentification, shipping plan
Procurement Plan ppt	slide 11 in DSN		Initial	Update	Finalize	
Prototype - Rev 0	something in hand + slide 8 in DSN		Initial			
Preliminary Design Review			Completed Review			Exit to Final Design with meeting minutes 'approval' or Skip review and proceed to Final Design with L2 / CCB OK
Prototype Yield	slide 8 in DSN			Initial	Update	if applicable, include failure analysis, pareto chart, actions to fix
Prototype - Rev 1 or more	slide 8 in DSN			Update	Update	if needed
Hazard Analysis	Coordinate with Safety Engineer			Initial	Finalize	if needed
Final Design Review				Completed Review		Exit to Production Readiness with meeting minutes 'approval'. All instrumentation MUST have a Final Design Review.
Production Readiness Review					Completed Review	Exit to Production / Procurement with meeting minutes 'approval'

Status

Status of critical systems

In-ice modules

- D-Egg: Passed FDR. One additional revision of the mainboard planned. In pre-production now, full production Summer 2020.
- mDOM: Passed PDR. Some parts have passed FDR. FDR in Summer 2020, production start 2020.
- POCAM: Passed FDR. Awaiting common parts delivery.
- Pencil Beam: In design process. Review expected Spring 2020.
- pDOM: Mainboard work drives the D-Egg mainboard.

Other components

- ICM/FieldHubs: Passed FDR. Common to all in-ice devices. "Speak DOM."
- Mini-Mainboard: To be reviewed Spring-Summer 2020. To support R&D and Calibration modules.
- Main cables: MSU-Vendor work, PDR in April
- Breakout cables: Conceptual design available, interfaces being defined
- Cable entry logistics: Evaluated at South Pole this past season. Detailed plan Spring-Summer 2020.

Current issues

- D-Egg schedule in Japan has been aggressive, and has forced a number of subsystems to be developed earlier than originally planned.
- Need to develop a general approach to dealing with non-conforming materials.
 Production processes need to be developed. We will do a high-level Failure Mode and Effects Analysis at the string level.
- Communications and timing system spans WBS 1.3, 1.4, and 1.6 and corresponding labor is divided up. Some transfers of hardware and software have delayed work.
- Some of our critical personnel are "double-booked".

Significant upcoming milestones

- April: Downhole cable Preliminary Design Review
- April: Delivery of pre-production batch (50) D-Eggs
- May 1: Upgrade String Design complete (see next slide)
- Mid-May: R&D sensor review at collaboration meeting
- Spring: Acoustics and Pencil Beam Reviews
- Summer: mDOM Final Design Review, D-Egg Production Readiness Review & Production Facility Audit
- Autumn: mDOM Production Readiness Review

L1 Milestone: Upgrade String Design Complete

- Finalize what goes onto each string:
 - Optical modules, special devices, types of breakout cables, harnesses
- Finalize what each hole looks like:
 - Location, depth, degas hole (yes/no), surface junction box, cable lengths
- This has been in the design baseline library for about a year
 - Some changes now with some R&D sensors being deleted
 - Some changes in numbers/positions of devices
 - Requires formal Change Request internally
- Deliverable for this milestone: short report organized by WBS and corresponding updates in the Project documentation
- Key existing document: Upgrade String CMD (and secondarily the drill maps and drill procedures)

Includes precise depths, cable assignments, etc.

String	87	88	89	90	91	92	93	TOTAL
mDom	55	56	58	53	61	59	60	402
Degg	39	39	40	39	40	40	40	227
pDOM	1	1	2	1	2	4	3	14
WOM	2	2	1	2	1	1	1	10
FOM	2	2	0	0	1	1	1	7
POCAM	2	2	5	3	2	3	4	21
РВ	1	2	1	2	3	1	1	11
PS	1	1	1	1	1	1	1	7
DM ice	0	0	1	0	0	1	0	2
RP	0	1	0	0	1	0	1	3
RR	1	0	0	0	0	2	0	3
AH	0	Ο	1	1	0	0	0	2
LOM	2	1	1	3	0	1	1	9
AP	2	1	2	1	1	1	2	10
Total	108	108	113	106	113	115	115	778

Backup

		SCIENCE OBJECTIVES - THE ICECUBE UPGRADE											
		Tau Neutrino Appearance and the Unitarity of the PMNS Matrix (2.1)	Neutrino Oscillations (2.2)	Sterile Neutrinos (2.2)	Indirect Dark Matter (2.2)	Ice Characterization for better LE & HE flavor physics (2.3)							
ENTS	Event Energy Range	few to 100 GeV											
PRIMARY SCIENCE REQUIREMENTS	Expected Detectable Event Rate Measurement in 2-3 years 5-10% tau measurement Any detection/improved limit Any detection/improved limit 100s / year												
NCE RE	Desired Angular Resolution <5 deg at O(20 GeV)												
RY SCIE	Time Resolution Within Event	2-5 ns	2-5ns										
PRIMA	Absolute Time Accuracy					50 ns							
	Instrumented Ice Volume				About 2 million cubic meters					7	4	4	4
	Array Shape				Compact					4	4	4	4
xmelty	Effective Volume			Varies with energy level	and event orientation (derive	d from other properties)				4	4	4	4
	Number of Strings				7					٧	4	4	4
Array	multi-PMT Digital Optical Modules (mDOM) per String		108 (90 in the dense ph	ysics region, others above a	and below for primarily calibrat	ion purposes) - 46 mDOMs,	38 D-Eggs, & 6 pDOMs			4	4	٧	4
Sersor	Total Number of mDOM			~750 (pho	otocathode area is key param	eter here)				٧	4	٧	4
lulce S	mDOM Spacing - Horizontal			22 meters (com	npromise between closer and	drill constraints)				٧	4	٧	٧
<u></u>	mDOM Spacing - Vertical				3.0 m					1	4	٧	4
	Detector Depth			Physics region: 2150-242	5m Upper region: 1450-2150	Deep region: 2425-2600m				1	4	٧	4
	Sensitivity of mDOM				Single Photo Electron (SPE)			,		٧	4	٧	4
namod	mDOM Photon Event Dynamic Range				SPE to >200 PE / 15 ns					٧	4	4	4
erforn	mDOM Field of View			Spherical with <	<10% variation, except for cat	ole shaddowing.				1	4	4	4
nDOM Perfo	Digitization Rate				300 megasamples / second					٧		٧	V
	Waveforms < 400 ns Digitization Rate				40 megasamples / second					٧		٧	4
ndvidua	Waveforms > 400 ns Absolute Amplitude Calibration			٧	٧	٧							
<u>2</u>	Accuracy Timing Accuracy			٧	٧	٧							
	mDOM Noise Rate		O(10kHz) total noise rate, <850 Hz per PMT									٧	4
5 = 8	mDOM Data Processing	Initial waveform capture and digitization in DOM, context sensitive compression of data prior to transfer										4	
nt / Backgr Bscriminations Inc. Reduct	Local Coincidence Function	In mDOMs, might require N of 24 PMTs hit within time window to suppress noise.								٧		٧	
P. C. A.	Event Trigger Function	Global (surface) trigger logic to package event data and discriminate noise								4	4	4	4
	Veto Function	Surface Array (IceTop) allows identification and discrimination of downgoing background								4	4	4	4
95										4	4	4	4
Stora									4			4	
and	South Pole High Priority Communications	At all times, it must be possible to complete a minimum 10KB transfer to the Northern Hemisphere within 10 minute period. (SNEWS and GRB Reporting)										4	
Transport	South Pole Medium Priority Communications	. God Nie 7 day										4	
	South Pole High Volume Data Transfer											٧	
Data D	Northern Hemisphere Data Warehouse	Fully Buffered / Archive Capacity & Redundancy Requirements										4	

Resolutions

- Energy resolution: DeepCore vs.
 Upgrade
- Angular resolution: DeepCore vs.
 Upgrade

2x improvement in energy resolution @ O(20 GeV) (tau appearance region) 3-4x improvement in cos(zenith) resolution @ O(20 GeV) (tau appearance region)

Surface Plan

 Very close holes compared to IceCube Gen1

 Integration with IceCube holes and cables needs attention

 Logistics and cable management planning starting this year

• Integration with ICL is being assessed

Drill - Schematic

ENHANCED HOT WATER DRILL - IceCube Upgrade

SYSTEM SCHEMATIC

Intent: Drill 7 IceCube-magnitude holes in one season to support installation of the IceCube Upgrade

Capacities: 4.6 MW thermal delivered to drill nozzle; 250 kW system electrical load

Run two gensets at a time, each at 125 kW, third genset is online backup

Makeup water obtained from stationary Rodwell, supported by ARA Hot Water Drill (pump, heat, hose reel - RWS no longer available)

