0.9 MILES BELOW 1.5 KM THE 1 KM ² 1.5 KM IDE FOOTPRINT 86 CABLES LIGHT SENSORS		7,500 atmospheric Vabout 3 0.9 MILES BELOW NUONS/MONTH 7,500 atmospheric Vabout 3 0.9 MILES BELOW NEUTRINOS/MONTH 1.5 KM THE
1.5 MILES BELOW 2.5 KM THE ICE SOUTH POLE NEUTRING DESERVATORY	EVENTS LAST ABOUT D.DODOO3 SECONDS	ICECUBE.WISC.EDU

FRONT VIEW

BACK VIEW

ICECUBE

Cosmic neutrinos can produce different patterns of light in IceCube. Event displays tell us about important properties of these neutrinos.

TRACK

When a muon neutrino interacts with the ice, it creates a muon as a secondary particle. The muon crosses the detector leaving a track of light in IceCube.

This neutrino was detected in IceCube on Friday, November 12, 2010

This is a simulated tau neutrino.

This neutrino was detected in IceCube on Tuesday, December 4, 2012.

DOUBLE BANG

A tau neutrino produces a cascade pattern with two large energy deposits. A double-bang pattern would be an unambiguous signature of a tau neutrino but it has not yet been observed in lceCube.

DIGITAL OPTICAL MODULE,

IceCube sensors are the size of a basketball. They work as an inverse light bulb that turns the blue shimmering light produced by a neutrino interacting with the ice into a digital signal.

Kilometer-long cables connect DOMs to the IceCube Lab, where data is prepared for satellite transmission to iceCube headquarters at the University of Wisconsin-Madison.

