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1. Introduction

Now that a large number of experiments, measuring neutrinos from di�erent sources such
as reactors, accelerators, the sun or the Earth's atmosphere, have provided compelling
evidence for the existence of non-vanishing neutrino masses via oscillations, one of the key
questions that has yet to be answered is that of the mass ordering. Whether it is normal or
inverted is not only of practical importance to experiments that address such fundamental
uncertainties as the absolute masses of neutrinos or their Dirac or Majorana nature, but
can also help constrain theoretical models at the GUT mass scale [1].

The Precision IceCube Next Generation Upgrade (PINGU), which is planned as an in�ll-
array to the existing IceCube neutrino detector, located at the South Pole Station, has the
potential to establish the neutrino mass hierarchy with high signi�cance at relatively short
time scale. In order to reach this goal, it will exploit characteristic modi�cations of the
oscillation probabilities of atmospheric neutrinos as they traverse the Earth on their path
towards the detector.

Only very recently, the IceCube collaboration reported on measurements of the atmos-
pheric neutrino mixing parameters |∆m2

32| and sin2 θ23, which are already �comparable in
precision to those of dedicated oscillation experiments� [2], not least because of the denser
instrumentation of IceCube's DeepCore region, where the Antarctic ice is clearest. With
its even closer spacing of optical sensors, PINGU will be able to e�ciently detect atmos-
pheric neutrinos with energies above a few GeV and further constrain the values of the
atmospheric oscillation parameters [1]. Reduced uncertainties on |∆m2

32| and sin2 θ23, in
turn, will directly bene�t the neutrino mass hierarchy measurement.

Apart from a precise knowledge of systematics such as oscillation parameters, angular
and energy resolutions are crucial. For PINGU, a dedicated universal reconstruction strat-
egy has been devised that is adapted to the event topologies associated with low-energy
neutrino interactions. After it had proven to yield good energy and direction estimates
not only for track-like events, generally the result of charged current muon interactions,
but also for cascades�which arise from charged current electron or tau neutrino and neu-
tral current all-�avour neutrino interactions�the latter emerged as the main contribution
to the overall sensitivity of PINGU [1]. Owing to their importance in the neutrino mass
hierarchy determination, this work focusses on the reconstruction of cascade-like events in
PINGU.

The most sophisticated reconstruction algorithms make use of a likelihood function that
is maximised simultaneously in several dimensions, to �nd the set of parameters that best
explains the observed data. The shape of the likelihood about its maximum then deter-
mines how tightly the best estimate is constrained, and thus yields the intrinsic resolution
of the reconstruction on an event-by-event basis.

An attempt at extending an existing approach that yields semi-analytic resolution es-
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1. Introduction

timates for individual cascade-like events to the PINGU reconstruction strategy is intro-
duced, and both are examined for their potential in predicting resolutions in scenarios of
varying complexity. In the end, a simpli�ed study is performed, which is based on the
selection of well-reconstructed events to reduce the impact of systematics on the neutrino
mass hierarchy signi�cance in the cascade channel.
This work is structured as follows: chapter 2 brie�y introduces the neutrino and measure-

ments related to its mass. After the origin of the atmospheric neutrino �ux is illustrated,
the basics of neutrino oscillations in vacuum are laid out, and a qualitative picture of the
modi�cation of transition probabilities in (Earth) matter is given, which depends on the
ordering of the neutrino masses. Afterwards, some key factors in the measurement of the
mass hierarchy are discussed.
Chapter 3 �rst presents the physics processes that are relevant to neutrino detection

in PINGU�especially those related to cascades�and then introduces the IceCube and
PINGU detectors as well as the properties of the surrounding Antarctic ice.
In chapter 4, the most important steps in event simulation and low-level reconstruction

are shortly explained, as they are drawn upon throughout this work.
Essentials of the method of maximum likelihood within the wider framework of parame-

ter estimation are given in chapter 5, together with a prescription that allows one to obtain
the (asymptotic) uncertainty of an estimate.
Chapter 6 details the constituting elements of the PINGU reconstruction strategy, and

illustrates how reconstruction residuals can be estimated semi-analytically after a maxi-
mum likelihood reconstruction has been performed, based on tabulated light yields that
have been �t with splines.
In chapter 7, the ideal relation between the likelihoods of the true and reconstructed event

parameters is discussed, in order to subsequently be able to estimate the suitability of the
likelihood formulation. Di�erent simulation and reconstruction scenarios are created, with
the aim to uncover inconsistencies which might a�ect the accuracy of a likelihood-based
residual estimator.
An application of the estimator is shown in chapter 8, where it is utilised to perform

quality cuts on a simulated data set of electron neutrino events in PINGU, so that the
implications of di�erent reconstruction resolutions for the neutrino mass hierarchy deter-
mination can be examined.
Chapter 9 will then conclude with a summary and a short outlook.

2
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2. Neutrino Mass Hierarchy and

Oscillations of Atmospheric Neutrinos

There are three neutrino �avours which interact weakly via charged (CC) or neutral cur-
rents (NC): electron, νe and ν̄e, muon, νµ and ν̄µ, as well as tauon, ντ and ν̄τ . In CC
weak interactions, each neutrino produces its charged lepton counterpart, i.e. νe (ν̄e) the
electron e− (e+), νµ (ν̄µ) the muon µ

− (µ+), and ντ (ν̄τ ) the tauon τ
− (τ+).

In the famous Wu experiment conducted in 1956, C.S. Wu and coworkers [3] found that
anti-neutrinos stemming from the β decay of polarised cobalt-60 nuclei were always emitted
with positive helicity. As a result, in 1957 Yang and Lee [4] postulated that there were
only two types of neutrino, the negative (left) helicity particle and the positive (right)
helicity antiparticle. Since a massive spin one-half particle has two states of helicity, this
two-component neutrino theory implied that the neutrino must be massless.

With the formulation of the maximally parity violating V-A theory [5], the weak force
itself was soon found to act only on the left-handed states of quarks and leptons, which
in principle allowed the neutrino to have a small mass. Nonetheless, since experiment did
not indicate the opposite, left-handed massless neutrinos were incorporated in the minimal
Standard Model [6].

There are two conservation laws that result from the assumption of vanishing neutrino
masses. Firstly, individual lepton-�avour numbers, i.e electron-number, muon-number and
tau-number, are conserved. Similarly, being the sum of individual �avour numbers, total
lepton number is also conserved. As a consequence, in the framework of the minimal
Standard Model, neutrino oscillations, i.e. in-�ight transitions between di�erent �avour
neutrinos, and neutrinoless double beta decay 0νββ are forbidden [6].

In the late 1960's, �rst hints at the existence of neutrino oscillations, and thereby at
nonzero neutrino masses, came from a chlorine radiochemical detector in the Homestake
Mine in South Dakota [7], which used the neutrino capture reaction νe + 37Cl→ 37Ar+ e−

to detect electron neutrinos stemming mainly from 8B decay taking place in the core of the
sun. The fact that the observed neutrino �ux was signi�cantly below predictions made by
the standard solar model (SSM) was the origin of the �solar-neutrino problem� [8], which
today is interpreted as the transition of electron neutrinos into neutrinos of other �avours,
caused by �nite neutrino masses and neutrino mixing.

Several di�erent experimental approaches have thus far lead to constraints on the ab-
solute neutrino mass. The Troitsk [9] and Mainz [10] experiments, which measured the
energy distribution of electrons in 3H beta decay near the endpoint, found similar upper
bounds on the mass of the electron anti-neutrino of mν̄e < 2.05 eV and mν̄e < 2.3 eV
at 95 % CL, respectively. Measurements of the Cosmic Microwave Background (CMB)
performed by the WMAP experiment, in combination with supernova data and data on

3
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2. Neutrino Mass Hierarchy and Oscillations of Atmospheric Neutrinos

galaxy clustering, result in upper limits on the sum of neutrino masses of
∑

jmj . 0.3�
1.3 eV, 95 % CL [11]. Most recently, the Planck Collaboration reported an upper limit of∑

jmj . 0.23 eV, 95 % CL [12], when adding baryoacoustic oscillation data to new mea-
surements of the CMB temperature power spectrum and WMAP polarisation CMB data
[8].
Beside the absolute mass scale, the ordering of the neutrino mass eigenstates νi, also

called the neutrino mass hierarchy, is one of the remaining fundamental open questions,
which can be resolved by studying atmospheric neutrinos. The following will therefore �rst
provide a brief discussion of the production mechanisms of atmospheric neutrinos, before
giving an overview over the formalism of neutrino oscillations in vacuum and modi�cations
to the latter introduced in the presence of matter, especially during propagation through
the Earth. Finally, the roles of some key parameters in the determination of the neutrino
mass ordering with the envisaged PINGU detector are examined.

2.1. Atmospheric neutrinos

Interactions of primary cosmic rays within the Earth's atmosphere produce a large number
of secondaries, whose decay leads to a steady �ux of atmospheric neutrinos. The dominant
decay processes are [13]

π± → µ±νµ(ν̄µ)

K± → µ±νµ(ν̄µ)

KL → π±e±νe(ν̄e) ,

with possible further muon decays

µ+ → e+νeν̄µ and µ− → e−ν̄eνµ .

These decays can only occur, however, if the muon energy is below several GeV. Due to
the characteristic height of around 15 km at which muons are produced, their decay length
becomes too large otherwise.
Atmospheric electron and muon neutrinos stemming from the decay of charged pions

and kaons constitute the conventional atmospheric neutrino �ux, which is the dominant
component up to energies of some 100 TeV [14]. It falls o� as a power-law in energy, with
a spectral index of γ ≈ 3.7, as compared to γ ≈ 2.7 for the primary cosmic ray �ux.
At higher energies, a di�erent type of �ux is expected to set in: the cosmic ray energy
spectrum is �converted� into a prompt neutrino �ux of equal spectral index via the decay
of short-lived charmed mesons. This is the only mechanism that is perceived to produce a
�ux of atmospheric tau neutrinos [13].
Fig. 2.1 shows a compilation of predictions and measurements of the atmospheric νe and

νµ �uxes, ranging from sub-GeV to PeV neutrino energies. A recent IceCube analysis [15]
(red circles) probed the νµ �ux at energies for which the spectrum is expected to become
harder as the result of the prompt component, but no conclusive evidence was found due
to relatively large uncertainties.

4
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2.2. Vacuum neutrino oscillations

Figure 2.1.: Theoretical models and measurements of the atmospheric νµ and νe energy spectrum
from the sub-GeV to the PeV range. See text for details. Figure taken from Ref. [15].

2.2. Vacuum neutrino oscillations

The mechanics of neutrino oscillations di�er somewhat from those of �avour oscillations in
the quark sector. On the one hand, neutrinos are stable and occur as free particles, and on
the other they are always produced and detected as pure weak states through interactions
of the weak force, while quarks start and end as states of de�ned mass [6].

The neutrino mixing matrix U is a unitary matrix that describes the relationship between
the �avour eigenstates |να〉 with α = e, µ, τ and the mass eigenstates |νi〉:

|να〉 =

n∑
i=1

Uαi|νi〉 . (2.1)

The total number of massive neutrinos n ≥ 3, depending on whether sterile neutrinos1

exist, which mix with the �avour neutrinos [8]. Assuming n = 3, there exist three di�erent
mass splittings (only two of which are independent), ∆m2

21, ∆m2
31, and ∆m2

32, where
∆m2

ij = m2
i −m2

j , and three independent mixing parameters or Euler angles θ12, θ13, θ23,
which are used together with a CP violating phase δCP to parametrise the matrix U [16],

1These are hypothetical predominantly RH neutrinos or LH anti-neutrinos which do not couple to the
weak W± and Z0 gauge bosons [8].

5
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2. Neutrino Mass Hierarchy and Oscillations of Atmospheric Neutrinos

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 = U (23)U (13)U (12)

=

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 ,

where cij ≡ cos θij , sij ≡ sin θij . The amplitude Aα→β of �nding a neutrino of �avour
α produced with momentum |~p| = k in a weak interaction process as one of a di�erent
�avour β at time t after production depends on the phases which are accumulated by the
di�erent mass eigenstates (that compose the original neutrino) during propagation [17],

Aα→β =
∑
i

UαiU
∗
βie
−im2

i t/(2k) . (2.2)

With δCP = 0, i.e. CP conservation in the leptonic sector, the 3 × 3 matrix U becomes
real, U∗ = U , and from Eq. (2.2) follows for the transition probability

P (t)α→β = |Aα→β|2 =
∑
i

U2
αiU

2
βi + 2

∑
i,j;j>i

UαiUαjUβiUβj cos(∆m2
jit/(2k)) . (2.3)

Often neutrino oscillation experiments can be analysed in a simpli�ed 2-neutrino mixing

scenario, in which Eq. (2.1) reduces to

|νl〉 = cos θ|ν1〉+ sin θ|ν2〉 , |νx〉 = − sin θ|ν1〉+ cos θ|ν2〉 . (2.4)

Here, θ is the neutrino mixing angle in vacuum and νx represents a neutrino of another
�avour, e.g. l = µ and x = τ [8]. Using the substitution L/E for t/k in Eq. (2.3), it is
then straightforward to show that the survival and transition probabilities become

P (L)l→l = 1− sin2 2θ sin2

(
∆m2

4E
L

)
, ∆m2 = m2

2 −m2
1 > 0 , and (2.5)

P (L)l→x = 1− P (L)l→l , (2.6)

respectively. Thus, P (νl → νx) exhibits oscillatory dependence on the neutrino propagation
distance L and energy E, while the factor sin2 2θ corresponds to the oscillation amplitude.

Suitable observation distances or baselines are best evaluated using the oscillation length
Losc = 4πE/(∆m2), which is the propagation distance corresponding to one full oscilla-
tion.2

At one extreme, when the baseline L � Losc, even if the mixing angle θ is large, the
oscillation will be at too early a stage to be observed, and P (L)l→l ∼= 1, while P (L)l→x ∼= 0.
At the other extreme, L� Losc, it will only be possible to determine the average oscillation

2Given E in MeV and ∆m2 in eV2, Losc
∼= 2.48 m E

∆m2 .

6
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2.3. Matter e�ect dependence on neutrino mass hierarchy

Figure 2.2.: Neutrino mass ordering under normal (a) and inverted (b) hierarchy and �avour
admixtures of the mass eigenstates. See text for details. Figure taken from Ref. [18].

probabilities 〈Pl→l〉 = 1 − 1/2 sin2 2θ and 〈Pl→x〉 = 1/2 sin2 2θ. In order for the νl → νx
transition probability to become reasonably large, Pl→x ∼= 1, one requires sin2 2θ ∼= 1,
and in addition that Losc ' 2πL. For a given neutrino oscillation experiment, which
detects neutrinos with (average) energy E at a distance L from their origin, the minimum
resolvable mass squared di�erence is then determined by the condition ∆m2

min ∼ 2E/L [8].

2.3. Matter e�ect dependence on neutrino mass hierarchy

Within the picture of 3-neutrino mixing, the two independent mass-squared di�erences are
by convention chosen to be ∆m2

21 > 0 and ∆m2
31 6= 0, with the absolute value |∆m2

21| of the
former taken as the smaller of the two di�erences. While the absolute values obtained from
di�erent oscillation data imply |∆m2

21| ∼= 7.5× 10−5 eV2 and |∆m2
31| ∼= 2.5× 10−3 eV2 [8],

it still remains unknown whether ν3 is the most or least massive of the three neutrino
mass eigenstates. The ordering (hierarchy) of the neutrino mass spectrum is referred to
as normal in the former scenario (NH), m1 < m2 < m3, and inverted in the latter (IH),
m3 < m1 < m2. These two possible mass hierarchies are depicted in Fig. 2.2, together
with the �avour composition of the mass eigenstates.
Owing to the smallness of the element |Ue3| = sin θ13, one can associate the mass-squared

di�erences ∆m2
21 and ∆m2

31 (and the corresponding mixing angles) with the solar νe and
dominant atmospheric νµ (and ν̄µ) oscillations, respectively. For this reason, ∆m2

21 and
∆m2

31 are also called solar and atmospheric neutrino mass-squared di�erences and denoted
as ∆m2

21 ≡ ∆m2
sol, ∆m2

31 ≡ ∆m2
atm.

In matter, a signi�cant enhancement of the oscillation probability can occur if there is a
periodic change of density along the trajectory of the neutrino, the parametric resonance.
Probabilites can exhibit further enhancement via the MSW e�ect, depending on the or-
dering of neutrino masses. A short discussion of these two mechanisms is given in the
following.

7
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2. Neutrino Mass Hierarchy and Oscillations of Atmospheric Neutrinos

W±

e

νe

νe

e

Z0

p, n, e

νe,µ,τ

p, n, e

νe,µ,τ

Figure 2.3.: Feynman diagrams for coherent elastic neutrino forward scattering on matter con-
stituents. Only electron neutrinos exhibit charged current interactions (left), while neutral currents
can mediate the interactions of neutrinos of all three �avours (right). See text for details.

Parametric Enhancement Parametric enhancement of oscillation probabilites can oc-
cur when atmospheric neutrinos traverse the Earth's core. In the Preliminary Reference

Earth Model (PREM) [19], a number of spherical shells with di�erent radii constitute
the Earth's density pro�le. While the change in density as a function of radius within
each shell proceeds relatively smoothly, the boundaries are characterised by rather sharp
transitions. Since the density jumps between the Earth core and mantle are much larger
than those between other shells, the density pro�le which is experienced by neutrinos
crossing the core can be represented by only three layers, i.e. mantle-core-mantle [20].

The parametric resonance condition constrains the oscillation phases accumulated in the
mantle and in the core, as de�ned e.g. in Ref. [20, Eq. (19)]. For one, these phases depend
on the path lengths in the two layers of di�erent (approximately constant) densities, and
therefore on the zenith angle of the neutrino. But they are also crucially in�uenced by
the values of the mixing parameters ∆m2

32 and sin2 2θ13.

MSW E�ect One cause for neutrino oscillations being modi�ed in the presence of matter
can be found in the two Feynman diagrams in Fig. 2.3, which show coherent forward elastic
scattering processes of neutrinos on matter constituents. W± mediated CC interactions
only occur for incident electron neutrinos, whereas neutrinos of any of the three �avours
can scatter on protons, neutrons and electrons under the exchange of a Z0 boson in
neutral current interactions. The potential induced by these are identical in leading
order, and thus do not alter survival and transition amplitudes. As a result of the CC
interaction of electron neutrinos with the electrons, there is an e�ective potential V =
V CC
e =

√
2GFNe, GF and Ne being the Fermi constant and the electron number density

in matter, respectively [18].

In a two-�avour scenario of νe ↔ νµ or νe ↔ ντ oscillations in matter with constant Ne,
the dependence of sin2 2θm on Ne, where θm is the mixing angle in matter, will exhibit a
resonance character. The MSW resonance condition is met when

Ne = N res
e =

∆m2 cos 2θ

2E
√

2GF
, (2.7)

8
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2.3. Matter e�ect dependence on neutrino mass hierarchy

θ being the vacuum mixing angle. Alternatively, for given density Ne, the resonance
occurs at the resonance energy Eres. Eq. (2.7) implies that, if ∆m2 > 0 (NH), the mixing
in matter becomes maximal for Ne = N res

e , even if the vacuum mixing angle θ is small.
For oscillations of anti-neutrinos ν̄e ↔ ν̄µ(τ), on the other hand, due to the replacement
of Ne with (−Ne), one �nds the possibility of resonance enhancement exists only for
∆m2 < 0 (IH) [8].

Combined Picture Qualitatively, the trajectory of the neutrino as it passes through the
Earth determines which of the two e�ects contributes to the modi�cation of oscillation
probabilities. For a zenith angle θν such that only the mantle is traversed, cos θν >
−0.84, oscillation probabilities can only be modi�ed through the MSW resonance in the
mantle, while for cos θν < −0.84 parametric and MSW resonance e�ects interfere. MSW
resonances in the mantle and core will appear at around 7 GeV and 3 GeV, respectively,
with the value at which parametric enhancement occurs lying in between [21].

Fig. 2.4 shows the oscillation probabilities P (νx(ν̄x) → νµ(ν̄µ))(x = e, µ) extracted from
Ref. [22], for both possible mass ordering schemes and two di�erent neutrino zenith an-
gles, as a function of neutrino energy. In the case of the vertically upgoing trajectory
(cos θν = −1) and the NH (IH), there are modi�cations of the νe → νµ (ν̄e → ν̄µ)
transition probabilities for Eν . 7 GeV through parametric enhancement. Toward the
highest energies shown, Eν & 15 GeV, the probability for νe to oscillate into νµ becomes
increasingly small, and the di�erent mass hierarchies become less and less distinguishable.

Figure 2.4.: Transition probabilities νe → νµ (red graphs) and νµ → νµ (blue graphs) as a function
of neutrino energy, for two di�erent trajectories through the Earth. The solid lines correspond to
the NH, while the dashed lines represent the IH. Left plots show neutrino, right plots show anti-
neutrino oscillation probabilities. Figure adapted from Ref. [22].
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2. Neutrino Mass Hierarchy and Oscillations of Atmospheric Neutrinos

2.4. Measurement of the neutrino mass hierarchy asymmetry

A non-magnetised neutrino detector such as PINGU has no charge discrimination power,
i.e. it will only be able to measure the sum of neutrino and anti-neutrino event rates.
Fig. 2.4 shows that, to a �rst approximation, the transition probabilities for neutrinos
under the NH are the same as those for anti-neutrinos under the IH.3 For a given �avour,
a net asymmetry between NH and IH remains nevertheless, because on the one hand the
CC cross sections for neutrinos in the relevant energy range of a few GeV exceed the
corresponding anti-neutrino cross sections by a factor of about two (see Fig. 3.1), and on
the other hand the �ux of atmospheric neutrinos is larger than that of anti-neutrinos by
about 30 % [21].
A number of parameters that might impact the measurement of the asymmetry and

reduce the signi�cance with which the wrong mass hierarchy can be rejected are related
to the detector itself. In this regard, the neutrino energy and zenith angle estimation
performance play a key role. As is demonstrated quantitatively in Ref. [22], accurate
reconstructions are necessary to obtain a high sensitivity to the NMH, a major fraction
of which arises from rather clearly con�ned regions in the (Eν , cos θν) plane; this aspect
will also be examined in the course of this work. Further, detector related systematics
include uncertainties in energy calibration and e�ective areas. Theoretical uncertainties
in (anti-)neutrino cross sections are partially degenerate with uncertainties in the spectral
index and relative normalisation of the atmospheric neutrino �uxes (see Refs. [1, 23]).
Apart from detector-related systematics, it is also necessary to study the impacts of the

di�erent oscillation parameters, especially of ∆m2
31 and θ23. Uncertainties in these param-

eters can signi�cantly reduce the signi�cance of the hierarchy determination by giving rise
to patterns in the (Eν , cos θν) plane that resemble actual neutrino mass hierarchy e�ects
[22].

3They would be identical if it was not for non-zero 1-2 mass splittings and mixing [22].
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3. Neutrino Detection in Ice

3.1. Interaction cross sections of neutrinos at GeV energies

Neutrino interaction with nuclei in a target medium can proceed either via charged cur-

rents (CC) or via neutral currents (NC). While the former process is characterised by
the exchange of a charged W-boson, the latter is mediated by the neutral Z-boson. With
increasing energy, the neutrino starts resolving the individual constituents of the target.

At intermediate energies Eν ∼ 0.1�20 GeV, neutrino scattering comprises the three main
mechanisms (quasi)elastic scattering, resonance production and deep inelastic scattering
[24]. In (quasi)elastic interactions, neutrinos scatter o� an entire nucleon, thereby separat-
ing one or more nucleons from the target. Resonance production refers to a struck nucleon
being converted into an excited state, resulting in numerous possible �nal states. Deep
inelastic scattering is by far the dominant process at neutrino energies exceeding 20 GeV.
Here, the neutrino interacts with a quark in the nucleon. Depending on the type of boson
exchanged, the particles in the �nal state di�er [13]:

νlN → l−X and ν̄lN → l+X (CC) , (3.1)

νlN → νlX and ν̄lN → ν̄lX (NC) , (3.2)

where l = e, µ, τ denotes the lepton �avour, N is either a proton, neutron or an isoscalar
target, and X is the hadronic �nal state. Both types of interactions comprise a system of
�nal state hadrons, which give rise to a hadronic particle shower, described in Sec. 3.4.2.
The lepton l, on the other hand, only emerges in CC interactions of a neutrino with
corresponding �avour.

Fig. 3.1 shows the total CC cross sections for both neutrinos and anti-neutrinos as a
function of energy, together with the contributions from the relevant individual processes
alluded to above. While anti-neutrino cross sections are typically only half as large as their
corresponding neutrino counterparts, the linear dependence on energy approached above
some ten GeV is expected for scattering on point-like quarks [8].

3.2. Ionisation, bremsstrahlung and pair production

Depending on the type and energy of a particle passing through matter, di�erent interaction
processes, manifesting in a loss of energy, may play a role. This section will therefore give
a brief overview over those most relevant to the detection of secondaries produced in (CC)
interactions of neutrinos with GeV energies, based on Ref. [25].
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3. Neutrino Detection in Ice

Figure 3.1.: Total neutrino (left) and anti-neutrino (right) CC cross sections per nucleon divided
by neutrino energy, and individual contributions from resonance production (RES), quasielastic
(QE) and deep inelastic scattering (DIS), at intermediate and high energies. See text for details.
Figures taken from Ref. [24].

3.2.1. Ionisation by heavy particles

Ionisation or atomic excitation energy losses of fast charged particles with speed v = βc
are usually small (< 100 eV in 90 % of cases). Here, heavy particles need to be considered
separately from positrons and electrons due to kinematics, spin, and the identity of the
latter with the atomic electrons. At intermediate energies 0.1 < βγ < 1000 and charge
numbers Z, the mean energy loss rate can be well-approximated by the Bethe formula,〈

−dE
dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ (βγ)

2

]
. (3.3)

Here, K = 4πNAr
2
emec

2 is a constant, z the charge of the projectile in units of the el-
ementary charge e, Tmax the maximum kinetic energy that can be transferred to a free
electron in a single collision, I the mean excitation energy in eV, and δ (βγ) a density
e�ect correction. In a given material, 〈−dE/dx〉 can be viewed as a function of β alone.
It typically exhibits a broad minimum, whose position shifts depending on Z.

For muons in ice, the mean energy loss rate at minimum ionisation is approximately
1.8 MeV cm−1, and in the energy range of interest, radiative processes, i.e. bremsstrahlung,
pair production and photonuclear interactions, only contribute a negligible fraction to
energy loss [26].

3.2.2. Photon and electron energy loss

For electrons and positrons at very low energies, ionisation is the primary energy loss
mechanism. As it turns out, at similar values of γ, the resulting mean energy loss rates
do not deviate strongly from those of heavier particles. Above some ten MeV in most
materials, losses due to bremsstrahlung dominate. Bremsstrahlung is emitted by a moving
charged particle in the Coulomb-�eld of a nucleus or an atomic electron.

Two important quantities describing the ionisation and bremsstrahlung energy losses of

12



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

3.3. Cherenkov radiation

electrons and positrons are radiation length and critical energy. Both are also of importance
in characterising the longitudinal development of electromagnetic cascades (cf. Sec. 3.4.1
below).

Radiation length The radiation length X0 is a characteristic measure of the amount of
matter traversed by both high-energy electrons emitting bremsstrahlung and high-energy
photons producing electron-positron pairs. While in the former case it corresponds to the
mean distance an electron needs to travel before its energy has decreased to 1/e of its
initial value, in the latter it is equivalent to 7/9 of the mean free path before a photon
creates an e+e− pair in the vicinity of a nucleus. In both cases, the energy loss rate scales
approximately linearly with energy, and thus〈

− dE
dX

〉
i

' ci
E

X0
, (3.4)

where i = brems, pair and cbrems = 1, cpair = 7/9. X0 can be parametrised as a function
of the medium's charge number Z; see Ref. [25, Eq. (31.26)]. Ref. [26] states a radiation
length of X0,ice = 36.08 g cm−2 for ice, which translates into a mean free distance of
39.65 cm assuming a density of ρice = 0.91 g cm−3.

Critical energy Using the approximation of the energy loss due to bremsstrahlung given
in Eq. (3.4), the critical energy Ec corresponds to the electron energy at which the loss
rates due to ionisation and bremsstrahlung are equal, but also to the energy at which
the electron energy and the ionisation energy loss per radiation length X0 are equal. A
simple �t to the critical energy in solids exists, which does not take into account existing
dependencies on A, I, and other factors:

solids: Ec '
610 MeV

Z + 1.24
. (3.5)

The critical energies in ice obtained from Ref. [26] are Ee
−
c,ice = 78.60 MeV and Ee

+

c,ice =
76.51 MeV.

3.3. Cherenkov radiation

A charged particle of mass m radiates Cherenkov light if the velocity v = βc with which
it propagates through a dielectric medium with refractive index n exceeds the local phase
velocity of light c/n; the kinetic energy threshold is thus de�ned by

Et = mc2

(
1√

1− n−2
− 1

)
. (3.6)
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3. Neutrino Detection in Ice

Photons are emitted into a cone whose vertex is located at the position of the moving
charged particle; its opening half-angle is called the Cherenkov angle and is given by

θC = arccos

(
1

βn

)
. (3.7)

In dispersive media n = n(ω), so the relations given above hold for radiation of frequency
ω under the condition that v > c/n(ω).

For a relativistic (β = 1) source in ice, whose refractive index is nice ≈ 1.33 [27], Eq. (3.7)
evaluates to θC ≈ 41°. The kinetic energy threshold for the emission of Cherenkov radiation
(θC = 0) for an electron in ice is Et ≈ 0.26 MeV, while for a muon and a proton the
thresholds are 54 and 475 MeV, respectively.

The Frank-Tamm formula quanti�es the number of Cherenkov photons per unit path
length and unit wavelength interval radiated by a particle with charge ze [25]:

d2N

dxdλ
=

2παz2

λ2

(
1− 1

β2n2(λ)

)
, (3.8)

where α ≈ 1/137 is the �ne structure constant. In the 300�500 nm wavelength band,
around 250 optical photons per cm of path length are produced by a particle of unit charge
travelling at β = 1 through ice [27]. Large photomultiplier sensitivities (see Sec. 3.5.2) and
a small intrinsic absorptivity of pure ice in this wavelength range [28] bene�t the detection
of charged particles via the considerable number of optical Cherenkov photons they emit.

While many high-energy cosmic ray and neutrino detectors make use of the Cherenkov
e�ect, it only contributes a small amount to the energy loss of charged particles, i.e. around
0.5 % of that due to ionisation for a minimum-ionising particle [29].

3.4. Modelling of particle showers

When considering the physics of showers�cascades of secondary particles initiated by the
interaction of a high-energy primary with matter constituents�one needs to distinguish
between those produced by particles interacting electromagnetically and those originating
from hadrons, because of the di�erent forces and processes involved in each case.

3.4.1. Electromagnetic cascades

According to the concept of critical energy introduced in Sec. 3.2.2, an electron with energy
E > Ec subject to an electric �eld, as generated for example by the atoms in a target
medium, will emit bremsstrahlung photons, which in turn can produce electron-positron
pairs, which radiate further photons and so on; an electromagnetic cascade is initiated.

A description of the basic features of the longitudinal development of an electromagnetic
shower is given within the Heitler model [30] (originally Carlson & Oppenheimer [31]):
there is only one type of particle with energy E and �xed interaction length X0; at each
interaction two new particles with energy E/2 are produced (Figure 3.2). The number of
particles N present in the shower at a given depth z = n ·X0, where n denotes the number
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3.4. Modelling of particle showers

Figure 3.2.: Simple Heitler model describing the longitudinal development of an electromagnetic
cascade up to its maximum. See text for details.

of generations or consecutive interactions, reads N(z) = 2n = 2z/X0 . Assuming the energy
of the primary (shower-inducing) particle is E0, each particle belonging to generation n
has an energy E(z) = E0/2

n.

The depth at which the number of particles in the cascade is at a maximum Nmax

follows from the condition E = Ec, since as soon as electron energies fall below the critical
energy, their energy is dissipated by ionisation and excitation. As a consequence, particle-
multiplication comes to a halt and the shower starts to subside. Hence,

Nmax =
E0

Ec
and zmax(E0) ∝ X0 ln

(
E0

Ec

)
. (3.9)

Realistic Monte Carlo simulations performed in Ref. [27], employing full tracking of the
shower constituents, con�rm the scaling of the shower maximum with the logarithm of the
primary energy as predicted by this simple model.

Charged cascade constituents with energies above the Cherenkov threshold (3.6) will
emit a number of Cherenkov photons that is proportional to their track length, which
follows from Eq. (3.8). One should also note that the photon yield depends on the velocity
β, and is reduced by the factor

n2 − β−2

n2 − 1
(3.10)

with respect to that of a β = 1 charge. Eq. (3.10) then determines the total e�ective track
length l̂ of a cascade, whose dependence on the primary energy E0 has been found to be
linear in di�erent studies [27, 32, 33], with the most recent one reporting a constant of
proportionality of ∼ 532 cm GeV−1 and extremely small shower-to-shower �uctuations at
a less than 1 % level already for energies in the GeV range [27].
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3. Neutrino Detection in Ice

A reasonably accurate description of the mean longitudinal energy deposition pro�le of
an electromagnetic cascade can be given using a gamma distribution [25]:

dE

dn
= E0 b

(bn)a−1e−bn

Γ(a)
, (3.11)

where a and b are characteristic dimensionless constants. Ref. [27] �nds a logarithmic
increase a = α + β log10 (E0/1 GeV), with α ≈ 2.02, β ≈ 1.45 for an initial e−, while
b ≈ 0.63 shows no energy dependence. The depth of maximum energy deposition follows
as

nmax =
a− 1

b
. (3.12)

According to this parametrisation, using the mean free distance in ice given in Sec. 3.2.2,
the average maximum energy deposition of an electromagnetic cascade brought about by
a primary electron of energy E0 = 10 GeV will occur at a depth of zmax ≈ 1.55 m.

Finally, the angular distribution of Cherenkov photons emitted during the development
of the cascade is found to be quite broad, albeit with a pronounced maximum at the
Cherenkov angle, and is independent of primary energy (Fig. 3.3); variations with shower
age (number of generations) for reasons of increased scattering at larger shower depths are
only on the order of 10�20 % [27].

Figure 3.3.: Angular distribution (per photon and steradian) of Cherenkov photons emitted by
electromagnetic showers, independent of primary energy. Figure taken from Ref. [27]

3.4.2. Hadronic cascades

Hadronic cascades can originate e.g. from neutral- or charged-current neutrino-nucleon
scattering or from the decay of heavy particles. Characteristic length scales of longitudinal
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3.5. The IceCube detector and its low-energy extension PINGU

cascade development are governed by the nuclear interaction length, i.e. a hadron's mean
path length before it interacts inelastically with a nucleus, λI ≈ 90.8 cm in ice [26].

Every hadronic cascade also comprises an electromagnetic component. The energy trans-
fer to the latter proceeds via the production of π0, which immediately decay into a pair of
high-energy photons, thereby inducing overlaid electromagnetic cascades. Large shower-
to-shower �uctuations in energy deposition are attributable in part to this process, and
in part to the possibility that lower energy charged pions and other hadrons decay into
muons, which are lost to further shower development [32]. As soon as the energy of a
secondary drops below the pion-production threshold, it will no longer contribute to the
energy transfer to the electromagnetic part of the cascade; the electromagnetic fraction
rises with increasing energy of the primary hadron [34].

In general, hadronic cascades produce a smaller amount of Cherenkov light than do elec-
tromagnetic cascades. As a consequence, the energy deposit that is potentially detectable
(also called visible energy [35]) by detectors sampling Cherenkov light is reduced. Causes
for this suppression include the existence of slow neutrons, interactions leading to reduced
secondary energies through binding energy losses, as well as increased Cherenkov energy
thresholds (Eq. (3.6)) [36]. The quantity that governs the relative light yields is the ratio
of the total (radiating) track lengths Thad and Tem [36],

F = Thad/Tem , (3.13)

which has been simulated and �t as a function of energy in ice in Ref. [36]. On average,
a 100 GeV hadronic cascade, for example, produces only around 75 % of the amount of
Cherenkov light emitted by an electromagnetic cascade of the same energy, with event-to-
event �uctuations of approximately 17 % with respect to the average.

3.5. The IceCube detector and its low-energy extension

PINGU

3.5.1. Detector layout

PINGU (Precision IceCube Next Generation Upgrade) [1] is a proposed low-energy ex-
tension to the existing IceCube Neutrino Observatory, constructed at the location of the
Amundsen-Scott South Pole Station in Antarctica. The observatory consists of the cubic-
kilometre IceCube array and two smaller subarrays, DeepCore and IceTop. The latter is a
surface air shower array that can be used as a veto for backgrounds arising from extensive
air showers and for studies of cosmic rays [37].

A hexagonal grid of 78 strings spaced approximately 125 m apart constitutes the IceCube
array. Each string is instrumented with 60 optical sensors (DOMs, see Sec. 3.5.2 below)
spaced 17 m apart vertically, at depths of 1450�2450 m below the surface [37].

The DeepCore subarray encompasses eight additional high-density strings and the seven
central IceCube strings. Horizontal inter-string distances are 42 m and 72 m, respectively.
The dedicated DeepCore strings are not instrumented in the region between 1850 m and
2100 m depths, where an elevated concentration of dust in the ice leads to signi�cantly
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3. Neutrino Detection in Ice

reduced scattering and absorption lengths (see Fig. 3.7). Directly above this region, there
are 10 DOMs on each string with a DOM-to-DOM spacing of 10 m, while 50 DOMs with
7 m vertical spacing are located below. The majority of the DeepCore DOMs are equipped
with photomultipliers whose quantum e�ciency exceeds that of standard IceCube DOMs
by around 35 %; in combination with the dense geometry and the option to use the upper
DeepCore volume as well as surrounding strings as a veto against downward-going muons,
this e�ectively reduces IceCube's detection threshold to around 10 GeV [38].

Conceptually following IceCube-DeepCore's hardware design, PINGU will be an in�ll
within the lower region of the central DeepCore volume, where the ice is exceptionally
clear. Extensive Monte Carlo optimisation studies have resulted in a baseline geometry
(V36) consisting of 40 strings, each instrumented with 96 optical modules at depths between
around 2130 m and 2415 m. The horizontal inter-string and vertical inter-DOM spacings
are 22 m and 3 m, respectively. Thereby, PINGU will be able to e�ectively detect neutrinos
with energies as low as a few GeV. Fig. 3.4 illustrates the scale of the PINGU detector
in comparison with that of the surrounding DeepCore array. Optical modules employed
by the PINGU detector will be updated and adapted versions of the existing IceCube-
DeepCore DOM, the main components of which are described in Sec. 3.5.2 below. Re�ned
optical module designs based on multiple PMTs or a combination of wavelength shifting
and light guiding materials are currently under investigation [1].

3.5.2. Data acquisition

The Digital Optical Module

At the heart of the optical detection and data acquisition in the IceCube detector lies the
DOM (Digital Optical Module): it incorporates a photomultiplier tube (PMT) and the
DOM mainboard (MB) with its signal processing electronics within a spherical pressure-
resistant glass housing. A �exible gel is used for optically coupling the PMT face to the
surrounding glass sphere, simultaneously providing mechanical support. Together with the
glass, it leads to the short wavelength cuto� of the DOM at around 350 nm. Since magnetic
�elds can signi�cantly decrease the anode sensitivity of a PMT by reducing the e�ciency
with which photoelectrons are focussed onto the �rst dynode [39, Fig. 13-8], the IceCube
PMT is shielded against Earth's magnetic �eld by a mu-metal grid.

Beside capturing and digitising the PMT anode signal, the DOM MB also provides an
interface to the �asher board. The latter hosts a set of 12 LEDs able to produce bright
ultraviolet optical pulses, which can be used to study properties of the Antarctic ice or to
calibrate distant DOMs. In addition to this, the DOM MB drives another ultraviolet LED
at 374 nm used for self-calibration purposes. Fig. 3.5 shows a diagram depicting the DOM
and the arrangement of its main elements. Data transfer and power lines pass through the
glass pressure shield via the electrical penetrator located at the top of the DOM.
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3.5. The IceCube detector and its low-energy extension PINGU
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Figure 3.4.: Layouts of the existing DeepCore array and the perceived PINGU (V36) in�ll. The
diagram at the top shows the string positions in the horizontal, given with respect to the origin
of the detector coordinate system. Below, for depths at which DeepCore strings are instrumented,
the vertical locations of optical sensors are shown; z = 0 corresponds to a depth of approximately
1948 m [40]. The high density of PINGU photocathodes (blue) is responsible for the low neutrino
detection threshold of a few GeV. See text for details.
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3. Neutrino Detection in Ice

Upon detection of one or several photons, a DOM is to produce a digital output record,
the �hit� [41]. Fig. 3.6 shows a block diagram of the DOM signal processing circuitry. At
the output of the transformer coupling the PMT base to the DOM MB (top left), the
analog PMT signal is split into three di�erent signal paths. The topmost path allows the
DOM MB to trigger on PMT signals. It hosts two comparators, one with a high resolution
to sense PMT pulses initiated by single photoelectrons (SPE), and a reduced-sensitivity
one for multiple-photoelectron (MPE) pulses. PMT trigger levels for in-ice DOMs are
typically around 0.2 SPE (cf. Fig. 4.1).
Di�erent local coincidence (LC) modes ultimately determine whether data capture is

initiated. Upon triggering, each DOM transmits so-called LC tags to its nearest neighbours
above and below. If these also exhibit discriminator threshold crossings within a time
window of length 1 µs from the moment of tag reception, local coincidence is satis�ed.
Readouts resulting from local coincidence are called H(Hard-)LC readouts, while those
without local coincidence are referred to as S(Soft-)LC readouts. Since it is much more
likely that isolated hits leading to SLC readouts are the result of PMT dark noise rather
than that of physics events, one can limit data �ow by reducing the level of waveform detail
for these types of hits. The capturing of the waveforms is described in the following.

ATWD From the DOM MB input, the main signal path sends the PMT signal through
a 75 ns delay line to three pulse-shaping ampli�ers of di�erent gain (×16, ×2, ×0.25),
which are each connected to a dedicated channel of two custom designed integrated circuits
called Analog Transient Waveform Digitiser (ATWD). A discriminator threshold crossing
triggers ATWD capture, resulting in the �rst 420 ns of the ampli�ed PMT anode voltage
being stored in analog memory at a rate of 300MSPS (corresponding to a sampling
period of 3.3 ns). If the local coincidence condition (HLC) is met, 128 10-bit analog-to-
digital converters digitise the recorded voltages, which are then transferred to the FPGA.
Starting with the highest-gain channel, if any one sample in the channel exceeds a certain
number of counts corresponding to the saturation threshold, the next-highest gain channel
is also digitised to ultimately ensure that the peak amplitude is recorded. Since a DOM
might be triggered again during the 29 µs it takes the ATWD to digitise and transfer the
input signal to the FPGA after capture, each DOM is equipped with a second ATWD to
e�ectively reduce dead time to zero.

fADC For HLC hits, the third signal path accommodates for physics signals lasting
longer than the 420 ns period recorded by the ATWD. After being routed through a set
of pulse-shaping ampli�ers, the signal is continuously sampled by a pipelined digitiser (fast
ADC or fADC) at a rate of 40MSPS, leading to a considerably longer sampling period
of 25 ns compared to that of the ATWD. The total length of the waveform recorded by
the fADC is 6.4 µs. Only three samples of the fADC record are saved in the case of an
SLC hit. These are chosen such that a coarse charge stamp can be assigned and the time
of the underlying SPE inferred, which both might provide useful information for global
triggers.

Triggers Based on the global hit pattern, software running at the IceCube Laboratory

(ICL) at the surface decides upon whether the whole detector is read out and an event
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3.5. The IceCube detector and its low-energy extension PINGU

is formed. Several distinct software triggers exist, which can also be applied to simulated
data (chapter 4). The PINGU Simple Multiplicity Trigger (SMT3) is the most relevant
for the studies presented in this work. It requires three close-neighbour DOMs in PINGU
or in the bottom part of the IceCube/DeepCore strings depicted in Fig. 3.4 to record
locally-coincident hits within a time window of 2.5 µs.

Figure 3.5.: The IceCube DOM comprises a 10-inch PMT and readout electronics arranged inside
a pressure-resistant glass housing. For details see text. Illustration taken from Ref. [41].

Figure 3.6.: The DOM mainboard holds all the signal processing circuitry necessary to generate
a �hit�. Details on the readout process are given in the text. Diagram taken from Ref. [41].
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3. Neutrino Detection in Ice

3.5.3. Photon propagation in Antarctic ice

The operation of IceCube depends crucially on the knowledge of the optical properties of
the ice within and surrounding the detector. In order to be able to deduce trajectories
and energy depositions of secondaries produced in neutrino-nucleon interactions in the
detector vicinity from the Cherenkov photons registered by the optical sensors, scattering
and absorption in the relevant optical and near ultraviolet wavelength regimes needs to be
modelled accurately.

Some important concepts used in describing the propagation of light in deep ice come
from Mie theory [42], which assumes scattering o� of spherical particles. In deep ice, these
particles are air bubbles with radii in the sub-mm range or dust particles which are some
10 to 100 times smaller. When air bubbles and dust particles occur at similar concentra-
tions, the scattering rate between photons and dust particles can be neglected because the
scattering length1 λs ∝ 1/n〈πr2〉, where n is the number density of particles with average
squared radius 〈r2〉 [43]. The anisotropy of the scattering process is quanti�ed by the
average cosine of the scattering angle, g ≡ 〈cos θ〉, which takes into account properties of
the angular distribution of the scattered photons. In the case of isotropy, g = 0, and one
scatter is already su�cient to randomise the direction of a photon. A convenient measure
of the transport length [44] in the case of non-isotropic scattering problems is the so-called
e�ective scattering length

λe =
λs

1− g
, (3.14)

with the e�ective scattering coe�cient be ≡ λ−1
e being its inverse. Similarly, one can de�ne

the absorption coe�cient a ≡ λ−1
a , which consists of a component related to absorption by

dust particles and a second component describing the intrinsic absorption by pure ice [45].

E�orts towards increasingly accurate determination of the properties of deep South Pole
ice have been ongoing for more than two decades. First in-situ measurements [43] were
performed at moderate depths between 800 m and 1000 m by the laser calibration system of
AMANDA (Antarctic Muon And Neutrino Detector Array), at a wavelength of ∼ 515 nm.
They found signi�cantly broadened and delayed photon travel-time distributions between
optical modules at di�erent locations in the ice, consistent with scattering on a high resid-
ual density of air bubbles2, and more importantly large absorption lengths, implying low
concentrations of absorbing impurities, even in comparison to laboratory ice from puri�ed
water.

Follow-up measurements of both absorption and scattering extended to the 410�610 nm
wavelength range [46] uncovered a rapid increase of absorption with wavelength as well
as di�erent absorption lengths at the top and the bottom of the detector. An observed
decrease of the inverse scattering length with depth, independently of the wavelength,
can be explained by the gradual phase transition of bubbles to solid clathrate hydrates
at depths greater than approximately 800 m due to pressure increase [47]. Due to the
refractive index of air-hydrate crystals exceeding that of pure ice by only around 0.4 %

1Average distance between two successive collisions.
2gbub ≈ 0.75⇔ 〈θbub〉 ≈ 41° [43]
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3.5. The IceCube detector and its low-energy extension PINGU

[48], they are almost invisible in the ice and thus�in contrast to bubbles�only contribute
weakly to the scattering of optical photons.
Data collected at depths extending to more than 2000 m lead to the conclusion that

at ∼ 1400 m bubbles are no longer present, leaving the residual concentration of dust
in the ice as the primary cause for depth-dependent structures exhibited by both the
absorption and e�ective scattering coe�cient. Simultaneously, di�erent peaks in absorption
and scattering as a function of depth could be correlated with corresponding peaks in the
dust concentrations found in ice cores collected at other Antarctic locations, which allowed
a �rst age vs. depth estimate [49].
Fig. 3.7 shows the e�ective scattering and absorption parameters at a wavelength of

400 nm determined from a global �t to in-situ light source data collected in 2008, using the
IceCube LED calibration system [45] (�SpiceMie�). In addition, the �gure shows the older
AHA (Additionally Heterogeneous Absorption) ice model [50], which is an updated version
of the ice description resulting from earlier measurements with �asher LEDs in AMANDA
[28]. The four distinct peaks occurring between approximately 1500 m and 2100 m are the
result of cold periods during the last glacial period in the late Pleistocene, with the most
pronounced peak at ∼ 2000 m corresponding to an age of ∼ 65 000 years [28]. PINGU will
be deployed below this �dust layer�, where the ice is clearest.

Figure 3.7.: E�ective scattering and absorption parameters (coe�cients and lengths) at λ =
400 nm as a function of depth in Antarctic ice, measured with AMANDA (�AHA� [50], dashed
line) and IceCube (�SpiceMie�, solid line). See text for details. Figure taken from Ref. [45].

Finally, it should also be mentioned that a column of ice of approximately 30 cm in radius
that has modi�ed optical properties as the result of refreezing surrounds IceCube strings.
It is referred to as �hole ice� and the increased scattering within is taken into account by
an empirical model modifying the nominal angular sensitivity curve of an optical module
[45]. For PINGU, improvements are planned in this respect [1].
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4. Simulation and Low-Level

Reconstruction

In order to reduce the risk of falling prey to bias, physics analyses in IceCube generally
make strong use of Monte Carlo simulated data. Simulation includes the whole process
from generating the primary particles of interest, modelling of interactions outside and
within the detector, propagating the photons within the detector, to the DOM electronics
and read-out. The di�erent steps of the analysis can then be re�ned on the simulated data
as well as on a small subset (10 %) of the experimental data in question, called the burn-
sample. The approval of the collaboration's review committee in charge will then lead to
the unblinding, in the course of which the analysis is expanded to include the whole data
set.

On the other hand, since it provides the analyser with the true physics parameters of an
event, simulation is essential for quantifying the performance of analysis and reconstruction
methods.

The following will give a description of the tools currently used for simulation in PINGU.
Most of the tools' implementations are also part of standard IceCube-DeepCore simulation.

4.1. Event generation

The generation of events taking place in the PINGU detector relies on the GENIE
(Generates Events for Neutrino Interaction Experiments) Neutrino Monte Carlo genera-
tor [51]. GENIE currently takes into account the dominant scattering mechanisms in the
energy range between several MeV and some hundred GeV, and can model interactions
of any combination of neutrino �avour and target type. It generates an isotropic �ux of
neutrinos of the desired �avour following a user-de�ned power law distribution in energy on
the surface of a prede�ned generation volume cylinder, upstream of the detector. A given
neutrino is then forced to interact inside the generation volume, which contains the actual
detector volume as a whole. Secondary particles from the interaction are fully simulated.
The position of the interaction vertex along the cylinder axis is sampled from a uniform
distribution over the cylinder length. GENIE calculates the true interaction probability,
which is used in order to assign a statistical weight to the event in question. It is also
possible to reweight the simulated energy spectrum to a physical one, e.g. the atmospheric
neutrino �ux spectrum.

25



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

4. Simulation and Low-Level Reconstruction

4.2. Particle propagation

The output from GENIE ends up in a tree-like structure (I3MCTree) containing the pri-
mary (neutrino) and all of its daughter particles (secondaries), including their energies and
directions at the point of interaction. While it is crucial to correctly calculate the light-yield
of a given source throughout the whole detector volume, accurate closed form expressions
do not exist due to to the heterogeneous (and anisotropic) nature of the Antarctic ice as
well as the fact that the characteristic distance between a source and an observer (PMT)
in the detector amounts to a few multiples of the scattering length [52]. As a result, any
sophisticated simulation needs to be performed numerically.

The most recent IceCube software tool used for this purpose is clsim [53]. It can be
used with parametrisations of cascade light yields, but also provides the option to perform
a full Geant4 simulation. In the case of the latter, the secondaries are propagated through
the detector medium together with any further daughter particles produced, at least as
long as their energies exceed the Cherenkov threshold. In this process, each Cherenkov
emitter's trajectory is divided into a series of light-emitting segments, each of which is
assumed to have a constant velocity β = v/c.

Subsequently, by exploiting the depth-dependent optical properties of the ice, i.e. scat-
tering and absorption lengths, it propagates the photons created by the Cherenkov emitters
one-by-one. Since clsim is based on the OpenCL framework, it can be con�gured to run
in-parallel on GPUs or multi-core CPUs.1

Every photon that reaches a surface of a DOM carries information about its direction,
wavelength, hit position and time, how often it has scattered, and properties at the time of
emission, which are then used together with the DOM's acceptance and angular sensitivity
to transform a photon into a photoelectron (I3MCPE), i.e. an electron ejected from the
photocathode.

4.3. Detector simulation

The studies presented in this work are performed using simulated PINGU detector ge-
ometries consisting of DOMs with identical properties, since they are collectively modelled
after a speci�c optical module within the DeepCore sub-array.

Noise and photomultiplier response

Prior to the simulation of the actual detector response, Vuvuzela [54] adds noise to the
photoelectrons from the previous step. Apart from a thermal contribution of constant
rate, it also generates a correlated component stemming from the decay of impurities and
subsequent scintillation in the glass of the DOMs. After that, a dedicated module, the
PMTResponseSimulator [55], converts the �raw� photoelectrons at the photocathode

1The more conventional way of modelling the arrival times of photons at the photo-detectors makes use
of large look-up tables. Each photon table has to be generated in a time-consuming process in advance,
and is only valid for that precise set of optical properties which constitutes the ice model at the basis
of the table [53].
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4.3. Detector simulation

into a series of �weighted� photoelectrons or pulses, which are characterised by their arrival
time and charge (a real-valued number). PMT jitter is simulated by shifting the times of
I3MCPE initiating regular pulses (as opposed to pre-, late or afterpulses, see below) accord-
ing to the distribution shown in Fig. 4.1 on the left, which has a Gaussian-equivalent width
of approximately 2 ns. Note, however, that the time accompanying a weightedI3MCPE
generated by this module does not include the PMT transit time it takes the �original�
photoelectron to reach the �rst dynode and the emerging electron shower to traverse the
PMT.

A regular pulse's charge is distributed according to the sum of a Gaussian peaked at 1
photoelectron (PE) and a subdominant exponential component re�ecting the existence of
smaller amplitude pulses, which shift the mean charge to ∼ 0.85 PE.2 This distribution is
shown on the right hand side of Fig. 4.1.

Figure 4.1.: Left: Single photoelectron (SPE) time distribution as used in the simulation of
unscattered pulses in IceCube DOMs (green). The underlying Fisher-Tippett distribution can
be found in [57]. For comparison, the sum of two half-gaussians is shown in red. Right: SPE
charge response, consisting of a Gaussian peaked at 1 PE and an exponential component of smaller
amplitude pulses. The small amplitude part (below the discriminator threshold) is important for
events in which a DOM records several PEs. The �t can be found in [56, p.15, Eq. (1)].

Figures taken from Ref. [55].

In addition to the �standard� pulses described above, a PMT signal in rare cases may
also stem from three other distinct sources, namely prepulses, late pulses and afterpulses.
While prepulses occur on the order of 30 ns early, late and afterpulses can occur as early
as regular pulses and up to ∼ 11 µs later, respectively [58, 59, 60].

In-depth explanations of the measurements after which all the physics e�ects described
in this section are modelled can be found in Ref. [56].

2Dedicated measurements of a large amount of charge response distributions at di�erent gains exhibit
only moderate deviations, thus justifying the use of an average, gain-independent model in simulation
as well as in reconstruction [56]. The physical charge can then be obtained by multiplying the pulse
charge by the gain. At a gain of 107 the peak would be located at 1.6 pC.
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4. Simulation and Low-Level Reconstruction

DOM launching

DOMLauncher [61], the next module in the simulation chain, takes the pulses from
PMTResponseSimulator arriving at the PMT anode and models their processing by
the DOM mainboard electronics and logics units: a DOM is only triggered when the signal
passes its discriminator threshold, and, depending on the type of local coincidence (see
Sec. 3.5.2), the digitised ATWD or fADC waveforms are simulated�based on SPE pulse
templates retrieved from calibration�and stored in the according I3DOMLaunchSeries
object, taking into account e.g. the PMT transit time and digitiser saturation.

4.4. First reconstruction

Particle reconstructions algorithms usually do not handle the raw ATWD and fADC wave-
forms (Sec. 3.5.2) by themselves. Instead, they work with more physically motivated quan-
tities, namely photon arrival times and pulse charges extracted from the waveforms. The
general principles behind the two processing steps needed in between�wave calibration

and pulse extraction�will be laid out in the following.

Wave calibration

�I3WaveCalibrator is a module that applies calibration constants to transform the
contents of raw DOMLaunches (ADC counts) into calibrated waveforms (mV), while cor-
recting for known e�ects of the electronics� [62].
The �rst e�ect that is corrected for is the digitiser baseline, i.e. the average digitiser

count when the input voltage is zero. In order to obtain a voltage, the raw ADC counts
are baseline-subtracted and multiplied by the gain [63]. In the second calibration step, the
voltage-dependent time it takes a photomultiplied pulse to traverse the length of the PMT
is subtracted from the time associated with a DOM launch, and an additional time o�set
between ATWD and fADC waveforms, arising from the delay line on the DOM MB, is
corrected for. Furthermore, waveform distortions induced by the toroidal transformer AC
coupling the high-voltage PMT anode to the front-end ampli�ers on the DOM MB�the
droop [64]�is taken into account, using an empirical model [65] whose parameters have
been �t to measurements [66, pp. 6-9].

Pulse extraction

The extraction of a reconstructed number of photons per unit time from the waveforms�
which then enable one to infer physical properties of the underlying event on the basis of a
suitable description of the detector response�is handled by the Wavedeform [67] module,
developed in Ref. [68]. It is motivated by the fact that several electronics components in-
troduce characteristic shapings of the initially undistorted PMT anode waveform, meaning
that the calibrated ATWD and fADC waveforms as such only have an �implicit� imprint
of the true photon arrival time distribution.
Typical SPE waveforms as seen at the secondary of the PMT base transformer have a

Gaussian peak of width σ = 3.2 ns, yielding approximately 90 % of the total charge within
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4.4. First reconstruction

a period of 10 ns following the maximum [56]. While a fraction of this width is due to the
transformer, the ampli�er stages in front of the di�erent ATWD channels and the fADC
apply further shaping functions of their own to the waveforms.3 Wavedeformmakes use of
a non-negative least squares algorithm to reconstruct the waveforms, which are interpreted
as linear superpositions of the SPE response function, and has proven to reach both high
charge and time resolution [68]. Fig. 4.2 shows the result of an unfolding of a complex
waveform.
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Figure 4.2.: Result of the unfolding of a complex waveform. The calibrated ATWD (green) and
fADC (purple) readouts are the result of the four MC pulses shown in dark blue. One can see that
the earliest photon arrives almost without any scatter, and leads to a regular pulse of ∼ 1.5 PE
in magnitude. In this speci�c example, the second pulse, occurring approximately 50 ns later, is a
late pulse brought about by inelastic backscattering of the photon at the �rst dynode.

Some reconstruction algorithms also require hits arising from noise to be removed. For
an illustration of the principles behind the so-called seeded RT-cleaning, see e.g. Ref. [69].

3The corresponding characteristic shaping times signi�cantly exceed the typical 3.2 ns SPE waveform
width. Shaping functions for the highest-gain ATWD channel and the fADC are depicted in Ref. [68,
Fig. 3.6].
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5. Parameter Estimation and Likelihood

Concepts

A measurement in physics is often subject to randomness, in the sense that the outcome of
its repeated performance cannot be predicted. The concept of probability quanti�es the de-
gree of randomness, whether the latter is due to errors related to the measurement process
or whether it is the consequence of an inherent (e.g. quantum mechanical) unpredictability
[70].
The same concept of probability a�ects event reconstruction in IceCube: starting o�

with a measurement, i.e. the detector readout, and with a model relating the readout with
the underlying event, the aim of reconstruction is to make inferences about the true nature
of the event.
This chapter will �rst introduce Bayes' theorem, which is frequently employed in data

analysis, before turning to the general concept of parameter estimation and presenting some
useful properties of estimators. It will conclude with the method of maximum likelihood�
used in the studies presented in this work�and will show how the statistical uncertainty
of estimators obtained in this way can be quanti�ed.

5.1. Bayes' theorem

Bayes' theorem states that the conditional probability �A given B�

P (A|B) =
P (B|A)P (A)

P (B)
. (5.1)

From the Bayesian point of view, the set S consisting of subsets A,B, . . . is a hypothesis
space: it is made up of individual statements that are either true or false. The probability
assigned to the hypothesis A, P (A), quanti�es one's degree of belief about whether A is
true.
In the frequentist scenario, the set S consists of all the possible outcomes (events) of an

experimental trial or measurement, which is thought of as being repeatable (even if only
hypothetically). A number of elementary outcomes constitute each subset A.
In data analysis, replacing A and B in Bayes' theorem by hypothesis and data permits

one to quantify the probability that the hypothesis is true given the data observed [71]:

P (hypothesis|data) ∝ P (data|hypothesis)P (hypothesis) . (5.2)

The prior probability P (hypothesis) corresponds to one's initial degree of belief about the
truthfulness of the hypothesis. This is subsequently adjusted by the likelihood function
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5. Parameter Estimation and Likelihood Concepts

P (data|hypothesis), which takes into account the measured data, to yield the posterior

probability P (hypothesis|data). Omitting the normalising evidence P (data) in Eq. (5.2)
is justi�ed in the case of parameter estimation, as it does not explicitly depend on the
hypothesis. Here, the hypothesis might represent speci�c numerical values of a set of
parameters. In the continuous case, probability has to be replaced by probability density

function (p.d.f.).

When one is ignorant, one might consider choosing a uniform prior, i.e. P (hypothesis) =
const. After including this constant term in the normalisation factor, Eq. (5.2) becomes a
simple proportionality between posterior and likelihood:

P (hypothesis|data) ∝ P (data|hypothesis) . (5.3)

5.2. Maximum likelihood estimation

Assuming one has performed an experiment consisting of a set of n measurements
x = (x1, x2, ..., xn) of a random variable x described by the p.d.f. f(x|θ), depending
on m unknown parameters θ = (θ1, θ2, ..., θm), then the aim of parameter estimation is
constructing one (or several) functions of the data xk to infer the value(s) of the unknown
parameter(s). Each such function is called an estimator of θi (denoted by θ̂i). The quality
of a given estimator can be gauged by evaluating its consistency, bias and mean squared

error, which are de�ned as follows [70].

Consistency An estimator is called consistent if it converges (probabilistically) to the
true value in the limit of many measurements n:

lim
n→∞

P (|θ̂ − θ| > ε) = 0 ∀ ε > 0 . (5.4)

Bias Being a function of the data, every estimator θ̂(x) in itself is a random variable.
Therefore one can de�ne its expectation value E[θ̂(x)], which in turn determines the
estimator's bias

b = E[θ̂]− θ . (5.5)

An unbiased estimator has b = 0 independent of n, while limn→∞ b = 0 would correspond
to an asymptotically unbiased estimator.1

Mean squared error The mean squared error of an estimator is de�ned as

MSE = E[(θ̂ − θ)2] = V[θ̂] + b2 , (5.6)

and hence can be interpreted as the superposition of a statistical and a systematic con-
tribution.

1Since the expectation value is taken over an in�nite number of experiments, consistency of an estimator
only implies that its bias vanishes asymptotically. An unbiased estimator, on the other hand, is also
consistent.
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5.2. Maximum likelihood estimation

The �best estimate� for the hypothesis in Eq. (5.2) is the one for which the posterior
has a maximum. Under the assumption of a uniform prior (Eq. (5.3)), this estimate is
equivalent to the hypothesis that maximises the likelihood function, i.e. the Bayesian
estimator corresponds to the maximum likelihood (ML) estimator.

When the n data x = (x1, x2, ..., xn) obtained from the experiment are independent, the
likelihood function is given by the product of the individual probabilities [70]:

L(θ) =
n∏
i=1

f(xi|θ) , (5.7)

where L is assumed to be a function of the unknown parameters θ only (since the ex-
perimental results are �xed). The ML estimators θ̂i are then the solutions to the m
simultaneous equations

∂L

∂θi

∣∣∣
θi=θ̂i

= 0 , i = 1, ...,m , (5.8)

given that the second derivatives with respect to the same parameters are negative. In
practice, however, one usually instead constructs the �log-likelihood function� [72]

l(θ) ≡ lnL(θ) =
n∑
i=1

ln f(xi|θ) , (5.9)

which clearly has the same maxima as Eq. (5.7).

Asymptotic con�dence regions

The expansion of the log-likelihood function (5.9) in a series about the point θ̂ =
(θ̂1, θ̂2, · · · , θ̂m) yields

l(θ) = l(θ̂) +

m∑
i=1

(
∂l

∂θi

)
θ̂

(θi − θ̂i) +
1

2

m∑
j=1

m∑
k=1

(
∂2l

∂θjθk

)
θ̂

(θj − θ̂j)(θk − θ̂k) + · · · , (5.10)

which, from the de�nition (5.8) of θ̂, simpli�es to

l(θ̂)− l(θ) = −1

2
(θ − θ̂)TA(θ − θ̂) + · · · , (5.11)

where −A =
(

∂2l
∂θiθj

(θ̂)
)
i,j=1,··· ,m

is the matrix of second derivatives of l, evaluated at the

position of the ML estimate θ̂. In the asymptotic limit, i.e. for a large sample size n→∞,
the elements of the matrix −A, which still depend on the observed sample, can be replaced
by their expectation values, so that [72]

B ≡ E(A) = −
(
E

[
∂2l

∂θiθj
(θ̂)

])
i,j=1,··· ,m

. (5.12)
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5. Parameter Estimation and Likelihood Concepts

By exponentiating Eq. (5.11) and neglecting terms of higher order, the likelihood function
becomes

L(θ) = L(θ̂) exp{−1

2
(θ − θ̂)TB(θ − θ̂)} , (5.13)

i.e. an m-dimensional normal distribution with mean θ̂ and covariance matrix C = B−1.
The diagonal elements cii = σ2(θ̂i) are the variances of the ML estimators θ̂1, · · · , θ̂m,
while the o�-diagonal elements of C are given by the covariances cov(θ̂i, θ̂j) = ρσ(θ̂i)σ(θ̂j).
In the asymptotic limit, it is true in general that both the joint p.d.f. g(θ̂) for the

estimator θ̂ as well as the likelihood function L(θ) become Gaussian, centered about the
true and the estimated parameter values, respectively [70]. Contours of constant proba-
bility density or likelihood are m-dimensional hypersurfaces and correspond to constant
Q(θ, θ̂) = Q(θ̂,θ) = (θ − θ̂)TC−1(θ − θ̂). Q is distributed according to a χ2(m) distribu-
tion, with the number of estimated parameters m corresponding to the number of degrees
of freedom (d.o.f.) [70].
One can make a statement about the probability β that the likelihood of the whole set

of true parameter values lies within a certain region, i.e.

P
[
Q(θ, θ̂) ≤ K2

β

]
= β, (5.14)

where
∫K2

β

−∞ χ
2(Q;m) dQ = β. Fig. 5.1 shows the contour of constant likelihood de�ned by

K2
β = 1 in the two-dimensional case.

Figure 5.1.: Asymptotic con�dence region for the true parameter values (θ1, θ2) for Kβ = 1
and correlation coe�cient ρ = −0.5. The probability content of the inner ellipse β1 = 39.3 %.

The vertical strip β2 = P
[
θ̂1 − σ1 ≤ θ1 ≤ θ̂1 + σ1

]
= 68.3 % de�nes a one-dimensional con�dence

interval for the true parameter value θ1, marginalised over all possible values of θ2 [73].
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6. Event Reconstruction in PINGU

6.1. Cascade, track and hybrid event hypotheses

When setting up a hypothesis for cascade-like events, one typically assumes a seven-
dimensional set of parameters: the vertex ~xc = xc~ex + yc~ey + zc~ez and its corresponding
time tc, the direction (θc, φc) speci�ed by zenith θc and azimuth φc, and �nally a visible
energy Ec.

The vertex coordinates (xc, yc, zc) are taken relative to the origin of a cartesian coordi-
nate system centered almost at the true geometric centre of the detector, while the two
angles (θc, φc) characterise the radial vector pointing back toward the source of the incident
particle which generated the cascade. This means that a vertically down-going particle has
a zenith angle of 0, and a vertically up-going particle has one of π. Positions are given in
metres, angles in radians.

When considering deep-inelastic νe-nucleon scattering at energies as low as the GeV
range relevant to the measurement of the neutrino mass hierarchy, the energy deposited in
Cherenkov-radiating charged particles in general cannot be considered as a good proxy of
the true neutrino energy, because of the relative Cherenkov light yield suppression of the
hadronic cascade (cf. Sec. 3.4.2). Since it is not possible to disentangle the hadronic and
electromagnetic cascades even at the PINGU scale, one cannot simply deduce the energy
of the neutrino from the reconstructed visible energy.

For this reason, a distinct reconstruction strategy is employed in PINGU: the cascade
hypothesis described above is re�ned to also include the length of the daughter muon (the
track, only truly existing in the case of νµ CC events) and optionally a second set of zenith
and azimuthal angles to take into account non-collinearity of the hadronic cascade and the
(hypothetical) muon [1]. A proxy of the true neutrino energy can then be obtained by
scaling up the electromagnetic-equivalent energy of the hadronic cascade and adding it to
the track energy,

Êν = Êcasc/helm→had(Êcasc) + Êtrack . (6.1)

Here, helm→had(Êcasc) is the relative Cherenkov amplitude suppression of the hadronic
cascade. Since a muon in this energy range can be assumed to be minimum-ionising
(cf. Sec. 3.2.1), the conversion from track length to energy follows straightforwardly by
applying a constant energy loss rate assumed to be ∆E/∆L ≈ 1 GeV/4.5 m. It turns
out that Eq. (6.1) can provide a good estimate of the true neutrino energy even when
the underlying event is a CC interaction of an incident νe (Ref. [1] and Sec. 8.3). A
description of the reconstruction of a source's event parameters based on a maximum
likelihood approach is provided in the following.
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6. Event Reconstruction in PINGU

Figure 6.1.: Illustration of two simulated νe undergoing CC mediated deep-inelastic scattering
interactions within the PINGU �ducial volume. The locations of the spheres show which DOMs
have registered a signal during the detector readout time. Their sizes indicate the amount of
accumulated charge, whereas the colour represents the pulse times, with red corresponding to
earlier and blue to later times. In the left panel one can see a downward-going neutrino of 10 GeV
energy, while in the right panel an upward-going neutrino deposits signi�cantly more energy in
Cherenkov radiating secondaries, thereby inducing a typical spherical cascade signature.

6.2. Maximum likelihood reconstruction

6.2.1. Poisson likelihood

When a cascade with an electromagnetic energy equivalent of E is contained within the
detector, as is illustrated in Fig. 6.1 in an exemplary manner for νe CC interactions in
PINGU, the number of photons k detected by any given DOM is expected to be Poisson-
distributed around the mean µ. It is then the very regular nature of the cascade's light
emission pro�le (cf. Fig. 3.3) as well as the linearity between energy and Cherenkov
amplitude which allow one to write

µ = ΛE , (6.2)

where Λ is the number of photons per unit source energy arriving at the optical module.
Alternatively, Λ·1 GeV is the number of photons produced by a �reference� cascade of 1 GeV
energy [52]. The template function Λ is dependent on the source-observer con�guration
and on the ice properties, but not on the source energy, and it is evaluated from tabulated
Monte Carlo simulation. In conjunction with the included normalised photon arrival time
distributions, these tables provide the mean number of photons expected to be observed
at any given position in the detector in any given time range (see Sec. 6.2.2).

A likelihood function, assuming �uctuations of purely Poissonian origin in collected
charge, for a source with energy E resulting in the detection of nD,i photons in the DOM-
time bin tuple (D, i) can be constructed as the product of the individual Poisson proba-
bilities,
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6.2. Maximum likelihood reconstruction

Figure 6.2.: In reconstruction, the actual PMT charge distribution (solid line), which corresponds
to the numerical convolution of the Poisson distribution P (n|λ) (stepped) with the PMT charge
response function, is approximated by extending the Poisson distribution to real numbers (dashed
line). The mean q̄1 = 0.85 of the SPE charge response function is responsible for the o�set. Figure
taken from Ref. [52].

L =
∏

DOMs
D

∏
time bins

i

Pp(nD,i|µD,i) ≡
∏

DOMs
D

∏
time bins

i

µ
nD,i
D,i

nD,i!
e−µD,i , (6.3)

where the mean amplitudes µD,i are obtained by multiplying Eq. (6.2) with the integrated
probability (or charge quantile, see Sec. 6.2.2) that a photon emitted from the source in
question arrives at DOM D during the interval spanned by the time bin i.1

For a given expected number of photons µ arriving at a DOM, however, the actual
charge distribution P (q|µ) is obtained by convolving the Poisson distribution Pp(n|µ)
(with integer n) with the PMT charge response function Pc(q|n) (with real q), P (q|µ) =∑∞

n=0 Pc(q|n)Pp(n|µ) [74]. It was found to be su�cient for both small and large mean
amplitudes µ to analytically approximate P (q|µ) by extending the Poisson probability dis-
tribution to real numbers, i.e. replacing the normalising factorial n! in Eq. (6.3) with the
gamma function Γ(n + 1) [52, Fig. 10]. A comparison of the three distributions is shown
in Fig. 6.2.

For a more general reconstruction scenario consisting of additional light sources and a
PMT noise contribution, one substitutes

µ→
∑

sources
s

ΛsEs + µnoise . (6.4)

The module which implements the logarithm of the likelihood (6.3) within the IceCube
software framework, and which is employed in the most sophisticated PINGU event recon-
struction algorithm, is called Millipede [75]. Given pulses extracted from the waveforms,
one can specify whether DOMs without any reconstructed charge should be included in

1Implicitly, i ≡ iD. The subscript is omitted to avoid (more) clutter.
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6. Event Reconstruction in PINGU

the likelihood evaluation, whether the photon arrival times should be considered (and if
so, the binning method), as well as a relative DOM e�ciency correction to account for pos-
sible shadowing by signal cables. With photon timing applied, time ranges during which
the waveform exhibits saturation can either be masked out, or the a�ected DOM can be
excluded completely from the likelihood evaluation. DOM-speci�c quantities such as coor-
dinates, relative e�ciencies or (constant) noise rates are obtained from the detector's GCD
�le. For PINGU DOMs that are part of the simulated geometries used in this work, the
dark noise rate is taken as ∼ 715 Hz.

When used with its default binning scheme, for computational reasons Millipede
only creates one single time bin spanning the whole readout time for DOMs which have
not registered a signal. Even for hit DOMs, all bins that do not contain any charge and
that lie between two signals are merged into one larger bin.

Fig. 6.3 illustrates how the full likelihood is obtained by summing over the contributions
of all DOMs in the detector. Here, the underlying event is a low-enery νe depositing only
around 1 GeV of energy in charged particles in a deep-inelastic CC scattering interaction,
with a mere eight optical modules at distances between 30 m and 150 m from the true
interaction point having registered at least one hit. The �gure shows the likelihood as
a function of the electromagnetic-equivalent energy for a single-cascade hypothesis after
a maximum likelihood reconstruction has been performed with Multinest (see Sec. 6.2.3
below), with all the other parameter values �xed at their reconstructed values. One should
note especially how the inclusion of unhit DOMs places tighter constraints on the position
of the likelihood maximum.

6.2.2. Photospline tables

The fact that analytic functions for both photon time and amplitude distributions in
the Antarctic ice sheet can at best provide approximate solutions [52, p.6] is the result
of the scattering and absorption lengths for optical photons being depth-dependent and
furthermore on the same order; the more sophisticated reconstructions rely on light yields
and arrival times evaluated by Monte Carlo simulation of photon propagation in the ice,
which are tabulated and subsequently �t by a multi-dimensional spline surface.

For ice models neglecting anisotropy and horizontal inhomogeneities, for a nearly point-
like electromagnetic shower the number of necessary table dimensions is found to be six;
the scaling function Λ in Eq. (6.2) is parametrised by the depth (z-coordinate) and zenith
angle of the source, its relative spatial displacement from the observer, and the di�erence
in time between the moment of photon emission and eventual detection. Light is produced
according to shower parametrisations given in Ref. [32] and then propagated by the software
package PHOTONICS [76], taking into account the scattering and absorption of a given ice
model. Since the evaluation of the likelihood in reconstruction requires the Poissonian
mean, each table bin entry is created from a large sample of the photon distribution in
the bin. The �nal photon yield for a speci�c source-observer pair stored in a table has the
wavelength acceptance and angular sensitivity of the optical module folded in.

So that the tables can be loaded into memory of ordinary computers without the intro-
duction of binning artifacts distorting the expected amplitudes, very �nely binned �raw�
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6.2. Maximum likelihood reconstruction
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Figure 6.3.: Log-likelihood (LLH) scans in energy for a single-cascade hypothesis, with all other
parameters �xed at their ML estimates. The full log-likelihood follows as the sum of the individual
contributions. See text for details.

tables are produced and then processed by Photospline [77], which represents the light
yields as a multi-dimensional spline surface. The latter has the additional advantage of
being able to provide analytically computed gradients of both total amplitudes and arrival
time quantiles, which will be drawn upon in Sec. 6.3.2. Moreover, it is possible to convolve
the normalised photon delay time distributions with Gaussians of variable width, thereby
incorporating the �nite transit time spread of the PMT pulses into the modelling of the
detector response.

While hit times in data are usually given in relation to the trigger range capturing the
underlying event, photon arrival time quantiles and probability densities stored in spline
tables are given with respect to some arbitrary �zero-point� in time. If reconstruction is
supposed to make use of timing information, the bin-wise expectation values need to be
evaluated correctly. This is obtained by setting the zero-point to the time an unscattered
photon would have reached DOM D in question. For a point-like cascade, there is no delay
between production of the primary particle initiating the cascade and photon emission, so
the direct time is given by the sum of a time tcasc ascribed to the cascade-like source,2

and the purely geometric propagation time of a photon that is not subjected to scattering,

2In the case of a deep-inelastic charged-current νe scattering, tcasc would describe the time of interaction
as well as the emission time of all Cherenkov photons arriving at the sensor and originating from the
interaction (electromagnetic and hadronic shower).
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6. Event Reconstruction in PINGU

tgeo = |~xD − ~xcasc|/cgroup, where cgroup = c0/nice is the group velocity of light in ice.

The residual time tres is then de�ned as a photon's time delay with respect to unscattered
propagation,

tres ≡ t− tgeo − tcasc . (6.5)

When µD is the total charge expected to be registered by a DOM, and P (t) is the
cumulative photon arrival time distribution, the fraction which is expected in a time bin i
with edges t2 > t1 is given by qi ≡ P (t2)− P (t1), so that

µD,i = µD · qi . (6.6)

Since no photons are expected to arrive prior to the direct time, P (t < 0) ≡ 0.

E�ects that are not included in the spline tables, but which should be accounted for
before comparing the amplitudes with data or realistic simulation, are the fraction of
PMT surface unshadowed by cable, the relative quantum e�ciency of the photocathode
and the mean of the SPE charge response. In Fig. 6.4 one can compare the tabulated
photon delay time distributions and mean amplitudes for observers at di�erent distances
from a cascade source to results obtained from numerical simulations as laid out in Sec. 4.2.
One can see that there are marked discrepancies in the total amplitudes but also in the
delay time distributions.

6.2.3. Multinest

The Multinest algorithm [78] is a Bayesian inference tool for e�ciently evaluating the
Bayesian evidence introduced in Sec. 5.1. While the evidence itself does not play a role
in parameter estimation problems as is the one of event reconstruction, posterior infer-
ences arise simply because Multinest samples the whole likelihood space. The mechanics
of the sampling process, starting from transforming the multi-dimensional evidence inte-
gral Z =

∫
L(θ)π(θ)dDθ, where L(θ) and π(θ) are the likelihood function and the prior,

respectively, and D is the dimensionality of the likelihood space, into a weighted sum of
likelihoods corresponding to increasing fractions of traversed prior volume, to approximat-
ing iso-likelihood contours in order to e�ciently draw points with increasing likelihood
and simultaneously identifying di�erent modes of the posterior distribution, are discussed
extensively in Refs. [78, 79] and references therein.

Furthermore, Multinest is the name of the reconstruction strategy [80] applied to neutri-
nos in the GeV range detected by PINGU. It makes use of the algorithm presented above
in order to maximise the likelihood de�ned in Eq. (6.3) with respect to the parameters
that constitute the hybrid event hypothesis described in the beginning of this chapter.
The track part of the hypothesis is actually split up into several individual minimum ion-
ising track segments of de�ned length L (and therefore de�ned energy E = L∆E/∆L), for
which one uses adequate spline tables much as in the case of a cascade-like source to look
up and scale the expected light yields of a template muon.
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6.3. Semi-analytic estimation of reconstruction residuals

6.3. Semi-analytic estimation of reconstruction residuals

Sec. 5.2 demonstrated how the expectation value of the Hessian matrix of the log-likelihood
function can be used to estimate the variances of the ML estimators. Since spline tables
implement gradients for both total amplitudes and time-delay quantiles, it is possible to
calculate gradients of the likelihood function itself. This functionality can be exploited by
gradient-based minimisers in an ML reconstruction, but it also enables one to obtain the
variances of ML estimators of the Poissonian likelihood (6.3) on an event-by-event basis.

6.3.1. Cascade resolution estimator

The recently developed Resca (Resolution Estimator for Cascades) [81] is an approach
that makes use of the relation

cov−1(θj , θk) =
∑
D,i

1

µD,i

∂µD,i
∂θj

∂µD,i
∂θk

∣∣∣
θ=θ̂

(6.7)

in the asymptotic limit, where the sum ranges over all DOMs and time bins which are not
excluded from the likelihood evaluation. The parameters θj are those that constitute the
cascade hypothesis.

With Eq. (6.6), the partial derivatives of the mean amplitudes µD,i can be written as

∂µD,i
∂θj

=
∂qi
∂θj
· µD + qi ·

∂µD
∂θj

. (6.8)

On the one hand, the second summand is identically zero when the parameter θj in question
is the time, due to all total amplitudes being time-independent. When considering the
source energy, on the other hand, the �rst summand vanishes, while the second summand
is simply the product of charge quantile and light scaling factor qi · ΛD (using Eq. (6.2)).

In implementing Eq. (6.7), one can draw upon the response and gradient matrices con-
structed by Millipede after it has been provided with the cascade hypothesis. For only
one source, the former can be regarded as an N -dimensional column vector, with N being
the total number of time bins; its i-th component multiplied by the energy of the source
corresponds to the expected charge in bin i, Eqs. (6.2) and (6.6). These entries also yield
the partial derivatives (6.8) of the bin-wise amplitudes with respect to the source energy.
The gradient matrix is of 6N shape, its elements also remain to be scaled by the source
energy to obtain the partial derivatives (6.8) with respect to all source parameters apart
from energy.

6.3.2. Extension to hybrid reconstruction

It would be desirable to extend the single-cascade approach from above to the multiple-
source scenario used in reconstructing low-energy events in PINGU. Here, one does not
only have to take into account global hypothesis parameters that might only describe
the cascade (e.g. cascade energy or direction) or the track (e.g. track length/energy or
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6. Event Reconstruction in PINGU

direction), or both (e.g. vertex position, time or direction in the collinear case), but one
also has to distinguish between those that apply to the track as a whole and those that
apply to the individual track segments only (e.g. track segment vertex position, time).
If the aim is computing the covariance matrix of all eight or ten global hypothesis

parameters, then the partial derivatives of the mean amplitudes with respect to the shared
parameters θj = x, y, z, t can be written as

∂µD,i
∂θj

=
∂µcascD,i

∂θj
+

∑
track segments

s

∂µsD,i
∂θj

, (6.9)

since an in�nitesimal change in any of these global variables translates to the same change
in the individual cascade and track segment parameters. Naturally, when the parameter
in question is the cascade energy, the sum over the track segments s should be zero.
Conversely, the cascade term should vanish when Eq. (6.9) is evaluated with respect to
track energy; a single contribution is assumed to originate from the last track segment
only, whose length is the di�erence between the total track length and the next-largest
integral multiple of the track segment length. Finally, one should note that this approach
can only provide an approximate expression of the change in amplitudes upon a change
in the direction of the track. It will be assumed that an in�nitesimal rotation in either
zenith or azimuth is equivalent to rotating all of the track's individual segments through
the same angle.
As opposed to the single source case, the Millipede response matrix is now of N ×m

shape, with N denoting the total number of time bins again, and m the number of sources;
its (i, j)-th component multiplied by the energy of the source j corresponds to the expected
charge in bin i from that source only. The gradient matrix is of m× 6N shape.
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6.3. Semi-analytic estimation of reconstruction residuals
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Figure 6.4.: Total amplitudes and di�erential photon arrival time distributions evaluated at
increasing distances from an electromagnetic cascade of energy E = 40 GeV placed at coordinates
x = 50 m, y = −52.2 m, z = −365 m, close to the centre of the PINGU V15 detector volume. Times
are taken with respect to the time of �rst interaction in the ice; PMT transit time spreads are not
modelled. The total amplitudes include an assumed DOM e�ciency reduction of 10 % due to cable
shadow as well as relative quantum e�ciencies, but not the PMT charge response distribution. In
each �gure, the black and orange lines represent the delay time quantiles as obtained from spline
tables for the appropriate source-observer con�gurations, for two di�erent ice models (Spice1 and
SpiceMie). The result of a Spice1 simulation drawing amplitudes and times from the table can be
compared to its parent distribution. In addition, results from a full photon propagation with clsim
in Geant4 mode are displayed (green). At the smallest distance, the Spice1 spline representation
exhibits additional structures above approximately 160 ns, which are found in none of the other
distributions. While the total amplitudes can di�er substantially, at larger distances, where the
curves are less strongly peaked, full propagation and spline table distributions show somewhat
better agreement.
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7. Multinest Cascade Reconstruction

Studies

Building on the Poissonian likelihood formulation of Eq. (6.3), the covariance matrix (6.7)
provides an event-by-event a-posteriori estimate of the accuracy with which the true event
parameters can be recovered in a maximum likelihood reconstruction, simultaneously tak-
ing into account possible correlations between di�erent estimators. Being able to select
high-quality events, i.e. those with small reconstruction residuals in the parameters of
interest, can prove bene�cial to physics analyses in PINGU, whose sensitivity to the neu-
trino mass hierarchy depends to a large extent on how well the energies and directions of
atmospheric neutrinos traversing the Earth can be reconstructed [1, 22, 82].
Earlier detailed studies on the reconstruction of cascade-like events at energies above

100 GeV carried out in Ref. [74] revealed di�erent approximations in the likelihood function
that lead to the breakdown of the purely Poissonian description of the observed light
yields, and demonstrated how their removal resulted in a consistent behaviour of resolution
estimates obtained from directly sampling the likelihood space. Building on these results,
this chapter will examine under which conditions resolutions of electron-neutrino induced
CC events reconstructed in PINGU can be reliably predicted using Eq. (6.7).

7.1. Default reconstruction scenario

At the time this analysis was started, the PINGU baseline geometry was V15, which is
an array of 40 strings with a horizontal spacing of 20 m, instrumented with 60 DOMs
each, spaced 5 m apart in the vertical direction. For both older and more recent ice
models, there were cascade spline tables that had been produced for reconstructing higher
energy events in IceCube, while muon spline tables (for use with track segments of 15 m
length, i.e. ∼ 3.3 GeV minimum ionising muons) were available only for the somewhat
outdated ice model Spice1. O�cial PINGU MC events were simulated with the more
realistic SpiceMie ice model, with the drawback of having to use a less recent ice model
for reconstructing tracks. Since in the following the likelihood itself is supposed to be
analysed for its suitability in describing the observed light yields, it was decided to use
the same ice model in simulation and reconstruction, Spice1. As is illustrated in Fig. 6.4
in an exemplary manner, even for a single ice model there are some discrepancies between
directly simulated amplitudes and those which have been �t with splines.
For this data set, an isotropic �ux of electron (anti-)neutrinos with energies between

1�80 GeV was generated according to an E−1 spectrum, and the detector response was
simulated as laid out in chapter 4, with noise on all PINGU and IceCube DOMs and
assuming a relative DOM e�ciency decrease of 10 % due to cable shadow. The likelihood
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7. Multinest Cascade Reconstruction Studies

was maximised in eight dimensions1 with Multinest, using cleaned pulses, a binning of 1
photon per bin, and a 2.19 ns Gaussian smearing of photon delay time distributions to
account for the simulated PMT transit time spread.

In order to estimate how well the likelihood formulation describes the actually simulated
detector response, it is instructive to compare the likelihoods of the reconstructed and
true sets of parameter values, lreco and ltrue. First of all, assuming that the maximisation
algorithm exactly locates the global likelihood maximum, since both likelihoods are evalu-
ated using the same detector readout and identical reconstruction parameters, one would
always expect lreco ≥ ltrue, except for some cases where one or several of the MC truth
parameter values lie outside of the allowed prior range for the corresponding reconstructed
parameters. Then, Eq. (5.14) gives a probabilistic prescription of how far lreco and ltrue
should lie apart when the likelihood formulation is an adequate description of the detec-
tor response. Before this comparison is possible, it is necessary to understand the way
Multinest computes the likelihood of the true parameter values, based on the non-integer
extension of Eq. (6.3).

7.1.1. Adaptation of the Multinest truth hypothesis to cascades

With the underlying event hypothesis being that of a νµ CC interaction (see Sec. 6.1),
Multinest takes the secondary lepton as the true track with its corresponding energy and
direction. The direction of the true cascade follows from conservation of momentum, and
its energy corresponds to the visible fraction of the energy in the hadronic shower. Both
track and cascade are constrained to originate from the true interaction vertex and time.
Finally, the cascade and muon spline tables come into play by providing the bin-wise
expectation values for all DOM-source combinations.

For νe CC events, this has as a consequence that the electron, whose length in the
IceCube software framework is zero by de�nition, is not included in the event hypothesis,
so that the latter will only be the hadronic shower. In the calculation of the likelihood, the
muon spline tables will then also not enter. The ML hypothesis, however, will in general
consist of both a track and a cascade, and will therefore make use of both types of look-up
tables.

In order to render the two likelihoods more compatible, the de�nition of the true event pa-
rameters can be re�ned by adding the leptonic energy to the visible energy of the hadronic
cascade and letting the direction of the new cascade coincide with that of the incident neu-
trino. In addition, the previous best �t likelihood is replaced by a cascade-only likelihood,
which follows from adding the energy of the track reconstructed by Multinest to that of
the reconstructed cascade and removing the track from the hypothesis altogether.2

The CC events selected for further analysis throughout the following studies had to
satisfy a simple set of criteria: a log-likelihood exceeding the noise-only log-likelihood by
10, and containment of the reconstructed vertex within the PINGU �ducial volume, de�ned
as a right cylinder centered at x = 50 m, y = −50 m and ranging in depth from −180 m to

1In order to avoid a further increase in reconstruction time, it was decided to treat the cascade and track
as collinear in this study.

2Or equivalently, setting the track length to zero. This functionality is already implemented in Multinest.
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7.1. Default reconstruction scenario
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Figure 7.1.: Logarithm of the ratio between the Multinest likelihoods of the reconstructed and
true event hypothesis parameters as a function of charge in the event (NPE) for the default sim-
ulation and reconstruction scenario, but with a re�ned truth likelihood and an �only-cascade�
representation of the reconstructed hypothesis parameters. Red points show the median in each
charge bin.

−500 m. Further, to not retain events whose best �t parameters might be arti�cially far
away from the actual likelihood maximum, it was required that the maximisation process
had not been forced to terminate due to an upper time limit of ∼ 1.5 h per event.

Fig. 7.1 shows the logarithm of the likelihood ratio ∆ lnL(reco, true) ≡ ln
(
Lreco
Ltrue

)
=

lreco − ltrue (from here on simply referred to as log-likelihood ratio) resulting from this
re�nement, as a function of total event charge (after noise cleaning) summed over all DOMs.
For a reconstruction subject to statistical �uctuations only, the data should ideally fall into
the hatched region de�ned by the condition ∆ lnL(reco, true) ≤ 4.5 with a probability of
∼ 75 %, over the whole range of charges (neglecting e�ects related to small samples, which
would modify the probability statement (5.14)). As one can see, in contrast to the ideal
scenario, the likelihood ratio scales with charge over the whole range; the ML hypothesis
becomes increasingly more likely than the hypothesis of the true parameter values. At
charges around 1000PE, the two likelihoods di�er by a factor of ∼ e100.

It is conceivable that this behaviour will a�ect the potential of estimating the recon-
struction residuals, since the region that de�nes the covariance matrix of ML estimators
obviously does not contain the true values in the vast majority of events. Therefore, before
the underlying incompatibility between simulated detector response and reconstruction is
further looked into in Sec. 7.2, the performance of the hybrid residual estimator introduced
in Sec. 6.3.2 is examined.
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7. Multinest Cascade Reconstruction Studies

7.1.2. Performance of the hybrid residual estimator

For the default reconstruction described above, the left panel of Fig. 7.2 shows the median
residuals in vertex depth z, |zreco − ztrue| as well as the corresponding residual estimates,
while the right panel shows analog quantities for the zenith angle reconstruction, as a
function of charge. In addition, �ts to both true and estimated residuals are included
which allow for a deviation from a pure power-law in charge by a constant term.

The vertex depth residuals only scale with charge up to ∼ 100 PE, which corresponds
to neutrino energies of ∼5�30 GeV (cf. Fig. A.1). Above, the vertex depth reconstruction
ceases to pro�t from additional photons, and is clearly dominated by a systematic compo-
nent of ∼ 0.8 m in magnitude. The width of the likelihood maximum, however, would in
principle allow for a much more accurate reconstruction. A similar behaviour is seen for
the other vertex coordinates and vertex time.
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Figure 7.2.: Medians of true residuals (black points) and residual estimates (red points) for vertex
depth z (left) and zenith angle θ (right) as a function of the observed event charge for νe CC events
reconstructed within the PINGU �ducial volume by Multinest. Both quantities are parametrised
as the sum of a power-law in charge and a constant term, thereby taking into account potential
systematics impact.

In the case of the zenith angle reconstruction, there is better agreement between the
residuals |∆θ| and the corresponding estimates σθ over the whole range of charges, even
though the median |∆θ| begin to exceed the σθ at charges around 500 PE.

In order to examine the relation between the true residuals and their estimates in some-
what more detail, it is useful to evaluate the pull distributions [83]

Pa =
areco − atrue

σa
, (7.1)

where a is one of the reconstructed parameters. If the ML estimates areco are indeed Gaus-
sian centered about the respective true values atrue (see Sec. 5.2), then the pull distributions
should also be Gaussian with mean µ = 0. In addition, for suitable estimates σa, the pull
distributions are expected to have standard deviation σ = 1, i.e. be standard Gaussian.
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7.1. Default reconstruction scenario
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Figure 7.3.: Gaussian �ts to the pull distributions in vertex depth, Pz, and neutrino zenith angle,
Pθ, Eq. (7.1), for νe CC E−1 MC events reconstructed by Multinest. See text for details.

One expects this relation to only hold for a large number of observations, though, when the
ML estimators acquire the demanded properties. Extended tails in the pull distributions,
in contrast, can be manifestations of the non-asymptotic nature of the underlying problem
[84].

Gaussian �ts to the pull distributions Pz and Pθ are shown in Fig. 7.3. One can see
tails in the left and right wings of the distributions which are not very well described by a
Gaussian3, but restricting the �ts to the central-most region would lead to underestimated
widths. The reconstruction is somewhat biased towards larger z and smaller θ, and the
residual estimates σθ on average underestimate the true residual.

Since it has been found that residuals and estimates scale di�erently with photon yield,
a more complete picture is obtained by examining the parameters of the pull distributions
dependent on charge. Means and widths resulting from Gaussian �ts to the Pa in di�erent
charge bins, again for vertex depth and zenith angle, are shown in the left and right panel
of Fig. 7.4, respectively.

At small charges, the width of Pz is around 0.6�0.9 , indicating that the actual residual
is overestimated. Above 100 PE, owing to the levelling out of the residuals, the widths
become increasingly large, reaching σ ≈ 5 for the highest charge bin. From Fig. A.2 in
the appendix one can see that the distributions can be considered Gaussian above around
100 PE.

The overall trend of the width of Pθ is similar. While the estimates are too pessimistic
at charges between 10�30 PE, their predictions are again signi�cantly smaller than the
true residuals for events in which large numbers of photons are observed. Note, however,
that the scale of the e�ect is reduced in comparison to the vertex position reconstruction.
Furthermore, apart from in the lowest-charge bin, reconstruction has the tendency to
underestimate the neutrino zenith angle.

3For a discussion of models that are more suitable but harder to interpret see Ref. [83].
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7. Multinest Cascade Reconstruction Studies
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Figure 7.4.: Charge dependence of the pull distribution parameters for vertex depth z (left)
and zenith angle θ (right). Shown are the means µ (in blue) and widths σ (in black) obtained
from Gaussian �ts. The gray horizontal lines correspond to the ideal values for an unbiased
reconstruction whose residuals are on average perfectly predicted.

7.2. Single cascade reconstruction

Even with the re�ning modi�cations to the true and estimated event hypotheses and the
corresponding likelihood evaluation in place, reconstruction still made use of both cascade
and muon spline tables, while the true likelihood was evaluated based on the cascade spline
tables only. While this asymmetry is intrinsic to cascade reconstruction with Multinest in
hybrid mode, it makes it hard to �nd the causes of possible disagreement between simu-
lation and reconstruction. Consequently, in the following Multinest was forced to assume
a single cascade, thereby disabling the use of track spline tables in reconstruction. Simul-
taneously, the dimensionality of the likelihood maximisation procedure was reduced from
eight to seven. It was found that the resulting log-likelihood ratios behaved almost identi-
cally to those shown in Fig. 7.1, with absolute values and scaling with charge of residuals
and corresponding estimates (this time based on a single cascade hypothesis, cf. Sec. 6.3.1)
very similar to Fig. 7.2. It is thus essential to discuss some persisting, more or less subtle
inconsistencies between simulation and reconstruction, that might render the observed data
less compatible with the true event hypothesis in this particular reconstruction scenario.

7.2.1. Deviations between simulated and modelled detector response

Cherenkov light yields and shower extension Most obviously, the amplitudes and
photon delay times resulting from the direct propagation of secondary particles and pho-
tons with clsim in Geant4 mode do not necessarily agree with those stored in the
Photonics-based spline tables. That this is indeed the case has already been demon-
strated for the light yields at di�erent distances from an exemplary cascade, Fig. 6.4. The
latter also shows that, for a given source-observer con�guration, the probability that a
photon stemming from the full clsim particle propagation can reach a DOM prior to
the geometric time based on the point-source assumption can be at the percent level.
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7.2. Single cascade reconstruction

Fig. 7.5 seems to indicate that the �nite spatial extent of the simulated cascade is a limit-
ing factor to vertex reconstruction accuracy. Depending on the visible energy of the true
cascade, Evis,true, as de�ned in Sec. 7.1.1 above, it depicts the median displacement of the
reconstructed vertex from the true neutrino interaction point and from the approximate
position of maximum energy deposition, respectively, where the latter is obtained using
the longitudinal shower pro�le parametrisation (3.11) and �t parameters given in Ref. [27].
The cascade is clearly reconstructed signi�cantly closer to the estimated position of max-
imum Cherenkov light emission than to the true vertex. Also, increasing energy�and
thereby shower depth zmax�results in a larger di�erence between the medians of the two
distributions.
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displacement from true vertex
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Figure 7.5.: Median distances between the (point-like) reconstructed cascade and true νe in-
teraction vertex (black squares) or estimated position of maximum shower development (blue
diamonds), respectively, as a function of visible energy. For reference, the gray dashed line shows
how the depth of maximum energy deposition of an electromagnetic cascade develops with energy,
using �t parameters from Ref. [27].

Another potentially important contribution arises from the parametrised relative
Cherenkov light yield suppression of a hadronic cascade of given energy. In Multinest, it
is assumed that the true electromagnetic equivalent energy of the hadronic cascade origi-
nating from the vertex of the νe CC interaction is actually given by this parametrisation
of the average cascade development. Event-to-event �uctuations around the average are
considerable, however, exceeding 20�30 % in the GeV energy regime [33]. This in turn
is expected to result in less agreement between the observed amplitudes and the true
parameters of the event.

Noise Furthermore, while the likelihood formulation assumes a (constant rate) contribu-
tion due to noise, the pulse cleaning (ideally) removes all noise hits. When noise hits are
removed, a fraction of the physical charge might be interpreted as being due to noise, and
as a consequence the true event parameter values might be suppressed in favour of others
which yield a smaller amplitude. Even if noise hits were retained, the constant noise rate
hypothesis would deviate from the correlated noise that is simulated in addition to the
thermal component.
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7. Multinest Cascade Reconstruction Studies

Further approximations A number of additional approximations present in the like-
lihood function include the attempts to account for �uctuations arising from the PMT
charge response distribution by simply scaling the expected �raw� light yields by the mean
of the distribution (see discussion in Sec. 4.3), and to account for �uctuations arising from
the (only nearly Gaussian) PMT transit time distribution by convolving the mean photon
arrival time distributions by a Gaussian of similar width. At the base of these approx-
imations lies the assumption that PMT pulse time and charge distortions induced by
waveform calibration and pulse extraction are negligible. Finally, saturated DOMs can
also lead to a bias away from the true parameter values when only single time intervals
during which saturation occurs are excluded, and not the whole a�ected DOM. For an
extensive discussion of these and further systematics see Ref. [74].

7.2.2. No photon arrival time binning

A reconstruction carried out on all detected pulses (including noise) did not show any
perceptible change in the log-likelihood ratio behaviour encountered above, except for an
expected shift to higher overall event charges. In order to disentangle e�ects that might
stem from an erroneous description of photon delay times and those originating from wrong
assumptions about the amplitudes, temporal binning of pulses was disabled. In this case,
the whole readout range acts as one large bin for each DOM, and only the total amplitudes
expected and detected within this time window are used in evaluating the likelihood. For
this reason, saturated DOMs are automatically not considered in reconstruction. The log-
likelihood ratios depicted in Fig. 7.6 exhibit a much less rapid increase with NPE than in
the case when the PMT pulses are binned in time, but the signi�cant undercoverage of the
region with ideally 75 % probability content persists: it contains only 14 % of all events.
In the meantime, it had been reported that the spline tables used in PINGU, but created

for events with energies of TeV and above, su�ered from somewhat poor �ts to the raw
photon amplitudes (which they had been originally generated from) at small distances of
the order of several metres from the source, both for muon and cascade tables. Hence,
it might turn out bene�tial to exclude charge detected by the DOMs closest to the true
vertex (e.g. within some radius R) in reconstruction, in the sense of obtaining an improved
modelling of the simulated detector response. Here, one should make sure that these DOMs
are not considered unhit in the likelihood formulation, e.g. by adding them to the list of
broken DOMs. Indeed, the charge dependence of the log-likelihood ratios in Fig. 7.7, which
is the result of excluding all DOMs within a sphere of radius R = 30 m centered at the
true interaction vertex, all but disappears, except for perhaps the last one or two charge
bins.

52



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

7.2. Single cascade reconstruction
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Figure 7.6.: Log-likelihood ratio for a realistic cascade simulation and an only-cascade recon-
struction which does not make use of photon arrival time information.
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Figure 7.7.: Same as Fig. 7.6 , but without using information from DOMs that are located within
a sphere of 30 m radius centered at the true interaction vertex.
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7. Multinest Cascade Reconstruction Studies

7.3. Idealised simulation using spline tables

A simple approach that should mitigate di�erences between the true and expected
Cherenkov light yields is the generation of photons based on the same spline tables that are
used in reconstruction. For each light producing secondary in the I3MCTree, the number
of photons at any given DOM location is drawn from a Poisson distribution whose mean
is extracted from the tabulated light yields, and residual times, Eq. (6.5), are obtained
based on the delay time distribution for the speci�c source-observer con�guration. If the
secondary in question is a hadron, it is �rst assigned a reduced e�ective energy, simulta-
neously taking into account the energy-dependent relative �uctuations around the average
light output. In reconstructing real events, this would correspond to perfect knowledge of
ice properties and the Cherenkov light output of a hadronic cascade being independent of
the type of hadron that initiated it.

The simulated events were used to perform di�erent single-cascade reconstructions with
Multinest, whose corresponding median log-likelihood ratios for each charge bin are de-
picted in Fig. 7.8. Here, one can compare the results of two reconstructions using timing
information, one including a 2.19 ns convolution of the expected photon arrival times and
one without, fully excluding DOMs from the likelihood evaluation if parts of their wave-
forms are marked as invalid. In addition, both of these are contrasted with an amplitude-
only reconstruction. Since the individual data points are not shown, the fraction of events
that is covered by the con�dence region de�ned by the quantile of order 0.75 of the χ2

distribution with 7 and 6 d.o.f., respectively, is given in the upper right-hand corner.
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Figure 7.8.: Median log-likelihood ratios for three di�erent reconstructions of νe CC events simu-
lated using tabulated light yields. In the case of the purple sample, the likelihoods were evaluated
without incorporating pulse times. The red and blue samples, on the other hand, are the result of
binning PMT pulses in time, with the di�erence that in the case of the former photon delay time
distributions were additionally convolved with a Gaussian of σ = 2.19 ns width. See text.
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7.3. Idealised simulation using spline tables

The overall behaviour of the two data sets that use timing information is similar: the
log-likelihood ratio is approximately constant up to charges around 100 PE and then starts
to rise. As expected, a somewhat improved description of the detector response is obtained
by modelling PMT transit time spread. Both the magnitude of the log-likelihood ratio as
well as its charge dependence resemble those seen in the amplitude-only reconstruction for
the more realistic simulation, Fig. 7.6.
Not making use of timing information leads to a log-likelihood ratio that is also quite �at

at charges below 100 PE�albeit with smaller values of ∆ lnL since the likelihood in this
case is independent of the time of the source�but which exhibits a small negative slope
for larger amplitudes, implying increasing agreement between true and reconstructed pa-
rameters where the relative �uctuations expected from a purely Poissonian process become
smaller than ∼ 10 %. Nevertheless, the fraction of events that can be found in the region
of ideally 75 % coverage still only amounts to ∼ 24 % when averaged over all charges.
Fig. 7.9 allows one to directly compare the true residuals and corresponding estimates

again for vertex depth and neutrino zenith angle for those events reconstructed under
the use of timing (with σ = 2.19 ns, referred to as �timing-sample� in the following) to
those obtained for the amplitude-only reconstruction. Here, the covariance matrices were
computed according to the prescription given in Sec. 6.3.1, i.e. under the assumption of
a single-cascade hypothesis. In general, the estimates succeed relatively well in predicting
the reconstruction residuals for both samples. In the case of the timing-sample, one can
still observe a levelling-o� of the z-residuals at the high end of the charge range, but
reconstruction is less strongly a�ected by systematics than in the more realistic direct
simulation scenario, Fig. 7.2. The estimates of the amplitude-only residuals perform best
at highest charges.
In addition, it is important to note that it is not only the degree of consistency between

simulation and reconstruction that governs how accurately the true parameters can be
recovered, but also the amount of information that is used. The cascade's forward-peaked
photon emission in the direction of the Cherenkov angle depicted in Fig. 3.3, for example,
becomes less and less pronounced as time evolves due to photon di�usion, so that the hit
pattern exhibits increasing spherical symmetry; see e.g. Ref. [85] for a discussion. Despite
the scaling of the log-likelihood ratio with charge, vertex depth and zenith angle resolutions
are better when the likelihood incorporates photon arrival times, at least for the charges
encountered here. At 500 PE, adding timing information improves the accuracy with which
the true vertex depth z is reconstructed from around 1.1 m to slightly below 0.3 m, and
neutrino zenith angle resolution from 7° to 3°. Interestingly, for the timing-sample, the
functional dependency of the median zenith angle residual on charge is very similar to
that of the hybrid Multinest reconstruction in the default scenario discussed in Sec. 7.1.2,
where the secondaries constituting the hadronic and electromagnetic cascades were fully
propagated through the ice. This could indicate that directional reconstruction pro�ts
from the spatial extent of the source in the full simulation.
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7. Multinest Cascade Reconstruction Studies
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Figure 7.9.: Same as Fig. 7.2, but for a simpli�ed simulation using cascade spline tables and
a reconstruction assuming a single-cascade hypothesis. The two left panels show residuals and
estimates for vertex depth and neutrino zenith angle when photon arrival times are ignored, while
the same quantities in the two panels on the right-hand side were obtained by taking times into
account and convolving the delay time distributions with a Gaussian of width σ = 2.19 ns.
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7.3. Idealised simulation using spline tables

7.3.1. Removal of PMT e�ects and uncertainties in hadronic light output

In order to be able to judge whether discrepancies between predictions and true residuals
seen above are due to intrinsic limitations related to the non-asymptotic nature of the ML
estimation problem, or whether they arise from remaining implicit, unrealistic assumptions
about the detector response in the likelihood formulation, it is necessary to further break
down the whole process of simulation and reconstruction.
On the simulation side, this was achieved by removing the neutrino scattering pro-

cess and instead directly placing electromagnetic cascades in the ice, which have maximal
Cherenkov light output. Photoelectrons generated based on spline table predictions, each
with an assigned charge of one and a given arrival time, were then directly used as an
input to reconstruction.4 Also, no photoelectrons resulting from noise were simulated.
The likelihood formulation was then modi�ed to expect exactly 1 PE per photon instead
of the 0.86 PE that correspond to the mean of the SPE PMT charge response distribution,
and the assumed noise rate5 was scaled down to 1 Hz. Given this scenario, with all other
relative e�ciency correction factors agreeing (see Sec. 6.2.2), the likelihood (6.3) should
represent a suitable model of the physics of the underlying event.
The log-likelihood ratios resulting from an amplitude-only Multinest reconstruction

based on the cascade hypothesis can be examined in Fig. 7.10. Averaged over the whole
charge range, 76.3 % of the events for which lreco > ltrue fall into the hatched region, in-
dicating good agreement with the ideal coverage of 75 % for a purely Gaussian likelihood.
Due to the �nite accuracy of the maximisation algorithm, it is not unexpected that a
con�dence region of nominal probability content β in the asymptotic limit, de�ned via
Eq. (5.14), exhibits an overcoverage β′ > β.
Since the error estimates should yield one-sigma con�dence intervals only in the asymp-

totic limit, their accuracy necessarily depends on the degree to which this limit is reached
indeed. As the likelihood is known to have the bene�cial property of being �strictly con-
cave, with a single maximum� [52] in energy, a small study was devised in which only the
visible energy of the cascade was reconstructed, while the other parameters were kept �xed
at their true values. The variance on the energy estimator Ê�when only total amplitudes
and no arrival times are observed�then follows from Eq. (6.7) as

Var(Ê) =

(∑
D

1

µD

∂µD
∂E

∣∣∣2
E=Ê

)−1

=

(∑
D

Λ2
D

µD

)−1

, (7.2)

where in the second step the linear dependence between Cherenkov amplitude and cascade
energy, Eq. (6.2), was exploited. If the mean amplitude µD has no contribution from noise,
we can use relation (6.2) once again to cancel a factor ΛD and �nally write

Var(Ê) =

(∑
D

ΛD

Ê

)−1

=
Ê∑
D ΛD

. (7.3)

4More precisely, each photoelectron (I3MCPE) �rst was transformed into an I3RecoPulse, with identical
time, a charge of one and a given width of 3.3 ns, corresponding to the typical SPE pulse width.

5A �nite value is required for numerical stability [75].
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7. Multinest Cascade Reconstruction Studies
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Figure 7.10.: Log-likelihood ratio for an amplitude-only reconstruction of point-like electromag-
netic cascades, with all non-Poissonian �uctuations removed.

Note that the denominator is determined by the depth and zenith angle of the source as well
as the deplacement vectors that connect it to the various receivers D, but is independent
of energy (cf. Sec. 6.2.2).

Fig. 7.11 shows by how much the likelihood has reduced with respect to its maximum
value lÊ at the bounds of the con�dence intervals Ê ± σÊ , σÊ = Var(Ê)1/2, depending on
the total charge6 detected in the event; the gray line at 0.5 represents the expectation in the
asymptotic limit. The relative deviation decreases from around 5 % for the smallest charges
to 1 % at 50 PE, and becomes negligible for amplitudes exceeding 1000 photoelectrons.

Complementary information about the relative asymmetry between the values of the
likelihood at the one-sigma bounds is provided in Fig. 7.12: a positive ratio implies that
the likelihood falls o� more rapidly toward small energies, which is the case for all events
with charges below 300 PE, and which can also be observed in the low-energy cascade
example of Fig. 6.3. Above, the likelihood tends toward perfect symmetry.

Results of full reconstructions in all six dimensions and the evaluation of the diagonal
elements of the covariance matrices are shown in Fig. 7.13, for zenith angle and visible
energy. The charge-independent summands in the �t were set to zero to avoid non-physical
negative predictions for the |∆θ| and σθ in the asymptotic limit, which resulted from the
rather �at behaviour at very small charges. The �ts to the fractional energy residuals and
error estimates, however, were not in�uenced by this constraint. Both median zenith angle
residuals, which decrease from around 26° at 50 PE to 2° at 3000 PE, as well as fractional

6Here, due to the speci�c nature of the simulated experiment, �charge� and �number of photons� can be
used interchangeably.
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7.3. Idealised simulation using spline tables
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try) of the values of the likelihood at the
bounds Ê ± σÊ of the symmetric interval

about the cascade energy estimator Ê.

energy residuals, which become as small as 1 % for large numbers of detected photons, are
clearly dominated by statistics.
Means and standard deviations of Gaussian �ts to the corresponding pull distributions

are depicted in Fig. 7.14. No clear picture emerges for the zenith angle pulls: the means
are consistent with zero, and the standard deviations seem to approach the desired value
of one as photon statistics accumulate. The energy estimator, however, seems to have a
negative bias. In the limit in which Ê is uncorrelated with other estimators, Eq. (7.3) then
shows that the variance estimate is small, which leads to the expanded pull scales at small
charges. As the bias in energy diminishes with an increasing number of observations, the
pull distribution approaches a standard normal.
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7. Multinest Cascade Reconstruction Studies
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Figure 7.13.: Same as Fig. 7.2, but for an idealised amplitude-only reconstruction of point-like
cascades with all non-Poissonian �uctuations removed. The left panel shows residuals and estimates
for cascade zenith angle, while the right shows the same for fractional cascade energy resolution.
Refer to text for details.
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Figure 7.14.: Charge dependence of the pull distribution parameters for cascade zenith angle (left)
and visible energy (right) for the idealised amplitude-only reconstruction of point-like cascades.
Shown are the means µ (in blue) and widths σ (in black) obtained from Gaussian �ts. See text for
details.
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7.4. Photon timing schemes

7.4. Photon timing schemes

Figure 7.15.: Essentials of the default Millipede time binning scheme for a DOM with PMT
pulses used in this work. A global readout window determines the earliest and latest pulse times
that are considered, and the threshold is the desired charge in each bin. The numbers denote the
di�erent time bins. Figure taken from Ref. [86].

As timing was added back in and the resulting behaviour of the log-likelihood ratio was
examined, it was surprising to see that it showed a strong scaling with charge again (see
Fig. A.3). If this had been due to an o�set in the expected amplitudes, a similar e�ect
should have also showed up in Fig. 7.12, i.e. it must have had something to do with the
binning process itself.
In Fig. 7.15 the concept behind the time binning of PMT pulses in Millipede, as used

for these studies up until now, is outlined. A global readout window de�nes the earliest
and latest times that are taken into account. In a �rst step, the pulses detected by any
given DOM are pre-binned according to their start times and widths. Depending on user
options, i.e. the desired amount of charge per bin, bins are then combined until either the
charge content of the bin is larger than the threshold or the duration of the bin exceeds a
maximum width of 200 ns.
Furthermore, each DOM can be assigned one or several time periods which should be

excluded, for example because the waveforms exhibit saturation. Bins that fall into one
of these intervals are declared as invalid and do not contribute to the likelihood. This
approach was, as mentioned in Sec. 7.2.1, not taken throughout this work, though, and
instead a�ected DOMs were fully excluded from the likelihood evaluation. As in the case
of an amplitude-only reconstruction, for DOMs without any detected charge the readout
window is not subdivided in time.
While this binning scheme provides a good trade-o� between precision and computational

demands, it can lead to bin widths for single DOMs ranging from the sub-ns to the µs
regime, and an irregular likelihood-behaviour has been associated with it [86]. Also, it is
questionable whether the assumption that bin entries are distributed Poissonian around the
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7. Multinest Cascade Reconstruction Studies
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Figure 7.16.: Same as Fig. 7.10, but using a photon timing scheme that makes use of bins of
width 5 ns.

expected mean still holds, as the longest bins will have no detected charge by construction.
In order to test the e�ect that time binning has on the log-likelihood ratio between recon-

structed and true parameters, reconstructions based on an implementation of Millipede
that makes use of equally spaced bins [87] were performed. For each DOM, an individual
readout range starting 1 µs prior to the occurrence of the �rst and ending 1 µs after the
occurrence of the last photon was de�ned. The resulting readout ranges of 2 µs length were
then subdivided into intervals of 40 ns, 20 ns or 5 ns width, corresponding to 50, 100 and
400 bins, respectively.
Fig. 7.16 shows the result of the reconstruction with bins of 5 ns width. The median

log-likelihood ratio is very �at; 45 % of the events lie within the hatched region, which is
signi�cantly less than the ideal value of 75 %, but shows clear improvement over the results
obtained with the default binning scheme. In addition, while the ratio stayed constant over
the whole charge range, it was observed that it shifted upward with increasing bin size, i.e.
the values of the parameters constituting the true event hypothesis became less compatible
with the observed light yields and arrival times.
A similar behaviour of the log-likelihood ratios seemed to emerge also for a more realistic

scenario, with electronics e�ects included, but due to the large computational expense that
accompanied this binning scheme, this could not be followed up in more detail.
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8. Application to Neutrino Mass

Hierarchy Sensitivity

Estimates of the PINGU sensitivity to the NMH have found that the major contribution
arises from the cascade channel, which is due to larger statistics and a reduced systematics
impact compared to the track channel [23]. The importance of a precise reconstruction
of the neutrino energy and zenith angle in the determination of the NMH with large
atmospheric neutrino detectors has already been motivated in Sec. 2.4. In the previous
chapter, the accuracy of a likelihood-based, semi-analytic approach to estimate the intrinsic
resolution of an event has been shown to depend on how well the actual detector response is
modelled. The most realistic scenario of Sec. 7.1/7.2 hinted at the existence of systematics
that dominated over Poissonian �uctuations in amplitude at high charges, which resulted
in resolution estimates that were too optimistic.

The following will present an application of the resolution estimator to the measurement
of the NMH with PINGU geometry V36 (see Sec. 3.5.1), where only the electron neutrino
channel (νe+ν̄e CC) is considered. First, the analysis framework and the Monte Carlo data
set used are brie�y introduced, before simple cuts on the resolution estimates resulting in
event samples of varying quality and statistics are illustrated. Finally, the uncertainties of
di�erent parameters and their impact on the NMH signi�cances are discussed.

8.1. Parametric PINGU Analysis

A set of independent, complementary statistical analyses, with focus on either accuracy
or computational time, aim at evaluating PINGU's NMH sensitivity. Among these, the
Parametric PINGU Analysis (PaPA) [23] is a particularly fast approach that can take into
account a wide range of systematic e�ects with the potential to impact the sensitivity of
PINGU. It is based on the Fisher information matrix

Fkl =
∑
i

1

σ2
ni

∂ni
∂pk

∂ni
∂pl

∣∣∣
�d. model

, (8.1)

computed from the (numerical) partial derivatives of the number of events in each (E, cos θ)
bin i with respect to the set of parameters pi under study. The derivatives in Eq. (8.1)
are evaluated at the values of pi constituting the model which represents the best existing
knowledge and is used as an input for the simulation of the ni. Inversion of the Fisher
information matrix (8.1) yields the full covariance matrix of the experiment, from which
one can obtain the full uncertainties as well as correlations between di�erent parameters.

The physics parameters include three mixing angles, two mass-squared di�erences, the
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8. Application to Neutrino Mass Hierarchy Sensitivity

Figure 8.1.: Parametric PINGU Analysis (PaPA) simulation �ow chart [23]. MC generated
events are used to parametrise the e�ective detection areas, reconstruction resolutions and �avour
identi�cation. See text for details.

CP-violating phase and a hierarchy parameter h. For treatment with the Fisher matrix,
the latter is de�ned in a continuous way: ni(h) = hni,NH + (1− h)ni,IH, 0 ≤ h ≤ 1, where
h = 1 corresponds to the NH and h = 0 to the IH. As the result of a study showing
negligible impact of the solar mixing parameters ∆m2

sol, θsol and the CP-violating phase
δCP, these parameters are kept �xed at their respective �ducial values.

Fig. 8.1 shows a scheme of the various steps that constitute the general analysis proce-
dure. Each step results in a histogram in the (E, cos θ) plane which takes into account an
increasing number of experimental signatures. First of all, the histograms containing all
the relevant oscillation probabilities of atmospheric νe,µ/ν̄e,µ as a function of energy and
zenith angle are created, under the assumption of the Earth model introduced in Sec. 2.3.
Models describing the atmospheric neutrino �uxes are then employed to transform the
oscillation probabilities into �uxes for νe,µ,τ/ν̄e,µ,τ arriving at the detector, which in turn
are multiplied by the corresponding e�ective areas to obtain event rates. The last step
that relates to the studies carried out in this work is the application of reconstruction reso-
lutions to the histograms of true event numbers by smearing the bin counts accordingly.
Especially, no background is assumed from either ντ CC events or from νµ events when the
muon cannot be identi�ed as such, nor from NC events in general. Conversely, no electron
neutrinos are assumed to be misidenti�ed.

8.2. Data set

The data set from which the e�ective areas and resolutions for νe/ν̄e CC events are obtained
was simulated with PINGU geometry V36 (run 356). An isotropic �ux of neutrinos was
generated with GENIE according to an E−1 spectrum, in the energy range 1�80 GeV.
Secondary interaction particles and photons were propagated in SpiceMie ice via direct
simulation. The eight-dimensional Multinest reconstruction was performed, �tting for
both a cascade and a collinear track, using SpiceMie spline tables for �point-like� muons�
optimised for low energy reconstructions�and cascades.
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8.3. Event selection and resolutions
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Figure 8.2.: Medians of true residuals (black points) and residual estimates (red points) for vertex
depth z (left) and zenith angle θ (right) and �ts as a function of observed event charge for νe CC
events at V4 cut level in PINGU V36.

V4 cut level

Reconstructed events were required to satisfy the cuts �V4�. The �rst of these is based on a
less computationally expensive reconstruction that is also performed and aims at reducing
the rate of atmospheric background muons. The second, on the other hand, is based on
Multinest itself. It requires the reconstructed vertex be within a right cylinder of 85 m
radius from PINGU's central axis, ranging from the the top of PINGU to the largest depth
at which IceCube is instrumented below PINGU, and in addition that the reconstructed
neutrino energy exceed 1 GeV. From this sample, only events reconstructed as upgoing,
−1 ≤ cos θ < 0, were then selected.

The covariance matrix of the ML estimators was calculated for each event assuming that
a single cascade�with visible energy corresponding to the sum of that of the reconstructed
cascade and the track energy�is a good solution to the reconstruction problem.

Similarly to the approach taken in chapter 7, Fig. 8.2 shows the median residuals in
vertex depth and neutrino zenith angle dependent on the total event charge, together
with the corresponding residual estimates. One can see that depth reconstruction is again
dominated by a systematic component at charges larger than 200 PE, which is on the order
of 1.25 m. Contrary to what is found in Fig. 7.2, which applied to events simulated using a
di�erent ice model and PINGU geometry V15, reconstructed with di�erent spline tables,
zenith angle resolution does not seem to improve anymore at charges above approximately
500 PE, which leads to a signi�cant discrepancy to the predictions of the residual estimates
in this region. Moreover, events were not discarded just because they had reached the upper
time limit of the reconstruction, resulting in an increase of the residuals at the right end
of the range, where most spline table lookups were necessary.
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8. Application to Neutrino Mass Hierarchy Sensitivity

Quality cuts

When looking into the di�erent residual estimates, it was found that the vertex position

residual estimator, de�ned in the following as σ~x =
√
σ2
x + σ2

y + σ2
z , showed correlation

with the detector performance parameters of interest to the NMH measurement�zenith
angle and energy resolutions�while for example the energy residual estimator did not.
Also, σ~x and σθ were found to be almost completely positively correlated, with a correlation
coe�cient ρ = 0.93, as is shown in Fig. A.4 in the appendix.

Before σ~x was used to de�ne cuts, the individual residual estimates for the vertex coor-
dinates were corrected for the widths of their pull distributions (7.1). This is illustrated
in Fig. 8.3 for the pull in x, Px. In the left panel, one can see that the widths σ of the
distributions increase rapidly with charge, reaching σ ' 10 in the highest-charge bin. In
order to compensate for the deviation from σ = 1, each residual estimate was then scaled
according to the actual width of the pull distribution in the corresponding charge range.
The right panel of Fig. 8.3 shows the parameters of the pull distributions resulting from
the correction of the individual estimates. The latter now describe the true residuals much
better, leading to pull widths which are close to one over the whole range of charges.
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Figure 8.3.: Charge dependence of the pull distribution parameters for vertex depth z (left)
and zenith angle θ (right). Shown are the means µ (in blue) and widths σ (in black) obtained
from Gaussian �ts. The gray horizontal lines correspond to the ideal values for an unbiased
reconstruction whose residuals are on average perfectly predicted.

After the same procedure had been performed for the other two vertex coordinates, the
�pull-corrected� position residual estimate accurately predicted the distance between the
true and reconstructed vertex position. This can be seen in Fig. 8.4, where the medians
are shown in dependence of the charge. Not only do they now scale very similarly, but
they also agree well for events with the largest number of photoelectrons, where the vertex
position resolution is on the order of 2.4 m.

This quantity was then used to de�ne two straight cuts which split the original νe CC
sample at V4 cut level into two subsamples each. As illustrated in Fig. 8.5, the �rst, �cut 1�,
was made at σ~x = 2.5 m, while �cut 2� split the sample at σ~x = 4 m. Approximately 30 %
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8.3. Event selection and resolutions

101 102 103

NPE

100

101

102

δ~ x
 [

m
]

true residual |∆~x|
residual estimate σ~x

715.53 ·x−1.29 +2.37

519.15 ·x−1.18 +2.55

shown are median values

Figure 8.4.: Vertex position residuals and
estimates after the latter had been corrected
for the widths of the pull distributions in the
three vertex coordinates.
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Figure 8.5.: Cumulative distributions of
the corrected and uncorrected vertex posi-
tion residual estimates. In addition, the def-
initions of the two cuts applied to the cor-
rected estimates are shown. See text for de-
tails.

of all events satis�ed cut 1, and just below 50 % of the events passed cut 2. Here, one
can also identify the e�ect the pull width corrections had, which e�ectively scaled up the
smallest estimates to account for the levelling-o� of the resolution at high charges.

Fig. 8.6 shows the e�ciencies of the two cuts on the corrected estimator σ~x as a function
of true neutrino energy. At energies below 10 GeV, the �rst cut keeps between 5�30 % of
the events in each bin, while the second cut at σ~x = 4 m retains between 20�50 %. For
energies above 10 GeV, e�ciencies are constant at around 35 % and 55 %, respectively.

Median vertex position, neutrino zenith angle and fractional neutrino energy resolutions
are depicted in Fig. 8.7, as a function of true neutrino energy in the range 0�30 GeV, for
events passing the quality cuts as well as for the original sample at V4 cut level.

The top plot shows that both cuts are very e�ective at selecting events whose vertex is
reconstructed close to the true vertex. While the vertex resolution for the original sample
is between 5 m and 6 m at Eν = 5 GeV, cut 2 reduces it to approximately 2.5 m and cut 1
somewhat further to 2 m.

As can be inferred from the central panel, in the original sample without further quality
cuts zenith angle resolution improves from 20° at the lowest energies to approximately 8° at
20 GeV. The events passing the more relaxed quality cut have a zenith angle resolution of
15° at the low-energy end of the range shown, and are already constrained to within 6° of the
original neutrino inclination for neutrino energies above 20 GeV. A further improvement
of on the order 1° can be observed for cut 1.

Finally, the lowermost panel of Fig. 8.7 indicates that the cuts also result in samples with
neutrino energy resolutions that are lowered by several percent, e.g. the median energy
resolution of events passing cut 1 falls below 15 % at 15 GeV, compared to somewhat below
20 % for the V4 cut level sample.
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8. Application to Neutrino Mass Hierarchy Sensitivity
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Figure 8.6.: E�ciencies for two straight cuts at 2.5 m and 4 m on the pull-corrected vertex reso-

lution estimator σ~x =
√
σ2
x + σ2

y + σ2
z depending on true neutrino energy.

Before the, in total, �ve sets of events could be processed with the PaPA framework, cos θ
as well as energy resolutions were �t with double Gaussians in energy bins of 2 GeV width
each in the range 0�20 GeV. Fig. A.5 in the appendix shows two �ts to the distribution
of the cos θ residuals for true neutrino energies in the range 6�8 GeV, once for all events
at V4 cut level, as well as for those that passed cut 2. There one can see how the width
decreases by 20�30 % and that a bias toward small cos θ is removed.
In addition, since the cuts that were applied exhibited energy-dependent e�ciencies

(Fig. 8.6), the e�ective area of the detector was redetermined anew for each sample. Since
the event counts in each bin i in the (Eν , cos θ) plane will then have the correct overall
normalisation, this will permit adding the Fisher matrices of two independent samples,
separated e.g. by the straight cuts that are described above.
In conclusion, �ve PINGU νe CC data sets with di�erent properties were created. The

�rst corresponds to all events that passed the basic event selection cuts V4, and is the one
with the highest overall statistics. The next two were separated by cut 1 at σ~x = 2.5 m, and
contain approximately 30 % and 70 % of the number of events in the �rst set, respectively.
Events that passed cut 1 are those with the best overall resolutions in vertex position,
neutrino zenith angle and energy. Cut 2 at σ~x = 4 m split the data set at V4 cut level in
half, and events passing this cut also showed signi�cant improvement in resolutions.
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Figure 8.7.: Median resolutions as a function of true neutrino energy for the νe CC sample at
V4 cut level and after the indicated cuts on the vertex position residual estimator have been
performed.
Top: vertex position resolution. Centre: neutrino zenith angle resolution. Bottom: fractional
neutrino energy resolution.
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8. Application to Neutrino Mass Hierarchy Sensitivity

8.4. Systematics and signi�cances

Apart from the mixing parameters already described in Sec. 8.1 when the PaPA framework
was introduced, a set of additional parameters related to the detector response are included
in the analysis. They allow for potential scaling errors on the reconstructed neutrino energy
(sE) and the energy dependence of the detector's e�ective area (sAeff

), as well as for relative
mismatches between neutrino- and anti-neutrino-nucleon cross sections (nAe�,ν/ν̄). Also, a
scale factor related to the absolute normalisation of the atmospheric neutrino �ux is taken
into account, which, however, is only expected to a�ect the total number of events and
could thus be replaced by a corresponding scaling of the detector livetime.

In general, the parameters that appear as systematics in the determination of the neu-
trino mass hierarchy are varied in �nite steps around their �ducial values. The individual
steps and �ducial values are detailed in Ref. [23]. It should be mentioned, however, that
the �ducial value of the mass-squared di�erence ∆m2

31 is taken as 2.46× 10−3 eV2, which
corresponds to the normal hierarchy assumption.

The Fisher matrix (8.1) was evaluated for di�erent detector livetimes. After its inversion
one can extract the uncertainties of all systematic parameters as well as their correlations
with the mass hierarchy parameter h.

Tab. 8.1 shows the results after 3 years of exposure for the νe CC sample at V4 cut
level, i.e. with no further quality cut applied. In the left column the di�erent systematic
parameters are given, arranged according to the value of their squared correlation coe�cient

ckl =
(F−1)kl

σfull
k σfull

l

(8.2)

with the mass hierarchy parameter h. This is what is denoted as �impact� in the second
column.

Priors are external constraints and correspond to the 1σ ranges for the mixing parame-
ters. The full error on each parameter is given in the fourth column; it is the root of the
sum of the squared statistical (�fth column) and systematic (sixth column) errors.

One can see that here the mixing angle θ23 has the largest impact on the mass hierarchy
determination, with further major contributions stemming from a possible misscaling of the
e�ective area with energy (or the tilt of the atmospheric neutrino spectrum) and the overall
�ux normalisation. The impacts of the latter are mainly due to an e�ective reduction in
livetime and statistics, and more precise measurements of the �ux will mitigate them [22].
Also, sin2 2θ23 is expected to have been determined more accurately, up to its octant, by
the time PINGU starts taking data [88].

Tab. 8.2 shows the same quantities for the lowest-statistics sample which passed cut 1,
also after 3 years of livetime. Here, impacts on the mass hierarchy parameter are in general
signi�cantly smaller, whereas statistical uncertainties are increased as expected from the
lower event rates, especially at energies below 10 GeV, see Fig. 8.6. Since bin counts
are smeared less strongly due to higher resolutions in Eν and cos θ, degeneracies between
actual mass hierarchy e�ects and uncertainties of the di�erent systematic parameters can
be resolved.
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8.4. Systematics and signi�cances

Parameter Impact Best Fit Full Stat. Syst. Prior

h 100.0 1.00 3.34× 10−1 2.38× 10−1 2.35× 10−1 free
θ23 [°] 31.1 38.6 1.14 6.65× 10−1 2.11 1.32

sAeff
[ m2

GeV ] 12.6 0.00 6.41× 10−4 4.29× 10−4 4.76× 10−4 free
�ux norm. 11.7 0.00 2.24× 10−2 4.71× 10−3 2.20× 10−2 2.00× 10−1

θ13 [°] 5.0 8.93 4.64× 10−1 1.26 3.48 4.68× 10−1

∆m2
31 [eV2] 4.3 0.00246 7.81× 10−5 2.01× 10−4 2.96× 10−4 8.00× 10−5

nAe�,ν/ν̄ 2.3 0.00 4.90× 10−2 1.10× 10−2 2.50× 10−1 5.00× 10−2

sE 1.8 1.00 1.98× 10−2 8.08× 10−2 1.18× 10−1 2.00× 10−2

Table 8.1.: Uncertainties of the systematic parameters given the best-estimate detector con�g-
uration after 3 years of detector livetime for the νe CC event sample at V4 cut level, arranged
according to their squared correlation with the NMH parameter h, denoted as �impact� here.

The median signi�cance with which the wrong mass ordering can be excluded follows
as the inverse of the full error on the mass hierarchy parameter h. In the absence of
systematics, it is expected to scale as

√
t, where t is the detector livetime.

Fig. 8.8 shows the median signi�cance as a function of detector livetime for the di�erent
samples. Here, the blue line is the signi�cance that is obtained from whole set of νe CC
events at V4 cut level, and the black line shows how it scales without systematics, i.e.
if one inverts the diagonal element of the Fisher matrix corresponding to the hierarchy
parameter. The measurement is already dominated by systematic e�ects after a fraction
of one year's worth of exposure time, so that one obtains a signi�cance of, for example, 3σ
after 3 years, compared to approximately 4.25σ if there were no systematics.
Comparing the signi�cances for the samples divided by the cut at 2.5 m (dotted lines),

on can see that the signi�cance for the events that did not pass the cut grows faster in
the beginning, but is more strongly impacted by systematics, so that after 10 years both
samples almost yield the same value.
In the case of the 4 m cut, which split the sample in half, the sensitivity is larger as

expected right from the beginning for the events which have better resolution, resulting in
a di�erence of 0.5σ after 10 years of exposure.
The signi�cances of the combined samples, corresponding to the orange and purple lines,

were determined from the sum of the Fisher matrices of the individual samples. While after
two years no improvement is seen for the combined signi�cance of the two samples divided
by the 2.5 m cut, the combination of the other two subsamples with each approximately
50 % of the number of original events leads to an increased sensitivity almost from the
start.
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8. Application to Neutrino Mass Hierarchy Sensitivity

Parameter Impact Best Fit Full Stat. Syst. Prior

h 100.0 1.00 4.53× 10−1 4.03× 10−1 2.06× 10−1 free
θ23 [°] 10.0 38.6 1.21 1.46 2.63 1.32
�ux norm. 3.4 0.00 2.60× 10−2 1.25× 10−2 2.31× 10−2 2.00× 10−1

sAeff
[ m2

GeV ] 2.4 0.00 1.20× 10−3 8.41× 10−4 8.49× 10−4 free
nAe�,ν/ν̄ 2.2 0.00 4.94× 10−2 3.17× 10−2 3.09× 10−1 5.00× 10−2

θ13 [°] 1.9 8.93 4.65× 10−1 2.36 3.79 4.68× 10−1

∆m2
31 [eV2] 1.9 0.00246 7.82× 10−5 2.89× 10−4 2.36× 10−4 8.00× 10−5

sE 0.8 1.00 1.98× 10−2 1.18× 10−1 1.08× 10−1 2.00× 10−2

Table 8.2.: Same as Tab. 8.1, but for the events that passed cut 1 (∼ 30 % altogether).
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Figure 8.8.: Neutrino mass hierarchy signi�cance as a function of PINGU livetime arising from
the individual samples de�ned in Sec. 8.3 and the combination of those divided by cuts 1 & 2. In
addition, the black line shows the

√
t behaviour for the whole sample of νe CC events, assuming

no impact from systematics.
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8.4. Systematics and signi�cances

One can also check how the uncertainties of the mixing parameters evolve with time.
These are shown in Fig. 8.9 for ∆m2

31 as well as θ23. In the former case, better resolutions
seem to have a rather strong impact on the uncertainties. The sample passing cut 2
(dashed green line), even though it only contains 50 % of the original events, yields reduced
uncertainties after approximately 3 years of detector livetime with respect to the sample
at V4 cut level. The overall uncertainties resulting from taking into account only the low-
quality events (red dashed and dotted lines) are larger and decrease more slowly with time.
Combining these with their higher-resolution counterparts, however, leads to a much faster
reduction of the uncertainty on ∆m2

31.
For θ23, the two lines corresponding to the samples divided by the cut at 2.5 m are

switched. Also, the green dashed line now lies above the blue line representing the whole
sample. It seems like here the loss in event rates at energies below 10 GeV, where the mass
hierarchy induced matter e�ects of the oscillation probabilities are strongest (see Fig. 2.4),
is detrimental to the determination of θ23. The recombination of the two samples again,
however, leads to stronger constraints on the value of the 2-3 mixing angle.
Finally, one should note that the overall scale of the uncertainties in this idealised

analysis�which only considers the νe CC channel, assumes perfect �avour identi�cation
and has no contribution from NC events for which the energy resolution is worse�is large
when compared to a more realistic scenario that considers both the cascade channel and
the track channel, even with non-ideal �avour identi�cation. Such an analysis performed
for PINGU in its V15 con�guration with parametrised resolutions yielded uncertainties of
approximately 6.8× 10−5 eV2 and 0.9° for ∆m2

31 and θ23, respectively, after one year of
livetime [23].
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8. Application to Neutrino Mass Hierarchy Sensitivity
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Figure 8.9.: Evolution of the full uncertainties of oscillation parameters with PINGU livetime for
the di�erent νe CC data sets. Top: ∆m2

31. Bottom: θ23. In each case, the blue line shows the full
sample that did not undergo further quality cuts.
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9. Summary and Outlook

Event reconstruction in PINGU is of universal nature: the visible energy of a hadronic
cascade arising from all kinds of charged-current as well as neutral-current neutrino in-
teractions in the GeV regime can be signi�cantly smaller than that of an electromagnetic
cascade of the same energy. For this reason, the hybrid reconstruction approach Multinest
is employed, which assumes that the underlying event is a charged-current muon neutrino
interaction.

This work dealt with the reconstruction of cascade-like events in PINGU. These have
been shown to be important in that they can contribute greatly to the correct determination
of the neutrino mass hierarchy, which is one of the main physics goals of PINGU.

First, it was shown that, in the vicinity of its maximum, a likelihood function can provide
information about the intrinsic uncertainty of estimators. An existing approach aiming at
predicting the latter in the case of cascades, which determines the covariance matrix of
event parameters from the expectation value of the second derivatives of the log-likelihood
function, was presented. Then, a possible adaptation of this approach to the complex event
hypothesis employed by a hybrid reconstruction such as Multinest was given.

In the main part of this work, criteria which the likelihood is expected to satisfy when
it represents a suitable description of the actual detector response were introduced. The
hybrid residual estimator was applied a-posteriori to simulated νe CC events reconstructed
with Multinest, and the strongest deviations were found at highest charges, where consis-
tency between simulation and assumptions in the likelihood function is most important.

Two possible sources of error, wrong assumptions about the Cherenkov amplitudes or
about photon delay times, were disentangled by not taking into account photon arrival
times in reconstruction. The �ndings suggested discrepancies between tabulated light
yields and light yields resulting from a full particle propagation, which could in turn lead
to systematic disagreement between the maximum likelihood estimates and the values of
the true event parameters.

For a simpli�ed simulation where photons were generated using spline tables, systematic
in�uences especially on vertex reconstruction at highest charges were much reduced. As a
result, the predictions of the likelihood-based residual estimators were relatively accurate
over the whole charge range. Also here, however, the likelihood formulation favoured event
parameters that were further away from the true values than expected, especially when
photon timing was employed.

After simulation had been further deconstructed by removing all non-Poissonian elements
such as uncertainties in hadronic light output, irregular PMT pulses or electronics e�ects, a
reconstruction that only considered detected photon numbers lead to statistical agreement
between the true and reconstructed parameter values over the whole range of charges.

In the end, a di�erent photon timing scheme, making use of equally spaced bins, was
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9. Summary and Outlook

devised. The smallest bin width of 5 ns seemed most promising, but was also most com-
putationally expensive.
In the second part, the likelihood-based residual estimator was used to perform an event

selection of νe CC events simulated with PINGU geometry V36, in order to estimate the
implications of di�erent resolutions for the neutrino mass hierarchy sensitivity. The vertex
position residual estimator was found to have discriminating power in neutrino zenith
angle and energy resolutions. After pull distribution widths deviating from one had been
corrected for, two cuts were de�ned and the resulting resolutions were parametrised for
use with the Parametric PINGU Analysis. Results implied that better resolutions resolved
degeneracies between systematic parameters such as the mixing angle θ23 and the mass
hierarchy. Furthermore, it could be shown that both the mass hierarchy signi�cance as well
as uncertainties of the mixing parameters can pro�t from a selection of well-reconstructed
events which are recombined with the rest of the sample.
There are several aspects which can be taken up in the future. For one, it would be

interesting to �nd out whether improved spline tables or di�erent photon timing schemes
can mitigate some of the problems encountered. The extension of the cascade residual
estimator presented in this work could be applied to tau or muon induced events, and an
extended mass hierarchy sensitivity analysis could be performed by taking into account all
channels. In the case of muon neutrino charged-current scattering, its hypothesis would
actually agree with the underlying event signature. It should also allow for examining
correlations between di�erent estimators; in principle, Multinest could also be able to
provide �avour identi�cation possibilities if degeneracies between the length of the track
and the energy of the cascade can be resolved.
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A. Appendix

PINGU V15 total CC neutrino energy and event charge
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Figure A.1.: Total event charge as a function of neutrino energy for νe CC MC events that
reconstructed within the �ducial volume of PINGU V15.
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A. Appendix

Pull distributions for di�erent charges

Default reconstruction scenario - vertex depth
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Figure A.2.: Gaussian �ts to the pull distributions in vertex depth z for two di�erent charge
ranges for the default Multinest reconstruction scenario.

Log-likelihood ratio for idealised simulation-reconstruction
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Figure A.3.: Scaling of the log-likelihood ratio of the idealised simulation-reconstruction loop
with default photon timing of 1 photon per bin.
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Neutrino mass hierarchy analysis

Estimator correlation
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log10(σ~x/m)

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
(σ

θ
/°

)

100

101

102

ρ=0.93

Figure A.4.: Correlation between the vertex position residual estimator σ~x and the zenith angle
residual estimator σθ for νe CC events in PINGU V36

Parametrised resolutions for use with PaPA

Figure A.5.: Double-Gaussian �ts of cosine zenith resolutions for true neutrino energies in the
range 6�8 GeV. The left panel shows the distribution of the residuals for the whole νe CC sample
at V4 cut level, whereas the sample shown in the right only consists of events that in addition
passed the 4 m cut on the corrected vertex position resolution estimator. The relative strength of
the second Gaussian amounts to 0.5. Furthermore, in the right panel, the means of both Gaussians
are �xed to zero.

79



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Bibliography

[1] M. G. Aartsen et al. �Letter of Intent: The Precision IceCube Next Genera-
tion Upgrade (PINGU)�. In: ArXiv e-prints (Jan. 2014). arXiv: 1401.2046v1
[physics.ins-det].

[2] M. G. Aartsen et al. �Determining neutrino oscillation parameters from atmospheric
muon neutrino disappearance with three years of IceCube DeepCore data�. In: ArXiv
e-prints (2014). arXiv: 1410.7227 [hep-ex].

[3] C. S. Wu et al. �Experimental Test of Parity Conservation in Beta Decay�. In: Phys.
Rev. 105 (4 Feb. 1957), pp. 1413�1415. doi: 10.1103/PhysRev.105.1413. url:
http://link.aps.org/doi/10.1103/PhysRev.105.1413.

[4] T. D. Lee and C. N. Yang. �Parity Nonconservation and a Two-Component Theory
of the Neutrino�. In: Phys. Rev. 105 (5 Mar. 1957), pp. 1671�1675. doi: 10.1103/
PhysRev.105.1671. url: http://link.aps.org/doi/10.1103/PhysRev.
105.1671.

[5] R. P. Feynman and M. Gell-Mann. �Theory of the Fermi Interaction�. In: Phys.
Rev. 109 (1 Jan. 1958), pp. 193�198. doi: 10.1103/PhysRev.109.193. url:
http://link.aps.org/doi/10.1103/PhysRev.109.193.

[6] N. G. Cooper [ed.] Los Alamos Science, Number 25: Celebrating the Neutrino. 1997.

[7] R. Davis, D. S. Harmer, and K. C. Ho�man. �Search for Neutrinos from the Sun�. In:
Phys. Rev. Lett. 20 (21 May 1968), pp. 1205�1209. doi: 10.1103/PhysRevLett.
20.1205. url: http://link.aps.org/doi/10.1103/PhysRevLett.20.
1205.

[8] K. A. Olive. �Review of Particle Physics�. In: Chin. Phys. C 38 (2014), p. 090001.

[9] V.N. Aseev et al. �An upper limit on electron antineutrino mass from Troitsk ex-
periment�. In: Phys. Rev. D84 (2011), p. 112003. doi: 10.1103/PhysRevD.84.
112003. arXiv: 1108.5034 [hep-ex].

[10] Ch. Kraus et al. �Final results from phase II of the Mainz neutrino mass search in
tritium beta decay�. In: Eur. Phys. J. C40 (2005), pp. 447�468. doi: 10.1140/
epjc/s2005-02139-7. arXiv: hep-ex/0412056 [hep-ex].

[11] K.N. Abazajian et al. �Cosmological and Astrophysical Neutrino Mass Mea-
surements�. In: Astropart. Phys. 35 (2011), pp. 177�184. doi: 10 . 1016 / j .
astropartphys.2011.07.002. arXiv: 1103.5083 [astro-ph.CO].

[12] P.A.R. Ade et al. �Planck 2013 results. XVI. Cosmological parameters�. In: Astron.
Astrophys. (2014). doi: 10.1051/0004-6361/201321591. arXiv: 1303.5076
[astro-ph.CO].

81

http://arxiv.org/abs/1401.2046v1
http://arxiv.org/abs/1401.2046v1
http://arxiv.org/abs/1410.7227
http://dx.doi.org/10.1103/PhysRev.105.1413
http://link.aps.org/doi/10.1103/PhysRev.105.1413
http://dx.doi.org/10.1103/PhysRev.105.1671
http://dx.doi.org/10.1103/PhysRev.105.1671
http://link.aps.org/doi/10.1103/PhysRev.105.1671
http://link.aps.org/doi/10.1103/PhysRev.105.1671
http://dx.doi.org/10.1103/PhysRev.109.193
http://link.aps.org/doi/10.1103/PhysRev.109.193
http://dx.doi.org/10.1103/PhysRevLett.20.1205
http://dx.doi.org/10.1103/PhysRevLett.20.1205
http://link.aps.org/doi/10.1103/PhysRevLett.20.1205
http://link.aps.org/doi/10.1103/PhysRevLett.20.1205
http://dx.doi.org/10.1103/PhysRevD.84.112003
http://dx.doi.org/10.1103/PhysRevD.84.112003
http://arxiv.org/abs/1108.5034
http://dx.doi.org/10.1140/epjc/s2005-02139-7
http://dx.doi.org/10.1140/epjc/s2005-02139-7
http://arxiv.org/abs/hep-ex/0412056
http://dx.doi.org/10.1016/j.astropartphys.2011.07.002
http://dx.doi.org/10.1016/j.astropartphys.2011.07.002
http://arxiv.org/abs/1103.5083
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5076


ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Bibliography

[13] K. Zuber. Neutrino Physics. Bristol: Institute of Physics Publishing, 2004.

[14] A. Schukraft. �A view of prompt atmospheric neutrinos with IceCube�. In: Nucl.
Phys. Proc. Suppl. 237-238 (2013), pp. 266�268. doi: 10.1016/j.nuclphysbps.
2013.04.105. arXiv: 1302.0127 [astro-ph.HE].

[15] M. G. Aartsen et al. �Development of a General Analysis and Unfolding Scheme
and its Application to Measure the Energy Spectrum of Atmospheric Neutrinos with
IceCube�. In: ArXiv e-prints (Sept. 2014). arXiv: 1409.4535v1 [astro-ph.HE].

[16] Z. Maki, M. Nakagawa, and S. Sakata. �Remarks on the Uni�ed Model of Elementary
Particles�. In: Progress of Theoretical Physics 28.5 (1962), pp. 870�880. doi: 10.
1143/PTP.28.870. eprint: http://ptp.oxfordjournals.org/content/
28/5/870.full.pdf+html. url: http://ptp.oxfordjournals.org/
content/28/5/870.abstract.

[17] C. Berger. Elementarteilchenphysik: Von den Grundlagen zu den modernen Experi-

menten. 2nd edition. Berlin Heidelberg New York: Springer Verlag, 2006.

[18] E. K. Akhmedov. �Neutrino oscillations beyond two �avors�. In: Nucl. Phys. Proc.
Suppl. 118 (2003), pp. 245�254. doi: 10.1016/S0920-5632(03)01322-7. arXiv:
hep-ph/0207342 [hep-ph].

[19] A. M. Dziewonski and D. L. Anderson. �Preliminary reference Earth model�. In:
Physics of the Earth and Planetary Interiors 25.4 (1981), pp. 297�356.

[20] E. K. Akhmedov et al. �Atmospheric neutrinos at Super-Kamiokande and parametric
resonance in neutrino oscillations�. In: Nucl. Phys. B542 (1999), pp. 3�30. doi: 10.
1016/S0550-3213(98)00825-6. arXiv: hep-ph/9808270 [hep-ph].

[21] A. Kouchner. �Next-generation atmospheric neutrino experiments�. In: Physics of the
Dark Universe 4 (2014), pp. 60�74. issn: 2212-6864. doi: http://dx.doi.org/
10.1016/j.dark.2014.09.001. url: http://www.sciencedirect.com/
science/article/pii/S2212686414000259.

[22] E. K. Akhmedov, S. Razzaque, and A. Y. Smirnov. �Mass hierarchy, 2-3 mixing
and CP-phase with Huge Atmospheric Neutrino Detectors�. In: JHEP 1302 (2013),
p. 082. doi: 10.1007/JHEP02(2013)082, 10.1007/JHEP07(2013)026.
arXiv: 1205.7071 [hep-ph].

[23] L. Schulte, M. Kowalski, and S. Böser. Evaluating PINGU Sensitivity to the Neutrino

Mass Hierarchy using the Fisher Information Matrix. May 2014. url: http://
internal.icecube.wisc.edu/reports/data/icecube/2014/05/001/
icecube_201405001_v2.pdf.

[24] J. A. Formaggio and G. P. Zeller. �From eV to EeV: Neutrino cross sections across
energy scales�. In: Rev. Mod. Phys. 84 (3 Sept. 2012), pp. 1307�1341. doi: 10.
1103/RevModPhys.84.1307. url: http://link.aps.org/doi/10.1103/
RevModPhys.84.1307.

82

http://dx.doi.org/10.1016/j.nuclphysbps.2013.04.105
http://dx.doi.org/10.1016/j.nuclphysbps.2013.04.105
http://arxiv.org/abs/1302.0127
http://arxiv.org/abs/1409.4535v1
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1143/PTP.28.870
http://ptp.oxfordjournals.org/content/28/5/870.full.pdf+html
http://ptp.oxfordjournals.org/content/28/5/870.full.pdf+html
http://ptp.oxfordjournals.org/content/28/5/870.abstract
http://ptp.oxfordjournals.org/content/28/5/870.abstract
http://dx.doi.org/10.1016/S0920-5632(03)01322-7
http://arxiv.org/abs/hep-ph/0207342
http://dx.doi.org/10.1016/S0550-3213(98)00825-6
http://dx.doi.org/10.1016/S0550-3213(98)00825-6
http://arxiv.org/abs/hep-ph/9808270
http://dx.doi.org/http://dx.doi.org/10.1016/j.dark.2014.09.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.dark.2014.09.001
http://www.sciencedirect.com/science/article/pii/S2212686414000259
http://www.sciencedirect.com/science/article/pii/S2212686414000259
http://dx.doi.org/10.1007/JHEP02(2013)082, 10.1007/JHEP07(2013)026
http://arxiv.org/abs/1205.7071
http://internal.icecube.wisc.edu/reports/data/icecube/2014/05/001/icecube_201405001_v2.pdf
http://internal.icecube.wisc.edu/reports/data/icecube/2014/05/001/icecube_201405001_v2.pdf
http://internal.icecube.wisc.edu/reports/data/icecube/2014/05/001/icecube_201405001_v2.pdf
http://dx.doi.org/10.1103/RevModPhys.84.1307
http://dx.doi.org/10.1103/RevModPhys.84.1307
http://link.aps.org/doi/10.1103/RevModPhys.84.1307
http://link.aps.org/doi/10.1103/RevModPhys.84.1307


ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Bibliography

[25] J. Beringer et al. �Review of Particle Physics�. In: Phys. Rev. D 86 (1 July 2012),
p. 010001. doi: 10.1103/PhysRevD.86.010001. url: http://link.aps.
org/doi/10.1103/PhysRevD.86.010001.

[26] D. Groom. Particle Data Group Website. Atomic and Nuclear Properties of Mate-

rials, for more than 300 materials. 2014. url: http://pdg.lbl.gov/2014/
AtomicNuclearProperties (visited on 11/27/2014).

[27] L. Rädel and C. Wiebusch. �Calculation of the Cherenkov light yield from electromag-
netic cascades in ice with Geant4�. In: Astroparticle Physics 44 (Apr. 2013), pp. 102�
113. doi: 10.1016/j.astropartphys.2013.01.015. arXiv: 1210.5140
[astro-ph.IM].

[28] M. Ackermann et al. �Optical properties of deep glacial ice at the South Pole�. In:
Journal of Geophysical Research (Atmospheres) 111, D13203 (July 2006). doi: 10.
1029/2005JD006687.

[29] J. V. Jelley. �Cerenkov radiation and its applications�. In: British Journal of Applied
Physics 6.7 (1955), pp. 227�232. url: http://stacks.iop.org/0508-3443/
6/i=7/a=301.

[30] W. Heitler. Quantum Theory of Radiation. 2nd edition. Oxford: Oxford University
Press, 1944.

[31] J. F. Carlson and J. R. Oppenheimer. In: Phys. Rev. 51 (1937).

[32] C. Wiebusch. �The Detection of Faint Light in Deep Underwater Neutrino Tele-
scopes�. PhD thesis. RWTH Aachen, 1995.

[33] M. Kowalski. On the Cherenkov light emission of hadronic and electro-magnetic cas-

cades. Aug. 12, 2002. url: http://internal.icecube.wisc.edu/reports/
amanda/data/20020803-track.pdf.

[34] T.A. Gabriel et al. �Energy dependence of hadronic activity�. In: Nuclear Instruments
and Methods in Physics Research A 338 (1994), pp. 336�347. issn: 0168-9002. doi:
http://dx.doi.org/10.1016/0168-9002(94)91317-X. url: http:
//www.sciencedirect.com/science/article/pii/016890029491317X.

[35] D.E. Groom. �Energy �ow in a hadronic cascade: Application to hadron calorimetry�.
In: Nuclear Instruments and Methods in Physics Research A 572.2 (2007), pp. 633�
653. issn: 0168-9002. doi: http://dx.doi.org/10.1016/j.nima.2006.
11.070. url: http://www.sciencedirect.com/science/article/pii/
S0168900206023965.

[36] M. Kowalski. �Search for Neutrino-Induced Cascades with the AMANDA-II Detec-
tor�. PhD thesis. Humboldt-Universität zu Berlin, 2003.

[37] IceCube Collaboration. IceCube Preliminary Design Document. 2001. url: http://
icecube.wisc.edu/icecube/static/reports/IceCubeDesignDoc.pdf.

83

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://link.aps.org/doi/10.1103/PhysRevD.86.010001
http://link.aps.org/doi/10.1103/PhysRevD.86.010001
http://pdg.lbl.gov/2014/AtomicNuclearProperties
http://pdg.lbl.gov/2014/AtomicNuclearProperties
http://dx.doi.org/10.1016/j.astropartphys.2013.01.015
http://arxiv.org/abs/1210.5140
http://arxiv.org/abs/1210.5140
http://dx.doi.org/10.1029/2005JD006687
http://dx.doi.org/10.1029/2005JD006687
http://stacks.iop.org/0508-3443/6/i=7/a=301
http://stacks.iop.org/0508-3443/6/i=7/a=301
http://internal.icecube.wisc.edu/reports/amanda/data/20020803-track.pdf
http://internal.icecube.wisc.edu/reports/amanda/data/20020803-track.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/0168-9002(94)91317-X
http://www.sciencedirect.com/science/article/pii/016890029491317X
http://www.sciencedirect.com/science/article/pii/016890029491317X
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2006.11.070
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2006.11.070
http://www.sciencedirect.com/science/article/pii/S0168900206023965
http://www.sciencedirect.com/science/article/pii/S0168900206023965
http://icecube.wisc.edu/icecube/static/reports/IceCubeDesignDoc.pdf
http://icecube.wisc.edu/icecube/static/reports/IceCubeDesignDoc.pdf


ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Bibliography

[38] R. Abbasi et al. �The design and performance of IceCube DeepCore�. In: As-

tropart. Phys. 35.10 (2012), pp. 615�624. issn: 0927-6505. doi: http://dx.doi.
org/10.1016/j.astropartphys.2012.01.004. url: http://www.
sciencedirect.com/science/article/pii/S0927650512000254.

[39] Hamamatsu Photonics. Photomultiplier Tubes. Basics and Applications. Edition 3a.
2007.

[40] The IceCube coordinate system. url: https://wiki.icecube.wisc.edu/
index.php/Coordinate_system (visited on 11/26/2014).

[41] R. Abbasi et al. �The IceCube data acquisition system: Signal capture, digitization,
and timestamping�. In: Nuclear Instruments and Methods in Physics Research A

601.3 (2009), pp. 294�316. issn: 0168-9002. doi: http://dx.doi.org/10.
1016/j.nima.2009.01.001. arXiv: 0810.4930 [physics.ins-det].

[42] G. Mie. �Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen�.
In: Annalen der Physik 330.3 (1908), pp. 377�445. issn: 1521-3889. doi: 10 .
1002/andp.19083300302. url: http://dx.doi.org/10.1002/andp.
19083300302.

[43] P. Askebjer et al. �Optical properties of the South Pole ice at depths between 0.8-km
and 1-km�. In: Science 267 (1995), pp. 1147�1150. doi: 10.1126/science.267.
5201.1147. arXiv: astro-ph/9412028 [astro-ph].

[44] A. Ishimaru. Wave Propagation and Scattering in Random Media: Single scattering

and transport theory. Wave Propagation and Scattering in Random Media. Academic
Press, 1978. url: http://books.google.de/books?id=tLsRAQAAIAAJ.

[45] M. G. Aartsen et al. �Measurement of South Pole ice transparency with the IceCube
LED calibration system�. In: Nuclear Instruments and Methods in Physics Research

A 711 (May 2013), pp. 73�89. arXiv: 1301.5361 [astro-ph.IM].

[46] P. Askebjer et al. �UV and optical light transmission properties in deep ice at the
South Pole�. In: Geophysical Research Letters 24.11 (1997), pp. 1355�1358. issn:
1944-8007. doi: 10.1029/97GL01246. url: http://dx.doi.org/10.1029/
97GL01246.

[47] S. L. Miller. �Clathrate Hydrates of Air in Antarctic Ice�. In: Science 165 (Aug.
1969), pp. 489�490.

[48] T. Ushida et al. �Refractive-index measurements of natural air hydrate crystals in
an Antarctic ice sheet�. In: Appl. Opt. 34 (Sept. 1995), pp. 5746�5749.

[49] P. B. Price, K. Woschnagg, and D. Chirkin. �Age vs depth of glacial ice at South
Pole�. In: Geophysical Research Letters 27.14 (2000), pp. 2129�2132. issn: 1944-
8007. doi: 10.1029/2000GL011351. url: http://dx.doi.org/10.1029/
2000GL011351.

[50] AHA ice model. url: https://wiki.icecube.wisc.edu/index.php/AHA_
ice_model (visited on 11/17/2014).

84

http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2012.01.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2012.01.004
http://www.sciencedirect.com/science/article/pii/S0927650512000254
http://www.sciencedirect.com/science/article/pii/S0927650512000254
https://wiki.icecube.wisc.edu/index.php/Coordinate_system
https://wiki.icecube.wisc.edu/index.php/Coordinate_system
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2009.01.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2009.01.001
http://arxiv.org/abs/0810.4930
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1126/science.267.5201.1147
http://dx.doi.org/10.1126/science.267.5201.1147
http://arxiv.org/abs/astro-ph/9412028
http://books.google.de/books?id=tLsRAQAAIAAJ
http://arxiv.org/abs/1301.5361
http://dx.doi.org/10.1029/97GL01246
http://dx.doi.org/10.1029/97GL01246
http://dx.doi.org/10.1029/97GL01246
http://dx.doi.org/10.1029/2000GL011351
http://dx.doi.org/10.1029/2000GL011351
http://dx.doi.org/10.1029/2000GL011351
https://wiki.icecube.wisc.edu/index.php/AHA_ice_model
https://wiki.icecube.wisc.edu/index.php/AHA_ice_model


ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Bibliography

[51] C. Andreopoulos et al. �The GENIE neutrino Monte Carlo generator�. In: Nuclear
Instruments and Methods in Physics Research A 614 (Feb. 2010), pp. 87�104. doi:
10.1016/j.nima.2009.12.009. arXiv: 0905.2517 [hep-ph].

[52] M.G. Aartsen et al. �Energy Reconstruction Methods in the IceCube Neutrino Tele-
scope�. In: JINST 9 (2014), P03009. doi: 10.1088/1748-0221/9/03/P03009.
arXiv: 1311.4767 [physics.ins-det].

[53] clsim module documentation. url: http://software.icecube.wisc.edu/
simulation_trunk/projects/clsim (visited on 08/26/2014).

[54] Vuvuzela source code. url: http : / / code . icecube . wisc . edu / svn /
projects/vuvuzela/ (visited on 08/26/2014).

[55] PMTResponseSimulator module documentation. url: http : / / software .
icecube . wisc . edu / simulation _ trunk / projects / DOMLauncher /
PMTRes.html (visited on 08/26/2014).

[56] R. Abbasi et al. �Calibration and characterization of the IceCube photomultiplier
tube�. In: Nuclear Instruments and Methods in Physics Research A 618 (June 2010),
pp. 139�152. doi: 10 . 1016 / j . nima . 2010 . 03 . 102. arXiv: 1002 . 2442
[astro-ph.IM].

[57] SPE Time Distribution. url: https://wiki.icecube.wisc.edu/index.
php/SPE_Time_Distribution (visited on 08/26/2014).

[58] Prepulse Data. url: https : / / wiki . icecube . wisc . edu / index . php /
Prepulse_Data (visited on 08/26/2014).

[59] Late Pulse Data. url: https://wiki.icecube.wisc.edu/index.php/
Late_Pulse_data (visited on 08/26/2014).

[60] Afterpulse Data. url: https://wiki.icecube.wisc.edu/index.php/
Afterpulse_Data (visited on 08/26/2014).

[61] DOMLauncher module documentation. url: http://software.icecube.wisc.
edu/simulation_trunk/projects/DOMLauncher/DOML.html (visited on
08/26/2014).

[62] WaveCalibrator module documentation. url: http : / / software . icecube .
wisc.edu/simulation_trunk/projects/WaveCalibrator/index.html
(visited on 08/26/2014).

[63] Digitizer baseline calibration. url: https://wiki.icecube.wisc.edu/index.
php/Digitizer_baseline_calibration (visited on 08/27/2014).

[64] Droop correction. url: https://wiki.icecube.wisc.edu/index.php/
Droop_correction (visited on 08/27/2014).

[65] C. Wendt. Droop Correction - Dual tau Model. 2006. url: http://docushare.
icecube.wisc.edu/docushare/dsweb/Get/Document-30244/Droop-
dual-tau-Zeuthen2006_wendt.pdf (visited on 08/27/2014).

85

http://dx.doi.org/10.1016/j.nima.2009.12.009
http://arxiv.org/abs/0905.2517
http://dx.doi.org/10.1088/1748-0221/9/03/P03009
http://arxiv.org/abs/1311.4767
http://software.icecube.wisc.edu/simulation_trunk/projects/clsim
http://software.icecube.wisc.edu/simulation_trunk/projects/clsim
http://code.icecube.wisc.edu/svn/projects/vuvuzela/
http://code.icecube.wisc.edu/svn/projects/vuvuzela/
http://software.icecube.wisc.edu/simulation_trunk/projects/DOMLauncher/PMTRes.html
http://software.icecube.wisc.edu/simulation_trunk/projects/DOMLauncher/PMTRes.html
http://software.icecube.wisc.edu/simulation_trunk/projects/DOMLauncher/PMTRes.html
http://dx.doi.org/10.1016/j.nima.2010.03.102
http://arxiv.org/abs/1002.2442
http://arxiv.org/abs/1002.2442
https://wiki.icecube.wisc.edu/index.php/SPE_Time_Distribution
https://wiki.icecube.wisc.edu/index.php/SPE_Time_Distribution
https://wiki.icecube.wisc.edu/index.php/Prepulse_Data
https://wiki.icecube.wisc.edu/index.php/Prepulse_Data
https://wiki.icecube.wisc.edu/index.php/Late_Pulse_data
https://wiki.icecube.wisc.edu/index.php/Late_Pulse_data
https://wiki.icecube.wisc.edu/index.php/Afterpulse_Data
https://wiki.icecube.wisc.edu/index.php/Afterpulse_Data
http://software.icecube.wisc.edu/simulation_trunk/projects/DOMLauncher/DOML.html
http://software.icecube.wisc.edu/simulation_trunk/projects/DOMLauncher/DOML.html
http://software.icecube.wisc.edu/simulation_trunk/projects/WaveCalibrator/index.html
http://software.icecube.wisc.edu/simulation_trunk/projects/WaveCalibrator/index.html
https://wiki.icecube.wisc.edu/index.php/Digitizer_baseline_calibration
https://wiki.icecube.wisc.edu/index.php/Digitizer_baseline_calibration
https://wiki.icecube.wisc.edu/index.php/Droop_correction
https://wiki.icecube.wisc.edu/index.php/Droop_correction
http://docushare.icecube.wisc.edu/docushare/dsweb/Get/Document-30244/Droop-dual-tau-Zeuthen2006_wendt.pdf
http://docushare.icecube.wisc.edu/docushare/dsweb/Get/Document-30244/Droop-dual-tau-Zeuthen2006_wendt.pdf
http://docushare.icecube.wisc.edu/docushare/dsweb/Get/Document-30244/Droop-dual-tau-Zeuthen2006_wendt.pdf


ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Bibliography

[66] C. Roucelle. Documentation for the DOMcalibrator module (o�ine-software release

V01-11-02). Sept. 10, 2007.

[67] Wavedeform module documentation. url: http://software.icecube.wisc.
edu/simulation_trunk/projects/wavedeform (visited on 08/26/2014).

[68] N. Whitehorn. �A Search for High-Energy Neutrino Emission from Gamma-Ray
Bursts�. PhD thesis. University of Wisconsin-Madison, 2012.

[69] M. Usner. �Search for Neutrino-induced Cascades in IceCube�. Master's thesis.
Rheinische Friedrich-Wilhelms-Universität Bonn, 2012.

[70] G. Cowan. Statistical Data Analysis. 1st edition. Oxford New York: Oxford University
Press, 1998.

[71] D. S. Sivia and J. Skilling. Data Analysis: A Bayesian Tutorial. 2nd edition. Oxford
New York: Oxford University Press, 2006.

[72] S. Brandt. Data Analysis. 3rd edition. New York Berlin Heidelberg: Springer-Verlag,
1997.

[73] F. James. Statistical Methods in Experimental Physics. 2nd edition. World Scienti�c,
2006.

[74] J. v. Santen. �Markov-Chain Monte-Carlo Reconstruction for cascade-like events in
IceCube�. Diploma thesis. Humboldt-Universität zu Berlin, 2010.

[75] Millipede source code. url: http : / / code . icecube . wisc . edu / svn /
projects/millipede/ (visited on 08/26/2014).

[76] J. Lundberg et al. �Light tracking through ice and water - Scattering and absorption
in heterogeneous media with Photonics�. In: Nuclear Instruments and Methods in

Physics Research Section A 581.3 (2007), pp. 619�631. doi: 10.1016/j.nima.
2007.07.143. arXiv: 0702108v2 [astro-ph].

[77] N. Whitehorn, J. van Santen, and S. Lafebe. �Penalized Splines for Smooth Repre-
sentation of High-dimensional Monte Carlo Datasets�. In: Computer Physics Com-
munications 184 (2013), pp. 2214�2220. doi: 10.1016/j.cpc.2014.04.008.
arXiv: 1301.2184.

[78] F. Feroz, M.P. Hobson, and M. Bridges. �MultiNest: an e�cient and robust Bayesian
inference tool for cosmology and particle physics�. In: Mon. Not. Roy. Astron. Soc.

398 (2009), pp. 1601�1614. doi: 10.1111/j.1365-2966.2009.14548.x. arXiv:
0809.3437 [astro-ph].

[79] F. Feroz et al. �Importance Nested Sampling and the MultiNest Algorithm�. In:
ArXiv e-prints (Jan. 2014). arXiv: 1306.2144v2 [astro-ph.IM].

[80] Multinest source code. url: http://code.icecube.wisc.edu/projects/
icecube/browser/IceCube/sandbox/multinest_icetray (visited on
08/26/2014).

[81] K. Wiebe. Resca source code. url: http : / / code . icecube . wisc . edu /
projects/icecube/browser/IceCube/sandbox/kwiebe/resca (visited
on 08/26/2014).

86

http://software.icecube.wisc.edu/simulation_trunk/projects/wavedeform
http://software.icecube.wisc.edu/simulation_trunk/projects/wavedeform
http://code.icecube.wisc.edu/svn/projects/millipede/
http://code.icecube.wisc.edu/svn/projects/millipede/
http://dx.doi.org/10.1016/j.nima.2007.07.143
http://dx.doi.org/10.1016/j.nima.2007.07.143
http://arxiv.org/abs/0702108v2
http://dx.doi.org/10.1016/j.cpc.2014.04.008
http://arxiv.org/abs/1301.2184
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/0809.3437
http://arxiv.org/abs/1306.2144v2
http://code.icecube.wisc.edu/projects/icecube/browser/IceCube/sandbox/multinest_icetray
http://code.icecube.wisc.edu/projects/icecube/browser/IceCube/sandbox/multinest_icetray
http://code.icecube.wisc.edu/projects/icecube/browser/IceCube/sandbox/kwiebe/resca
http://code.icecube.wisc.edu/projects/icecube/browser/IceCube/sandbox/kwiebe/resca


ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Bibliography

[82] W. Winter. �Neutrino mass hierarchy determination with IceCube-PINGU�. In: Phys.
Rev. D88.1 (2013), p. 013013. doi: 10.1103/PhysRevD.88.013013. arXiv:
1305.5539 [hep-ph].

[83] T. Neunhö�er. �Die Entwicklung eines neuen Verfahrens zur Suche nach kosmischen
Neutrino-Punktquellen mit dem AMANDA-Neutrinoteleskop�. PhD thesis. Johannes
Gutenberg-Universität Mainz, 2003.

[84] L. Demortier and L. Lyons. "Everything you always wanted to know about pulls".
CDF note 5776. Aug. 2002. url: http://physics.rockefeller.edu/luc/
technical_reports/cdf5776_pulls.pdf.

[85] E. Middell. �Reconstruction of Cascade-Like Events in IceCube�. Diploma thesis.
Humboldt-Universität zu Berlin, 2008.

[86] D. Góra et al. Studies on Millipede. Apr. 29, 2014. url: http://internal.
icecube.wisc.edu/reports/data/icecube/2014/04/001/icecube_
201404001_v1.pdf.

[87] D. Góra. Personal communication.

[88] M. Blennow et al. �Quantifying the sensitivity of oscillation experiments to the
neutrino mass ordering�. In: ArXiv e-prints (2013). arXiv: arXiv:1311.1822v1
[hep-ph].

87

http://dx.doi.org/10.1103/PhysRevD.88.013013
http://arxiv.org/abs/1305.5539
http://physics.rockefeller.edu/luc/technical_reports/cdf5776_pulls.pdf
http://physics.rockefeller.edu/luc/technical_reports/cdf5776_pulls.pdf
http://internal.icecube.wisc.edu/reports/data/icecube/2014/04/001/icecube_201404001_v1.pdf
http://internal.icecube.wisc.edu/reports/data/icecube/2014/04/001/icecube_201404001_v1.pdf
http://internal.icecube.wisc.edu/reports/data/icecube/2014/04/001/icecube_201404001_v1.pdf
http://arxiv.org/abs/arXiv:1311.1822v1
http://arxiv.org/abs/arXiv:1311.1822v1


ic
e
c
u
b
e
/2

0
15

0
6
0
0
1



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

List of Figures

2.1. Atmospheric neutrino �ux spectrum . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Normal and inverted neutrino mass hierarchy . . . . . . . . . . . . . . . . . 7

2.3. Coherent elastic forward scattering of neutrinos in matter . . . . . . . . . . 8

2.4. Neutrino oscillation probabilities for di�erent trajectories through the Earth 9

3.1. Neutrino cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Longitudinal development of an electromagnetic cascade . . . . . . . . . . . 15

3.3. Angular distribution of Cherenkov light emitted by an electromagnetic cascade 16

3.4. PINGU V36 and DeepCore geometry . . . . . . . . . . . . . . . . . . . . . . 19

3.5. The Digital Optical Module (DOM) . . . . . . . . . . . . . . . . . . . . . . 21

3.6. Signal processing circuitry on the DOM mainboard . . . . . . . . . . . . . . 21

3.7. E�ective scattering and absorption parameters in Antarctic ice . . . . . . . 23

4.1. PMT transit time spread and SPE charge response . . . . . . . . . . . . . . 27

4.2. True pulses, digitised waveforms and pulses unfolded by Wavedeform . . . 29

5.1. Asymptotic con�dence regions for Gaussian likelihood . . . . . . . . . . . . 34

6.1. Display of νe CC events in PINGU . . . . . . . . . . . . . . . . . . . . . . . 36

6.2. Poisson distribution, true PMT charge distribution and an approximation
of the latter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3. Individual contributions to the full log-likelihood as a function of visible
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4. Photon arrival time distributions from spline tables and direct simulation . 43

7.1. Log-likelihood ratios of the default Multinest reconstruction scenario . . . . 47

7.2. True residuals and residual estimates for vertex depth and neutrino zenith . 48

7.3. Gaussian �ts to pull distributions . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4. Charge-dependence of pull distribution parameters . . . . . . . . . . . . . . 50

7.5. Interaction vertex and shower maximum position resolution . . . . . . . . . 51

7.6. Log-likelihood ratio of single-cascade reconstruction without photon timing 53

7.7. Log-likelihood ratio after exclusion of DOMs near interaction vertex . . . . 53

7.8. Median log-likelihood ratios of di�erent reconstructions of νe CC events
simulated using tabulated light yields . . . . . . . . . . . . . . . . . . . . . . 54

7.9. True residuals and error estimates for vertex depth and neutrino zenith for
a simulation using spline tables . . . . . . . . . . . . . . . . . . . . . . . . . 56

89



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

List of Figures

7.10. Log-likelihood ratio for ideal simulation-reconstruction loop without photon
timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.11. Mean reduction of the likelihood at the bounds of the one-sigma con�dence
interval for true cascade energy . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.12. Asymmetry of the likelihood maximum in energy . . . . . . . . . . . . . . . 59
7.13. True residuals and error estimates for cascade zenith angle and visible energy

for an idealised simulation-reconstruction loop . . . . . . . . . . . . . . . . . 60
7.14. Pull distribution parameters for cascade zenith angle and visible energy . . 60
7.15. Constant photon number timing scheme . . . . . . . . . . . . . . . . . . . . 61
7.16. Log-likelihood ratios of a photon timing scheme that makes use of equally

spaced bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.1. Parametric PINGU Analysis (PaPA) simulation �ow chart . . . . . . . . . . 64
8.2. True residuals and residual estimates for vertex depth and neutrino zenith

for νe CC events in PINGU V36 . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.3. Pull distribution parameters for vertex depth and neutrino zenith . . . . . . 66
8.4. Vertex position residuals and estimates after correction for pull-width devi-

ation from one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.5. Cumulative distributions of corrected and uncorrected vertex position resid-

ual estimators and cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.6. Cut e�ciencies for simple cuts on the vertex resolution estimator σ~x . . . . 68
8.7. Vertex position, zenith angle and fractional energy resolutions of the sample

at V4 cut level and of two samples passing the quality cuts . . . . . . . . . 69
8.8. NMH signi�cance as a function of PINGU livetime for di�erent data sets . . 72
8.9. Uncertainties of di�erent neutrino mixing parameters as a function of

PINGU livetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1. νe CC event charge vs neutrino energy . . . . . . . . . . . . . . . . . . . . . 77
A.3. Log-likelihood ratio of idealised simulation-reconstruction loop with default

timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.4. Correlation between vertex position and zenith angle residual estimators for

νe CC events in PINGU V36 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.5. Parametrised cosine zenith resolutions in the range 6�8 GeV for use with

PaPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

90



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

List of Tables

8.1. Uncertainties and NMH impacts of systematic parameters after 3 years of
detector livetime for νe CC events at V4 cut level . . . . . . . . . . . . . . . 71

8.2. Uncertainties and NMH impacts of systematic parameters after 3 years of
detector livetime for νe CC events passing quality cut 1 . . . . . . . . . . . 72

91



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Danksagung

Ohne die Unterstützung einer Vielzahl von Personen wäre diese Arbeit nicht möglich gewe-
sen.

Zunächst möchte ich deshalb Herrn Prof. Dr. Marek Kowalski meine Dankbarkeit dafür
aussprechen, dass er mir die Gelegenheit gab, in einer solch vielfältigen Gruppe und einem
solch dynamischen Umfeld zu forschen. Ich bin sehr froh über die Erfahrungen, die ich
etwa auf dem IceCube-Bootcamp oder dem Kollaborationsmeeting in Genf machen durfte.

Allen ehemaligen Mitgliedern sowie "Noch-Bonnern" unserer Arbeitsgruppe gilt mein
Dank für die schöne Zusammenarbeit. Ein herzliches Dankeschön richten möchte ich im
Speziellen an Lukas Schulte für all seine Hilfe bei Fragen zu PINGU und PaPA, an Prof.
Dr. Sebastian Böser und Marcel Usner für ihre alles andere als selbstverständliche Unter-
stützung in vielerlei Hinsicht, zuletzt sogar aus der Distanz, sowie an Markus Voge, ohne
dessen Einsatz ich bei einigen Softwarefragen aufgeschmissen gewesen wäre.

Nicht vergessen möchte ich an dieser Stelle auch Herrn Prof. Dr. Jochen Dingfelder für
seine Bereitschaft, das Zweitgutachten zu übernehmen, herzlich zu danken.

Zu guter Letzt geht noch ein riesengroÿes Dankeschön an meine Familie, ohne deren Ver-
ständnis und kontinuierliche Unterstützung mein Studium gar nicht erst möglich gewesen
wäre.



ic
e
c
u
b
e
/2

0
15

0
6
0
0
1

Erklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Bonn, den 8. Dezember 2014 Thomas Ehrhardt

Declaration

I hereby declare that this thesis was formulated by myself and that no sources or tools
other than those cited were used.

Bonn, December the 8th 2014 Thomas Ehrhardt


	Introduction
	Neutrino Mass Hierarchy and Oscillations of Atmospheric Neutrinos
	Atmospheric neutrinos
	Vacuum neutrino oscillations
	Matter effect dependence on neutrino mass hierarchy
	Measurement of the neutrino mass hierarchy asymmetry

	Neutrino Detection in Ice
	Interaction cross sections of neutrinos at GeV energies
	Ionisation, bremsstrahlung and pair production
	Ionisation by heavy particles
	Photon and electron energy loss

	Cherenkov radiation
	Modelling of particle showers
	Electromagnetic cascades
	Hadronic cascades

	The IceCube detector and its low-energy extension PINGU
	Detector layout
	Data acquisition
	Photon propagation in Antarctic ice


	Simulation and Low-Level Reconstruction
	Event generation
	Particle propagation
	Detector simulation
	First reconstruction

	Parameter Estimation and Likelihood Concepts
	Bayes' theorem
	Maximum likelihood estimation

	Event Reconstruction in PINGU
	Cascade, track and hybrid event hypotheses
	Maximum likelihood reconstruction
	Poisson likelihood
	Photospline tables
	Multinest

	Semi-analytic estimation of reconstruction residuals
	Cascade resolution estimator
	Extension to hybrid reconstruction


	Multinest Cascade Reconstruction Studies
	Default reconstruction scenario
	Adaptation of the Multinest truth hypothesis to cascades
	Performance of the hybrid residual estimator

	Single cascade reconstruction
	Deviations between simulated and modelled detector response
	No photon arrival time binning

	Idealised simulation using spline tables
	Removal of PMT effects and uncertainties in hadronic light output

	Photon timing schemes

	Application to Neutrino Mass Hierarchy Sensitivity
	Parametric PINGU Analysis
	Data set
	Event selection and resolutions
	Systematics and significances

	Summary and Outlook
	Appendix
	Bibliography
	List of Figures
	List of Tables

