

Gen2, detector R&D and drilling

Albrecht Karle

Design studies

Investigation of geometries ongoing.
Initial idea: extend from

IceCube.

Configuration shown here: 96 strings, 240m spacing Surface area: ~5 km^2

Volume: 5 * 1.3 = 6.5 km^3

Extending the region of ice to instrument with DOMs

- Bedrock estimated depth 2750m – 2850m
- 150 m to 200 m of very clear and usable ice below IceCube (need safety distance from bedrock)
- 100 m of good ice above

→ Can make instrumented region 250 to 300m longer.

Next-Generation DOM Overall Gen2 DOM Design

OFF OF THE BASELINE

The multi-PMT Optical Module (mDOM)

Features

- 14 inch diameter
- 24× 3 inch PMTs
- 2× effective area of standard DOM
- 4π uniforme acceptance
- Directional sensitivity
- Local coincidences

Today update on

- Pressure vessel
- Electronics development
- Simulation

R&D on photodetector modules

WOM: Wavelength shifting Optical Module

Features

large collection area

low noise rate (few Hz)

Ice Absorption vs wavelength

Ackermann et al.(2006), Journal of Geophysical Research (Atmospheres), 111, D13203

Next Steps: Prototype with mDOM PMTs

Outline of D-EGG updates

Update on glass

- In the previous slides (before August), referenced transmittance number was incorrect, please reference updated ones (e.g. Lu's slides).
- However, when we convolute PMT QE, the results are unchanged since PMT's glass cut off point unchanged

DOM Readout (IceCube+IceTop)

DOM Readout (Gen2 HEA)

Gen2 DOMs + Gen2 field hubs, fiber to ICL

ICECUBE GEN2 DRILL (EHWD-G2)

EHWD-G2

Concept 2015

- Water storage and filtration
- Water pumping and heating
- Electricity generation
- Drill system hub
- Moves every ~7 holes

WD-G2 Overview

Condensed Tower Operations Site

- Deep drilling ops
- Deployment ops
- 1 big hose reel
- 2 sets of tower and reel assemblies

17

Moves every hole

- Rigid deck on top of air bladders on top of PE panels
- Far superior to ski-based traverse designs
- In active development for high-payload traverses in Antarctic and Greenland
- Consult with expert Jim Lever, CRREL: EHWD-G2 ARCS-based concept is within feasible envelope and a "good idea"

EHWD-G2: Preliminary Cost Estimate (Drill Build)

Equipment	\$ 11M
Labor	\$ 9M
Total	\$ 20M

Gen2 Power

Auer, Cherwinka, DuVernois, Haugen, Karle, Kelley, Laundrie, & Sandstrom UW-WIPAC & PSL

IceCube Bottoms Up Power

Component	Power / ea. (W)	Quantity	Total power (kW)
DOMs	5.7	5404	30.6
DOMHubs	128	97	12.4
Core servers	200	8	1.6
Data Acquisition and Control servers	250	6	1.5
Monitoring / Verification	200	5	1.0
Processing / Filtering master	270	1	0.27
Processing / Filtering slaves	300	20	6.0

Table 1: Power usage of key IceCube components. Total power usage is approximately 53 kW. Figures include efficiency and transmission losses.

Electrical power

- ICL currently consumes 63kW (maybe!)
- Aim for Gen2 DOM @ <2W/each
- Pre-filter part of DAQ will be similar
- So Gen2 is 40-50kW additional
- Benefit in not extracting that heat from hubs at top of strings, computing upgrades...
- Solar power, better HVAC, better transformers, coupled to station power upgrades, possible purchase of power for station...