Multi-messenger astronomy:

The key to high energy (astro)physics with neutrinos

E. Waxman Weizmann Institute

High energy v's: A new window

MeV v detectors:

- Solar & SN1987A v's
- Stellar physics (Sun's core, SNe core collapse)
- v physics

>0.1 TeV v detectors:

- Extend v horizon to extra-Galactic scale
 [MeV v detectors limited to local (Galactic) sources
 10kt @ 1MeV→1Gton @ TeV , σ_{TeV}/σ_{MeV}~10⁶]
- Study "Cosmic accelerators": $p\gamma$, $pp \rightarrow \pi's \rightarrow \nu's$
- v physics

Cosmic accelerators:

- Open questions \rightarrow Prime scientific motivation
- Observed properties \rightarrow Detector characteristics

CRs and their sources: Open Questions

Open Qs: I. The origin of CRs

Cosmic-ray E [GeV]

Are SNRs the low E CR sources?

So far, no clear evidence.
 Electromagnetic observations- ambiguous.

E.g.: " π decay signature" [Ackermann et al. 13]:

UHE, >10¹⁰GeV, CRs

Open Qs: II. UHE Composition

Auger 2010

HiRes 2010 (& TA 2011)

Open Qs: II. UHE Composition

[*Possible acceptable solution?, Auger collaboration 13]

UHE: Energy production rate & spectrum

20

20.5

[Allard 12]

Open Qs: III. Where is the G-XG transition?

@ E<10¹⁸eV ?

 $\epsilon^{2}(dQ/d\epsilon) = Const \rightarrow @ E \sim 10^{19} eV$

[Katz & EW 09]

- Fine tuning
- Inconsistent with Fermi's XG γ (<1TeV) flux

[Gelmini 11]

Open Qs: IV. Source physics challenges

- Electromagnetic acceleration in astrophysical sources requires $L>L_B> 10^{14} L_{Sun} (\Gamma^2/\beta) (\epsilon/Z 10^{20} eV)^2 erg/s$ [Lovelace 76; EW 95, 04; Norman et al. 95]
- GRB: $10^{19}L_{Sun}$, $M_{BH} \sim 1M_{sun}$, $M \sim 1M_{sun}/s$, $\Gamma \sim 10^{2.5}$ AGN: $10^{14}L_{Sun}$, $M_{BH} \sim 10^{9}M_{sun}$, $M \sim 1M_{sun}/yr$, $\Gamma \sim 10^{1}$
- No steady sources at d<d_{GZK} \rightarrow Transient Sources (AGN flares?)

UHE: Do we learn from (an)isotropy?

UHE: Do we learn from (an)isotropy?

• Anisotropy @ 98% CL; Consistent with LSS

[Kotera & Lemoine 08; Abraham et al. 08... Oikonomou et al. 13]

 Anisotropy of Z at 10^{19.7}eV implies Stronger aniso. signal (due to p) at (10^{19.7}/Z) eV Not observed → No high Z at 10^{19.7}eV

[Lemoine & EW 09]

UHECR experiments: prospects?

- Unlikely to identify the sources.
- Composition?

v astronomy to the rescue

HE v: UHECR bound

- $p + \gamma \rightarrow N + \pi$ $\pi^{0} \rightarrow 2\gamma$; $\pi^{+} \rightarrow e^{+} + \nu_{e} + \nu_{\mu} + \overline{\nu_{\mu}}$
- → Identify UHECR sources Study BH accretion/acceleration physics
- For all known sources, $\tau_{\gamma p} <=1$:

$$\varepsilon_{\nu}^{2} \frac{dj_{\nu}}{d\varepsilon_{\nu}} \leq \Phi_{\rm WB} \equiv 10^{-8} \zeta \left(\frac{\varepsilon^{2} dQ / d\varepsilon}{10^{44} \, {\rm erg/Mpc^{3}yr}} \right) \frac{{\rm GeV}}{{\rm cm}^{2} {\rm s} \, {\rm sr}} \qquad {}_{\rm Bahcall \& EW \, 01]}$$
$$\zeta = 1, 5 \quad {\rm for} \quad f(z) = 1, (1+z)^{3}$$

• If X-G p's:
$$\varepsilon_{\nu}^{2} \frac{dj_{\nu}}{d\varepsilon_{\nu}} (10^{19} \text{eV}) = \Phi_{\text{WB}}$$

[Berezinsky & Zatsepin 69]

 \rightarrow Identify primaries, determine f(z)

Bound implications: v experiments

Consistent with Isotropy and with $v_e:v_{\mu}:v_{\tau}=1:1:1$ (π deacy + cosmological prop.).

Chris Weaver-April APS Meeting 2014

IceCube's detection: Implications

- Unlikely Galactic: $\epsilon^2 \Phi_{\gamma} \sim 10^{-7} (E_{0.1 \text{TeV}})^{-0.7} \text{GeV/cm}^2 \text{s sr [Fermi]}$ $\rightarrow \epsilon^2 \Phi_{\gamma} \sim 10^{-9} (E_{0.1 \text{PeV}})^{-0.7} \text{GeV/cm}^2 \text{s sr} \ll \Phi_{\text{WB}}$
- DM decay?

The coincidence of 50TeV<E<2PeV v flux, spectrum (& flavor) with the WB bound is unlikely a chance coincidence.

XG distribution of sources,

 $\begin{aligned} & \epsilon^{2}(dQ/d\epsilon)_{PeV-EeV} \sim \epsilon^{2}(dQ/d\epsilon)_{>10EeV}, \tau_{\gamma p(pp)} > ~1 \quad [``Calorimeters''] \\ & Or: \\ & \epsilon^{2}(dQ/d\epsilon)_{PeV-EeV} >> \epsilon^{2}(dQ/d\epsilon)_{>10EeV}, \tau_{\gamma p(pp)} <<1 \\ & \& \ Coincidence \ over \ a \ wide \ energy \ range. \end{aligned}$

• $\epsilon^2(dQ/d\epsilon) \sim \epsilon^0$ implies: p, G-XG transition at ~10¹⁹eV.

Context

Chris Weaver-April APS Meeting 2014

π production: p/A-p/ γ

- $\pi \text{ decay} \rightarrow \nu_e: \nu_\mu: \nu_\tau = 1:2:0 \text{ (propagation)} \rightarrow \nu_e: \nu_\mu: \nu_\tau = 1:1:1$
- $p(A)-p: \varepsilon_v/\varepsilon_p \sim 1/(2\times 3\times 4) \sim 0.04 \ (\varepsilon_p \rightarrow \varepsilon_A/A);$
 - IR photo dissociation of A does not modify $\Gamma;$
 - Comparable particle/anti-particle content.
- p(A)-γ: ε_ν/ε_p~ (0.1-0.5)x(1/4)~0.05;
 - Requires intense radiation at ε_{γ} >A keV;
 - Comparable particle/anti-particle content,

 v_e excess if dominated by Δ resonance (dlog n_y/dlog ϵ_y <-1).

[Spector, EW & Loeb 14]

Some comments RE next steps

- The most natural explanation of Isotropic, ν_e:ν_μ:ν_τ=1:1:1, φ~φ_{WB} at @ TeV—2PeV
- Is: UHE CRs are p's, produced by
 - XG sources with $\epsilon^2(dQ/d\epsilon)$ ~const. from ~PeV to >10EeV,
 - residing in "calorimeters" (starbursts?).
 - G/XG transition @ ~10EeV.

($\pi^0 \gamma$'s cascade to <0.1TeV, consistent w/Fermi's limit).

- The number of events provided by IceCube (~1/yr @ E>1 PeV, ~10/yr @ E>0.1PeV) will not be sufficient for an accurate determination of spectrum, flavor ratio and (an)isotropy.
- An (independent) confirmation of {XG p @ UHE, G/XG transition @ 10 EeV} will be provided by the detection of GZK v's.

The key next step: EM source identification

- Identify >10PeV CR sources;
 - v & EM observations will enable us to resolve key open Qs in the accelerators' physics (BH jets, particle acceleration, collisionless shocks...), determine UHECR source identity.
- Fundamental/v physics

 $\rightarrow \tau$ appearance

٠

- $\pi \operatorname{decay} \rightarrow v_e: v_\mu: v_\tau = 1:2:0 \quad (Osc.) \rightarrow v_e: v_\mu: v_\tau = 1:1:1$
 - [Learned & Pakvasa 95; EW & Bahcall 97]
- GRBs: ν-γ timing (10s over Hubble distance)
 → LI to 1:10¹⁶; WEP to 1:10⁶ a
 * Understanding the source w/ EM crucial

(e.g. strong B may lead to $v_e: v_\mu: v_\tau = 1:2:2$ @ high E [Kashti & EW 05])

Optimistic (>100's of v's with flavor identification): Constrain flavor mixing, new phys. [Blum, Nir & EW 05; Winter 10; Pakvasa 10]

Identifying the sources

- The angular resolution of v-"telescopes", ~1deg or worse, will not allow one to identify cosmologically distributed sources; Multiple events will constrain L_v (but will not identify).
- Steady UHECR sources are unlikely detectable: A_{effective}(10¹⁴eV v~10⁻⁴km²)~10^{-7.5} A_{effective}(10¹⁹eV CR~10^{3.5}km²) → Not detectable in v's unless L_v>>100L_{CR}, which Cannot be the case since Q_{CR}~Q_v.
- The only hope is to associate a v with an EM transient. Luckily, UHECR sources must be bright transients.
 Required: Wide field EM monitoring, and Real time alerts for follow-up of high E v events.
- Note: Φ_{ν} (source) may be $\langle \Phi_{\nu}$ (calorimeter) $\Phi_{WB} [\Phi_{\nu}(GRB) \sim 0.1 \Phi_{WB}]$, P(nearby source for efficient follow up) $\sim A^{3/2}$.

IceCube's GRB limits

 ${}^{2}{}^{2}\Phi_{v}$ (GeV cm ${}^{-2}$ s ${}^{-1}$ sr ${}^{-1}$)

- No v's associated with ~200 GRBs (~2 expected).
- IC analyses overestimate GRB flux predictions, and ignore model uncertainties.
- IC is achieving relevant sensitivity.

The cosmic ray spectrum

[From Helder et al., SSR 12]

The cosmic ray generation spectrum

What is required for the next stage of the v astronomy revolution

- Significantly (x10) larger effective A/V @ E>~0.1 PeV
 → Accurate spectrum, flavor content, (an)isotropy .
- Adequate sensitivity for detecting the ~10EeV GZK v's.
- EM association- Bright transients are the prime targets.
 Via: Wide field EM monitoring, and
 Real time alerts for follow-up of high E v events.
- Combined v & EM observations will enable us to
 - Identify the CR (UHE & G-CR) sources,
 - Resolve open "cosmic-accelerator" physics Qs (related to BH-jet systems, particle acc., rad. mechanisms),
 - Constrain v physics, LI, WEP.