

Search for extraterrestrial neutrino-induced cascades using IceCube 79-strings

THE ICECUBE COLLABORATION¹

¹See special section in these proceedings

mlesiak-bzdak@icecube.wisc.edu

Abstract: IceCube, a cubic kilometer detector at the South Pole, is the largest neutrino telescope currently taking data. Utilizing the transparent ice of Antarctica as a detection medium, IceCube digital optical sensors observe Cherenkov radiation from secondary particles produced in neutrino interactions inside or near the detector. Charged current v_{μ} interactions create muon tracks, while charged current v_{e} interactions, and neutral current interactions of all flavors initiate electromagnetic and hadronic showers (cascades). The background coming from atmospheric muons and muon bundles is many orders of magnitude larger than the cascade signal and makes it difficult to observe cascades. However, cascades have better energy resolution and lower atmospheric background compared to track-like events. The energy spectrum of extraterrestrial neutrinos is expected to be harder than that of atmospheric neutrinos. Thus using cascade events to search for a hardening of the energy spectrum is advantageous compared to using muon tracks. The search for extraterrestrial neutrino-induced cascades with energies in the tens of TeV to a few PeV neutrino energy range using improved reconstruction methods will be presented. The analysis uses 317 days of livetime of the data taken from May 2010 to May 2011 when 79 IceCube strings were operational. The analysis method and new results from the fully unblinded dataset will be presented.

Corresponding authors: Mariola Lesiak-Bzdak² and Achim Stößl³

² Department of Physics and Astronomy, Stony Brook University. Stony Brook, NY 11794-3800

³ DESY, Platanenallee 6, 15738 Zeuthen, Germany

Keywords: IceCube, Neutrino, Cascades, Diffuse

1 Introduction

2

4

5

6

8

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Extraterrestrial neutrinos, anticipated to be produced to-³⁵ gether with cosmic rays, might provide information about ³⁶ the mechanism of cosmic ray production and help to unveil ³⁷ cosmic ray sources. Although neutrino fluxes from such ³⁸ sources could be too low to be measured individually, an ³⁹ integrated flux over all sources might be possible to detect ⁴⁰ with IceCube [1], a cubic kilometer scale neutrino telescope ⁴¹ located at the geographic South Pole. Incoming neutrinos ⁴² interact mostly via deep-inelastic nucleon scattering and ⁴³ produce showers of secondary charged particles. Having ⁴⁴ relativistic velocities, these particles produce Cherenkov ⁴⁵ light that is detected by Digital Optical Modules (DOMs). ⁴⁶

Neutrino-nucleon reactions are induced by all neutrino ⁴⁷ flavors via neutral current (NC) or charged current (CC) ⁴⁸ interactions. In charged current reactions the charged lepton ⁴⁹ is produced, which carries on average 50% (for $E_{\rm v} \sim 10^{50}$ GeV) to 80% (at high energies) of the neutrino energy; ⁵¹ the remainder of the energy is transferred to the nuclear ⁵² target. Depending on the charged lepton created in CC ⁵³ reactions, neutrino flavor specific hit-patterns might be ⁵⁴ observed in the detector which allow the identification of the ⁵⁵ incoming neutrino flavor. Charged current ν_{μ} interactions ⁵⁶ create track-like hit patterns while CC ν_{e} reactions produce ⁵⁷ an electromagnetic and hadronic cascade which yields a ⁵⁸ spherical hit-pattern. The typical cascade analysis searches ⁵⁹ for ν_{e} and ν_{τ} from CC and all neutrino flavors from NC ⁶⁰ interactions.

A previous cascade analysis searching for an astrophysical neutrino flux in IceCube with 22-strings instrumented ⁶¹ [2] set a limit of 3.6×10^{-7} GeV· sr⁻¹s⁻¹cm⁻² at 90% C.L.₆₂ on E^{-2} astrophysical neutrinos (assuming a 1:1:1 flavor ra-₆₃ tio) with 90% of events in the energy range between 24 TeV ₆₄

to 6.6 PeV. Another IceCube cascade analyses looking for an extraterrestrial neutrino signal using 40 strings obtained preliminary results [3] and set a limit at 90% confidence level on an astrophysical neutrino flux of 9.5×10^{-8} GeV· sr⁻¹s⁻¹cm⁻² with 90% of events in the energy range between 89 TeV to 21 PeV [4]. Preliminary cascade results using the 59-string configuration of IceCube were recently obtained and are presented at this conference [5].

In the recent 79- and 86-string IceCube detector, searches for extremely-high energy (EHE) neutrinos from all flavors from CC and NC interactions, two neutrino-induced cascade events at energies of 1 PeV were observed [6]. As a follow-up analysis, an all-sky search for all flavor neutrino events from CC and NC interactions with energies $E_{\nu} > 100$ TeV and neutrino first interaction well contained in the 79-and 86-string IceCube detector, was performed and the preliminary results are presented in these proceedings [7].

The analysis described here was developed using Monte Carlo simulation and searched for an E^{-2} astrophysical neutrino-induced cascade flux within IceCube with 79 strings instrumented. In these proceedings, we present all flavor sensitivity using high-energy contained cascade events in the IceCube detector. We also discuss adding partially contained events, to increase the effective volume. The neutrino energy range in this analysis is between 44 TeV and 7.7 PeV.

2 Data sample

The data used in this analysis were collected from May 2010 to May 2011 with 79 operational strings of IceCube. The analysis was performed as a blind analysis, the selection

criteria to reject the background were developed using 10% of the data ("burnsample"). This burnsample consists of data uniformly distributed over the year to avoid biases in muon background rate due to seasonal variations. The burnsample livetime was 33 days. The numbers presented here are based on the remaining 90% of the data, 317 days.

The main background for a search for cascade-like events comes from cosmic ray muons with a faint track and a single catastrophic energy loss from a bremsstrahlung. The background of atmospheric muon events was simulated with the air-shower program CORSIKA [8]. The main goal was to simulate high energy muons that radiate bremsstrahlung secondaries with energies that can mimic cascade events. In this analysis, the CORSIKA background simulation generated for the primary cosmic ray energy higher than 30 TeV per nucleon was used. A sample of 300 days of atmospheric muon events in the energy range above 30 TeV per nucleon was generated.

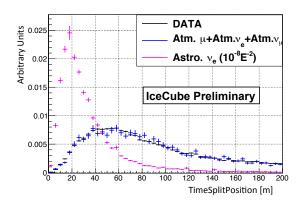
The signals in this analysis are v_e and v_τ from CC and all neutrino flavors cascades from NC interactions. The all flavor neutrino events were simulated with the neutrino generator ANIS [9] for energies from 1 TeV to 1 EeV at the surface of the Earth with E^{-2} energy spectrum. Equal amounts of v and \bar{v} was produced. IceCube does not distinguish v from \bar{v} and in this paper v denotes the sum of v and \bar{v} . In this analysis we used the flux normalization of signal events of

$$\Phi_{model} = 1.0 \times 10^{-8} (E/GeV)^{-2} GeV^{-1} s^{-1} sr^{-1} cm^{-2}$$
.

The background from atmospheric neutrinos was esti¹³⁰ mated assuming the conventional [10] and prompt [11] flux¹³¹ contributions.

3 Analysis

gg


3.1 Cascade reconstruction variables

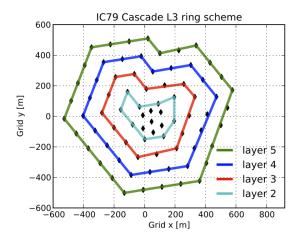
To isolate the cascade signal from muon background, dif¹³⁷ ferent selection criteria were applied. Among these were¹³⁸ simple quality criteria like the specific topology of cascade¹³⁹ like events, the development of the hit pattern in time, as¹⁴⁰ well as causal and likelihood criteria.

A widely utilized topology criterion for cascade analysis⁴² was provided by TensorOfInertia [2]. This reconstruc⁴³ tion considered the hit-pattern as a rigid body, with the op⁴⁴ tical modules as mass points with their charge equivalent⁴⁵ to their mass. For this rigid body, the mass-eigenstates and⁴⁶ corresponding eigenvalues were calculated. The ratio of the¹⁴⁷ highest eigenvalue and the sum of all three eigenvalues is¹⁴⁸ a measure how spherical the hit-pattern is and thus can be¹⁴⁹ used to separate cascade-like from track-like events.

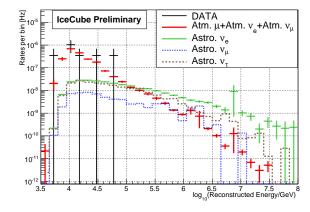
To separate a cascade-like hit pattern, which is a stationary source of light and a track, a moving source of light the hits in the detector were projected along a track moving through the detector with LineFitVelocity [12]. For cascade-like events its value is much smaller then for tracklike events and the identification of both hit patterns was possible.

In the analysis chain the following likelihood reconstruc¹⁵⁷ tion algorithms were used: ACER [13], which is a determin¹⁵⁸ istic energy estimator, CascadeLlh [2], which uses proba¹⁵⁹ bility density functions (pdfs) to perform a 4-dimensional¹⁶⁰ fit, and Credo, which is more sophisticated algorithm that⁶¹ incorporates a model of light propagation in the ice, the fulh⁶²

Figure 1: Normalized TimeSplitPosition distributions for data (black points), sum of muon and atmospheric neutrino backgrounds (blue) and E^{-2} astrophysical v_e signal (magenta).


timing information and reconstructs the energy and direction of the incident neutrino.

The FillRatio was used to distinguish cascade-like events from muon-like tracks. Firstly, the mean distance between the vertex position and all hit DOMs in an event was calculated. Then, the ratio of number of hit DOMs to the total of all DOMs in the sphere of this mean radius was obtained. For a neutrino signal (cascade-like events) we expect this number to be close to one while for the track-like events this number would be uniformly distributed. This allows the separation of signal and background.


Another topology variable used in this analysis was TimeSplitPosition. Each event was split into two halves based on the charge-weighted mean time, and the cascade reconstruction was run on each half separately. Then, the difference TimeSplitPosition between reconstructed vertex positions for both halves was calculated. For the events consistent with a signal cascade hit pattern this number has a smaller value than for track-like events and allows the separation of signal and background, as shown in Fig. 1. Figure 1 shows the normalized TimeSplitPosition distributions for data, Monte Carlo background and E^{-2} astrophysical v_e signal. The shape of the data distribution is nicely reproduced by the sum of muon and atmospheric backgrounds and represents the typical data-Monte Carlo shape agreement at different cut levels in the analysis presented here.

The ratio of maximum total charge on a single DOM in a given event and the total charge in this event MaxQTotRatio allowed the identification of the events, where most of the charge was recorded by a single DOM. These events might be created by a low energy muon having a catastrophic energy loss next to a DOM.

The variable DelayTime, defined as a minimum of the time difference between the first hit on a DOM and the time of the reconstructed vertex was also used. It allows the separation of a muon-track and cascade-like events as for the former this time difference is bigger than for the latter.

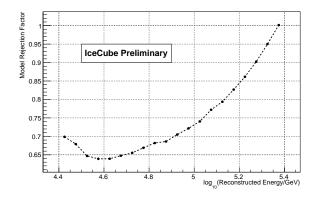
Figure 2: Schematic top view of IceCube with 79-strings. The green denotes the most outer layer of strings.

Figure 3: Distribution of the reconstructed energy before final energy cut.

3.2 Online filters

To reduce the background coming from atmospheric muons and muon bundles several filters were applied to the data. The online filtering process begins at the South Pole with a trigger logic to suppress electronic noise and noise induced by radioactive processes of the detector itself.

The main physics trigger in IceCube is a "Simple Multiplicity Trigger" (SMT) that requires photon signals in at least 8 DOMs. The average trigger rate for the IceCube 79-string configuration was 1970 Hz. In the cascade online filter the cuts on TensorOfInteria and LineFitVelocity were applied to select cascade-like signal events from tracklike background. The online filter reduced the data rate to 21 Hz , about a factor of 100 below the trigger rate. The cascade filter retained 75% of the v_e signal. After applying the online filter, the data stream was transferred to the North where more elaborate Cascadellh and ACER cascade reconstructions were performed.


3.3 Event selection

Selection criteria to reject muon and atmospheric neutrinœ06 backgrounds were developed. The Level3 filter retainede07 events that fulfilled either a combined criterion of a cascade208 and track likelihood ratio LlhRatio as well as an energy209 dependent zenith angle cut or had a reconstructed ACER energy larger than 10 TeV.

Then the data stream was split into two branches: fully 211 contained and partially contained events and each branch 212 was analyzed separately. Only the fully contained events 213 selection criteria are described here but the partially 214 tained events were used to enhance the sensitivity of this 215 analysis for neutrino events with energies E > 100 TeV. 216

The fully contained events were considered those with $_{218}$ both the reconstructed vertex and the first hit inside the $_{218}$ most outer string layer of the detector, the green polygon $_{219}$ in Fig. 2. In addition, we required that the first hit in the event occurred between ± 430 meters in depth and the reconstructed Credo vertex position Z was between $\pm 450^{221}$ meters in the detector. We rejected the event if the earlies 222 hit occurred in the seven topmost DOMs. The FillRatio 223 was calculated for this branch and only events with value 224 higher the 0.6 were retained.

At Level4, further cuts were applied to reduce the back226

Figure 4: Model Rejection Factor (MRF) as a function of reconstructed energy.

ground from atmospheric muons. Based on the time and position of the pulses in a given event, the events seen by 4 or more strings were selected. In the next step of Level4, we required that the reconstructed energy was higher that 10 TeV.

At Level5 we retained events with TimeSplitPosition smaller than 40 meters and rejected events with MaxQTotRatio bigger than 0.35. In addition, we required that the DelayTime was bigger than 100 ns.

Finally, using the Feldman-Cousins method [14], a cut on reconstructed energy (see Fig. 3) was optimized and used to suppress remaining muon and atmospheric neutrinos background. The Model Refection Factor (MRF) [15] was calculated as a function of reconstructed energy as shown in Fig. 4. The minimum of the MRF distribution was found at an energy of E=40 TeV and the energy cut was placed at this value. The energy resolution for an E^{-2} astrophysical spectrum for fully contained events is $\Delta(\log_{10}E_{\nu}) \sim 0.04$ and the vertex position resolution is ~ 4 meters.

The analysis aiming at partially contained astrophysical neutrino search has a poorer energy resolution of $\Delta(\log_{10}E_{\nu})\sim0.3$, and the vertex resolution of ~10 meters.

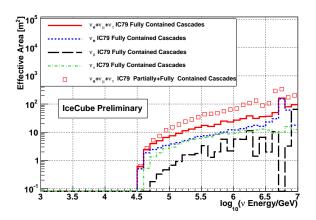


Figure 5: Effective area after the final event selection.

4 Results

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

247

248

249

250

251

252

253

255

256

257

258

259

260

261

262

263

264

267

268

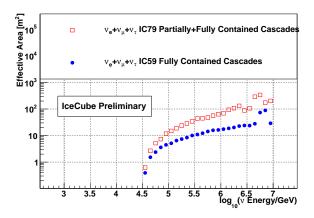
269

270

271

272

The selection criteria rejected all of the CORSIKA events and the conservative estimate on the number of cosmic-ray muons at the final level was taken as an upper boundry at 273 90% C.L. interval of 1.6 events. One burn sample data event of 70 TeV reconstructed energy was retained.


From the analysis presented here 4.1 ± 0.2 (stat) v_e , $0.83^{76}\pm0.07$ (stat) v_μ and 2.76 ± 0.06 (stat) v_τ signal events for an astrophysical flux defined in Eq. (1) are expected in 317^{78} days (90% of the experimental data). Thereby, the predicted number of astrophysical v_μ events from CC interactions is 0.31 ± 0.04 (stat), while from NC is 0.52 ± 0.05 (stat).

The expected number of atmospheric neutrino back₂₈₀ ground events from v_e is 2.5 ± 0.2 (stat) +3.1-2.5 (syst) and₂₈₁ from v_μ 1.8 ± 0.2 (stat) \pm 0.6 (syst). The statistical uncer₂₈₂ tainties come from the Monte Carlo statistics. The uncer₂₈₃ tainties of the theoretical models in the predicted fluxes are₂₈₄ dominating sources of systematic uncertainties for estimat₂₈₅ ing atmospheric neutrino background. The uncertainty of₂₈₆ 25% for conventional [10] and the factor of two for prompt₂₈₇ flux [11] were assumed. These atmospheric background es₂₈₈ timates include the neutrino events that would be accom₂₈₉ panied by a muon bundle [17] and therefore removed by₂₉₀ the analysis selection cuts. The estimated background could₂₉₁ hence be lowered by a factor of \sim 2.

Figure 5 shows the effective area versus neutrino energy₂₉₃ after all cuts applied. The Glashow resonance [16] contribu₂₉₄ tion is clearly visible for ν_e . The effective areas for ν_e and₂₉₅ ν_τ are higher than for ν_μ as this analysis was optimized for cascades and removed muon tracks.

The comparison of the all neutrino flavor effective are a_{298} for combined fully and partially contained analyses with 79_{299} IceCube strings and the cascade search with the 59-string₈₀₀ IceCube configuration is shown in Fig. 6. The effective are a_{01} for the 79-string configuration is bigger than for a smalle a_{02} detector, as expected.

The sensitivity for the diffuse all flavor flux of extrater₃₀₄ restrial neutrino signal, defined as the average flux upper₅₀₅ limit at 90% C.L. in the absence of signal was calculated₅₀₆ and resulted in 2.3×10^{-8} GeV s⁻¹ sr⁻¹ cm⁻² for the all₃₀₇ flavor neutrino energies between 42 TeV and 6 PeV. No₃₀₈ systematic uncertainties were taken into account. Including₃₀₉ partially contained events increases the sensitivity to 1.8×10^{-8} GeV s⁻¹ sr⁻¹ cm⁻² for all-flavor neutrino events with energies between 44 TeV and 7.7 PeV. The obtained result is more stringent than the expected upper limits from previ-

Figure 6: Comparison of effective area for sum of all flavor neutrinos (open squares) for the analysis presented here and the cascade neutrino search with IC59 string configuration [5] (filled circles).

ous IceCube cascade analyses with smaller sized detector configurations [2, 4, 5]. The systematic uncertainties are currently being evaluated.

Acknowledgments: This work is supported in parts by the National Science Foundation under Grant No. 1205796.

References

- [1] A. Achterberg *et al.*, Astropart. Phys. **26** (2006) 155 doi: 10.1016/j.astropartphys.2006.06.007.
- [2] R. Abbasi *et al.*, Phys. Rev. **D84** (2011) 072001 doi:10.1103/PhysRevD.84.072001.
- [3] E. Middell *et al.*, Proceedings of the 32nd ICRC, 2011 Included in arXiv:astro-ph/1111.2736.
- [4] S. Hickford, S. Panknin *et al.*, Proceedings of the 32nd ICRC, 2011 Included in arXiv:astro-ph/1111.2736.
- [5] IceCube Collaboration, paper 0662 these proceedings.
- [6] M.G. Aartsen et al., arXiv:astro-ph/1304.5356.
- [7] IceCube Collaboration, paper 0650 these proceedings.
- [8] D. Heck et al., Tech. Rep. FZKA (1998) 6019.
- [9] A. Gazizov, M. Kowalski, Computer Physcis Communications, Vol 172 (2005) 203; arXiv:astro-ph/0406439.
- [10] M. Honda *et al.* Phys. Rev. **D75** (2007) 043006 doi: 10.1103/PhysRevD.75.043006.
- [11] R. Enberg, M.H. Reno, I. Sarcevic, Phys. Rev. D78 (2008) 043005 doi: 10.1103/PhysRevD.78.043005.
- [12] J. Ahrens et al., Phys. Rev. D67 (2003) 012003 doi: 10.1103/PhysRevD.67.012003.
- [13] M. D'Agostino, Ph.D. thesis, University of California, Berkeley (2009), arXiv:astro-ph/0910.2555.
- [14] G.J. Feldman, R.D. Cousins, Phys. Rev. **D57** (1998) 3878 doi: 10.1103/PhysRevD.57.3873.
- [15] G.C. Hill, K. Rawlins, arXiv:astro-ph/0209350.
- [16] S. L. Glashow, Phys. Rev. 118 (1960) 316 doi: 10.1103/PhysRev.118.316.
- [17] S. Schönert *et al.*, Phys. Rev. **D79** (2009) 043009 doi: 10.1103/PhysRevD.79.043009.