

Outline

 →AURA/NARC - RF enhanced IceCube (Neutrino Array Radio Calibration) (Askaryan Underice Radio Array)
 – 5 clusters In the Ice –taking data [2007-2008]. Calibration using surface and inice (RICE) pulsers.
 Goal: Noise levels measurement; Coincidence with IceCube/IceTop; Ice Attenuation; Feasibility of IceCube-based GZK array

Exploring new technologies for next generation inice detectors Goal: On the way to Sub GZK detector

Surface Detector for CR and astronomy Goal: Noise measurement; Coincidence with Other detectors;

Outline

 →AURA/NARC - RF enhanced IceCube (Neutrino Array Radio Calibration) (Askaryan Underice Radio Array)
 5 clusters In the Ice –taking data [2007-2008].
 Calibration using surface and inice (RICE) pulsers.
 Goal: Noise levels measurement; Coincidence with IceCube/IceTop; Ice Attenuation; Feasibility of IceCube-based GZK array

Exploring new technologies for next generation inice detectors Goal: On the way to Sub GZK detector

Surface Detector for CR and astronomy Goal: Noise measurement; Coincidence with Other detectors;

NARC Radio Cluster

Neutrino Array Radio Calibration

Use IceCube's resources: holes, comm. and power

- Each Cluster contains:
 - Digital Radio Module (DRM) Electronics
 - 4 Antennas
 - 1 Antenna Calibration Unit (ACU)
- Signal conditioning and amplification happen at the front end
- Signal is digitized and triggers formed in DRM
- A cluster uses standard IceCube sphere, DOM main board and surface cable lines.

- 15/20 channels are working
- Stronger and/or more sophisticated in ice pulsers (support CW and pulses)
- IceCube-like DAQ (based on pdaq)
- Strong surface pulser "R&D Results Radio and future options", Hagar Landsman; IceCube Science Advisory Committee,May 13 09;

NARC Radio Cluster – Results: EMI and Stability tests Source reconstruction

IceCube Science Advisory Committee, May 13 09;

NARC Radio Cluster – Results: EMI and Stability tests New in ice transmitters

NARC Radio Cluster – Results: EMI and Stability tests Surface transmitter – repetition rate of 10Hz

Spatial Reconstruction

NARC/AURA – To-Do list:

With the 5-clusters array and stronger calibration source

<u>Analyses</u>:

- Time resolution
- Ice attenuation
- Coincidences with icecube/icetop
- Noise source vertexing and South pole EMI map vs. time
- Lower limit on GZK neutrinos:
 - Sensitivity calibration (thresholds to field calibration)
 - Detector Life time
 - Simulation

<u>Hardware</u>:

- 1 additional cluster left at north.
- Seasonal measurement of ice attenuation

Ice Properties Measurements

Good ice understanding is needed for optimization of detector geometry (depth and spacing), And for estimating effective volume and efficiencies.

→ Additional direct on site attenuation length measurements.
→ More data points on n(z) below 200 meters

Some scenarios for direct point to point surveys below 300 m: 1. Use Froze-in Tx an Rx (+ good coupling, – froze in) 2. Use IceCube holes pre-deployment (+many depths, – water)

Outline

 →AURA/NARC - RF enhanced IceCube (Neutrino Array Radio Calibration) (Askaryan Underice Radio Array)
 – 5 clusters In the Ice –taking data [2007-2008]. Calibration using surface and inice (RICE) pulsers.
 Goal: Noise levels measurement; Coincidence with IceCube/IceTop; Ice Attenuation; Feasibility of IceCube-based GZK array

Exploring new technologies for next generation inice detectors Goal: On the way to Sub GZK detector

Surface Detector for CR and astronomy Goal: Noise measurement; Coincidence with Other detectors;

Future detector design

Some considerations:

- Frequency range and band width.
- Antennas type

Geometry (depth and spacing):

- Space detectors
- Shadowing effect → Deeper is better
- Ice Temperature → Shallower is better
- Drilling cost and time– Deep=expensive
- Hole diameter can limits design of antennas
- Wet/dry hole

Data type:

- Full digitized WF
- Transient array

Unique signature of Askaryan:

- short pulse, linearly polarized
- Capture polarization?
- Low freq has wider energy spread but more noise
- Narrow holes effect design

Future detector design

Some considerations:

- Frequency range and band width.
- Antennas type

Geometry (depth and spacing):

- Space detectors (outer ring better as ring, and not as pile)
- Shadowing effect → Deeper is better
- Ice Temperature \rightarrow Shallower is better
- Drilling cost and time— Deep=expensive
- Hole diameter can limits design of antennas
- Wet/dry hole

Data type:

Full digitized WF

Transient array

Denser Shallow holes

Spaced deep holes

Drill options for large array

• Drill options exist and are being studied. Down to 200 meters.

A summary table from PSL showing different drills

Future detector design

Some considerations:

- Frequency range and band width.
- Antennas type

Geometry (depth and spacing):

- Space detectors
- Shadowing effect → Deeper is better
- Ice Temperature → Shallower is better
- Drilling cost and time- Deep=expensive
- Hole diameter can limits design of antennas
- Wet/dry hole

Data acquisition method:

- Full digitized Wave Form
- Transient array

Full WFs give good timing and frequency content, But require more sophisticated DAQ and electronics (power, noise) and larger data volumes

Case study: A Fully Digitized Wave Form Detector IceRay:50 km² Baseline Studies

Higher density, shallow (50m) vs. sparse, deep (200m
→Estimate to get 3-9 events/year using "Standard fluxes"
→0.3-2 events/year with IceCube coincidence

Transient sensor array

Many "simple" sensors to provide a snap shot of an Askaryan pulse. Wide dynamic range, low power, simple output

Example Transient (from snowmobile ignition)

Ignition noise transients from idling snowmobile

Snowmobile was approximately 100m distance from ICL. Snowmobile was perpendicular with West tower. Signals as acquired by ic-scope-ag1 Time Delay=20ns W-E, consistent with Angle-of-Arrival (AOA)

Downward Rejection

via Priority, Coincidence Real-Time, Simplest "Elevation Gating"

FRADER Stiffer an Caro Diture options (Haga) Aandsman; IceCube Science Advisory Committee, May 13 09;

Future directions- Data acquisition methods:

3 years In Ice Todo List:

• 2008-2009: AURA/NARC :

- Deployment of new modified AURA clusters (total of 5)
- Strong Transmitters (both inice and surface)

en route GZK detector:

- Two TDAs connected to Horizontally-separated antennas on ICL Towers.
- Simulation
- Drills survey

• 2009-2010:

AURA/NARC:

- Analyses of AURA data: coincidences with IceCube; Transients; Attenuation; GZK limit
- Special Seasonal attenuation length tests (point2point)
- Deployment of additional hardware last chance to deploy deep

en route GZK detector:

- 3 transient clusters Using IceCube holes ~200 meters: study results background and pulse reconstruction
- Studies of power and comm distribution
- Deployment of strong transmitter for future use last chance to deploy deep
- To submit proposal in fall 2010
- Use IceCube holes

2010-...

AURA/NARC:

- Continue data taking
 - Merge with IceCube data stream and DAQ.

en route GZK detector

•

- Small test array: Additional clusters in improved design. Full DAQ, inter string timing and triggering.
- Improve stand-alone drill
- Finalize geometry based on simulation
- Submit proposal

Backup

Muon bundle Energy dependence of air showers signals

Air shower in 125m distance with 45° inclination angle simulated with Reas2

EMI test bed

- EMI monitoring ~2km out of the station.
- Ground screen above array to block galactic, solar, aircraft and surface RF noise
- 115-1200 MHz
- Hardware exist
- Independent proposal submitted
- Also: checking option to use firn holes near and away station to study firn and EMI emission (not a part of IceRay).

Waiting to be deployed

RF signal

Antennas:

- Broad band dipole antennas
- Centered at 400 MHz

Front end electronics contains:

- 450 MHz Notch filter
- 200 MHz High pass filter
- ~50dB amplifiers (+20 dB in DRM)

LABRADOR digitizer:

Each antenna is sampled using two 1GHz channels to a total of 512 samples per 256 ns (2 GSPS).

Background and signal levels

RF Signal

- Nyquist: $V_{rms} = (4K_b TR\Delta \tilde{F})^{1/2}$
 - V=3 mVolts= RMS of 3-5 bins
- Environment background:

Average In Ice background up to 1 GHz:

-86 dbm = 2.5 E-9 mW

After ~70 db amplification:

- − 16 dbm \rightarrow 35mV RMS \rightarrow 30 DAC counts rms (for 2007)
- 16 dbm → 35mV RMS → 60 DAC counts rms (for 2009)
- Maximum signal:

Dynamic Range=1200 counts

- → 1320 mV RMS → 15 dbm → -55dbm = 3E-6 mW before amps (07)

- → 720 mV RMS → 10 dbm → -60 dbm= 1E-6 mW before amps (09) 2007 cluster mV/DAC is ~1.1

Suitability of IceCube environment

Channel and cluster trigger rates were compared
 when IceCube/AMANDA were idle and taking data
 Channel 1

RMS

IC + AMANDA on AMANDA off IC + AMANDA off

 Noise from IC/AMANDA is enhanced in lower frequency on a given channel/band.

 Combined trigger reject most of this noise.

Measurement only down to ~200 MHz

Scaler rate vs. Discriminator value

Existing external sources

• RICE

- CW observed and measured by shallow cluster
- Pulse not observed, too weak.

Another RICE test is scheduled.

- Other cluster's ACU
 - ACU too weak –
 Development of stronger
 ACU
- Same ACU
 - Shows signal elongation (we'll get back to this point)

Gain Calibration

- DRM 1:
- Full Cluster

Is the DRM quiet

- Screen chamber was built inside the old dfl
- -174 dbm/Hz thermal floor translates into -108 dbm/4Mhz.
- DRM1 is watching DRM2:

Confirmed Response to a sharp pulse

"R&D Results Radio and future options", Hagar Landsman; IceCube Science Advisory Committee,May 13 09;

Confirmed vertexing ability

 Cluster was spaced in the PSL production hall. Antennas ~3 m high.

Noise levels – per freq bin

"R&D Incomes reade and renarc options, regar Landernan; IceCube Science Advisory Committee, May 13 09;

1 Calibration unit TRACR Board

Trigger Reduction and Comm for Radio Data processing, reduction, interface to MB

MB (Mainboard)

Communication, timing, connection to IC DAQ infrastructure,

Shielding separates noisy components

ROBUST Board

ReadOut Board UHF Sampling and Triggering Digitizer card

"R&D Results Radio and future options", Hagar Fandsman Occupancy RF Trigger Trigger banding

Antennas simulation using Finite-Difference Time-Domain Analysis

As the source pulse becomes shorter relative to the electrical length of the antenna, the resulting waveform has more information about the angle of arrival

Longer antenna may

- Also working on: Simulated Cherenkov radiation
- •Antenna for transmitting Cherenkov-like radiation (useful for testing hardware)

Acceptance and Event Rates

Cosmogenic neutrino model	36sta/50m events/yr	18sta/200m events/yr	
Fe UHECR, std. evolution	0.50	0.60	
Fe UHECR strong src. evol.	1.6	1.8	
ESS 2001, $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$	3.5	4.4	
Waxman-Bahcall-based GZK-v flux	4.2	4.8	
Protheroe and other standard models	4.2-7.8	5.5-9.1	
Strong-source evolution (ESS,others)	12-21	13.8-28	
Maximal, saturate all bounds	24-40	32-47	

Initial phase achieves 3-9 ev/year for "standard" fluxes

Final phase: ~100 ev/year

Frequency Range

- Ice is better at low frequency (< 500 MHz)
- Solid angle also better at low freq.
- SNR goes as sqrt(bandwidth)
- Go low freq., high bandwidth: 60-300 MHz

"Golden" Hybrid Events

IceRay-36 / shallow

Cosmogenic neutrino model	IceCube 10 yrs	IceCube+ 10 yrs
ESS 2001 $\Omega_m = 0.3, \Omega_{\Lambda} = 0.7$	3.2	6.4
Waxman-Bahcall-based GZK-v flux	3.8	7.6
Protheroe and other standard models	3.8-7.1	5.0-8.2
Strong-source evolution (ESS,others)	10-19	13-25
Maximal fluxes, saturate all bounds	22-36	30-44

- Triggering both IceRay and IceCube: rates are low, but extremely valuable for calibration
- High-energy extension (IceCube+ above) with 1.5km ring helps a lot
- Sub-threshold crosstriggering can also help

М Tł of λ λ

Askaryan effect

The share the Charling and Income

6 7	Neutrino interact in ice \Rightarrow showers \Rightarrow Many e ⁻ ,e ⁺ , γ \Rightarrow Interact with matter \Rightarrow Excess of electrons \Rightarrow Cherenkov radiation \Rightarrow Cherent for wavelength larger than shower dimensions $dP_{CR} \propto vdv$	Hadronic (initiated by all v flavors) EM (initiated by an electron, from v_e)
		Vast majority of shower particles are in the low E regime dominates by EM interaction with matter
2		Less Positrons:Positron in shower annihilate with electronsin matter $e^+ + e^- \rightarrow \gamma\gamma$ Positron in shower Bhabha scattered onelectrons in matter $e^+e^- \rightarrow e^+e^-$ More electrons:Gammas in shower Compton scattered on
bliere Radius in Ice ~ 10 cm: is is a characteristic transverse dimension EM showers. $< (optical), random phases P \propto N>R_{Moliere} (RF), coherent \Rightarrow P \propto N^2$		electron in matter $e^- + \gamma \rightarrow e^- + \gamma$
		Charge asymmetry: 20%-30% more electrons than positrons.

LPM effect

Landau-Pomeranchuk-Migdal

③ As the energy increases, the multiplicity of the shower increases and the charge asymmetry increases.

 \otimes As the energy increases, mean free path of electrons is larger then atomic spacing (~1 PeV) (LPM effect).

- \rightarrow Cross section for pair production and bremsstrahlung decreases
- \rightarrow longer, lower multiplicity showers

The Neutrino Energy threshold for LPM is different for Hadronic and for EM showers

 \rightarrow Large multiplicity of hadronic showers. Showers from EeV hadrons have high multiplicity ~50-100 particles.

- \rightarrow Photons from short lived hadrons
- \rightarrow Very few E>100 EeV neutrinos that initiate Hadronic showers will have LPM

> In high energy, Hadronic showers dominate

Some flavor identification ability

IceCube Science Advisory Committee, May 13 09;

"R&D Results Radio an

Askaryan Signal

IceCube Science Advisory Committee, May 13 09;

Ice Properties: Index Of Refraction

AURA-Askaryan Under-ice Radio Array

Prologue

Built upon "RICE" legacy, "AURA" is an RF extension to the leecube array as R&D towards a large scale GZK detector in deep Antarctic ice. Me have 5 Clusters deployed, and hope to deploy 3 more this winter

"R&D Results Radio and future options", Hagar Landsman; Photecby samcautienbergimittee, May 13 09;

dsman;

Down going event candidate

