Project Organization, Finances, and In-Kind Contributions

John Kelley IceCube Director of Operations

Laura Mercier, PMP
Research Administrator Manager

NSF Mid-Term Review 29 April 2024

Outline

- Project Organization
 - ICNO organization chart
 - Work Breakdown Structure
 - M&O management and coordination
- Financial Management and Status
 - accounts
 - M&O award and subawards
 - common fund contributions and expenses
 - in-kind contributions
 - budget and actuals
 - labor inflation and PY4/PY5 plan

ICNO Organization Chart

University of Wisconsin-Madison

- J. Mnookin, Chancellor
- C. Czajkowski, Interim Vice Chancellor for Research (VCR)

National Science Foundation

International Oversight and Finance Group

International Funding Agencies

Wisconsin IceCube Particle **Astrophysics Center (WIPAC)**

- J. Madsen, Director
- C. Lowney, Assoc. Director
- A. King-Klemperer, Communications
- K. Nutting, Business IT Support

IceCube Neutrino Observatory

- F. Halzen, Principal Investigator
- J. Kelley, Director of Operations
- A. Karle, Associate Director for Science & Instrumentation
- J. Madsen, Associate Director for **Education & Outreach**

Science Advisory Committee

B. Barish, Caltech, Chair

Software & Computing Advisory Panel

M. Delfino, PIC, Chair

IceCube Collaboration Board

Spokesperson & Executive

Committee Chair, I. Taboada (GTech)

Pub. Comm. Chair, E. O'Sullivan (Uppsala)

Speakers Comm. Chair, A. Ishihara (Chiba) IceCube-Gen2 Coordination Comm. Chair,

M. Kowalski (DESY)

Maintenance & Operations

Detector M&O – M. Kauer (UW, Manager)

DAQ Lead J. Braun (UW)

South Pole System &

Test System R. Auer (UW)

Supernova DAQ S. BenZvi (Rochester) Processing & Filtering E. Blaufuss (Maryland) IceTop Operations S. Tilav (Delaware)

IceCube Live M. Frère (UW)

Run Coordination W. Thompson (Harvard)

Calibration - D. Williams (Alabama) / A. Terliuk (TUM)

Data Processing & Simulation – J.C. Díaz Vélez (UW)

Offline Data Production R. Snihur (UW) Simulation Production K. Meagher (UW)

Program Coordination - L. Mercier (UW)

Collaboration Simulation Production Centers:

Belgium: IIHE-Brussels; Canada: Alberta; Japan: Chiba Germany: DESY, Aachen, Dortmund, Wuppertal, Mainz

US: UW (NPX, GZK, CHTC, OSG), UMD, UDEL, LBNL/NERSC, PSU, Alabama

South Pole Logistics, R&D Support - M. Kauer (UW)

Quality & Safety - M. Zernick (UW)

Computing & Data Mgt. – B. Riedel (UW, Manager)

Data Storage Sys. & Cybersecurity S. Barnet (UW) **Data Transfer and Archive** P. Meade (UW)

Data Management M. Preston (UW) **Distributed Computing** V. Brik (UW)

Data Processing A. Sheperd (UW) **Networking and Facilities** S. Barnet (UW) **Production Software** D. Schultz (UW)

Data Archive at DESY Data Archive at LBNL

Software – E. Blaufuss (Maryland)

IceTray Framework/Development D. La Dieu (Maryland) Simulation Software Offline Processing Software

M. Larson (Maryland) T. Yuan (UW)

K. Leffhalm (DESY)

S. Klein (LBNL)

Committee Chair

B. Riedel (UW)

Coordination

Resource Coordination

L. Mercier (UW)

TFT Coordination

N. Whitehorn (MSU)

Real-Time Oversight Committee

M. Santander (Alabama)

Working Groups

Analysis Coordinator –

N. Kurahashi Neilson (Drexel)

Deputy Analysis Coordinator –

S. BenZvi (Rochester)

IceCube Upgrade Coordinator -

J.P. Yañez (Alberta)

Technical Coordinator –

M. Larson (Maryland)

Collaboration Working Groups:

Diversity, Equity & Inclusion

Analysis Working Groups:

Diffuse

Neutrino Sources

Beyond Standard Model

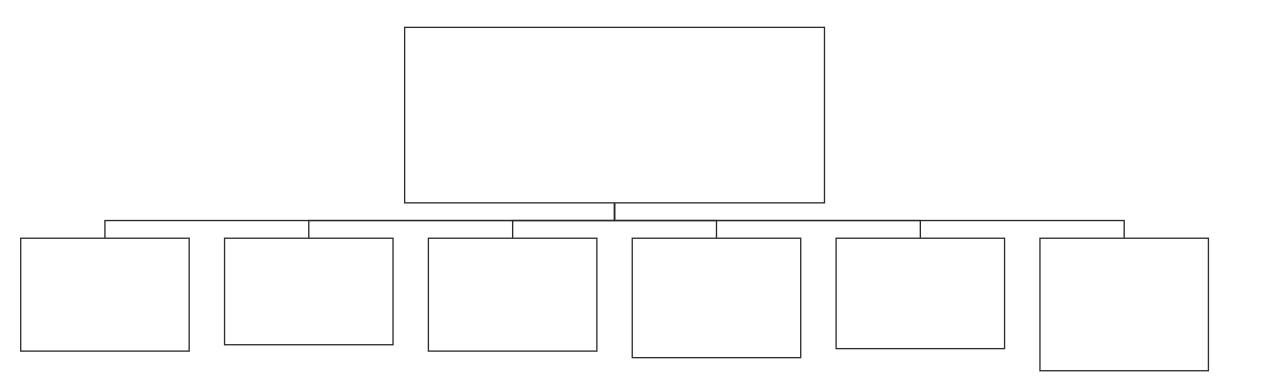
Cosmic Rays

Oscillation

Supernova

Technical Working Groups:

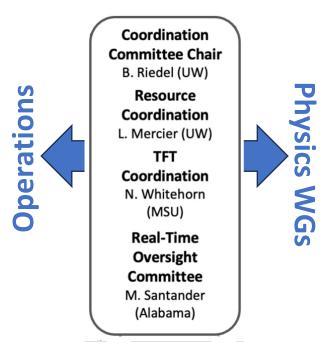
Real-time


Calibration

Reconstruction

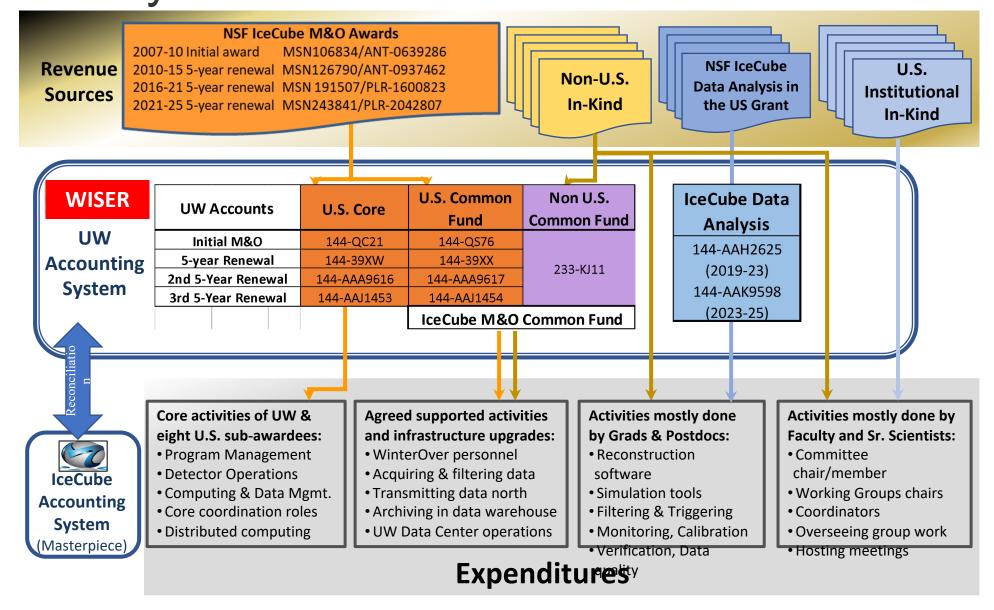
ICECUBE SOUTH POLE NEUTRING OBSERVATORY

Work Breakdown Structure (WBS)

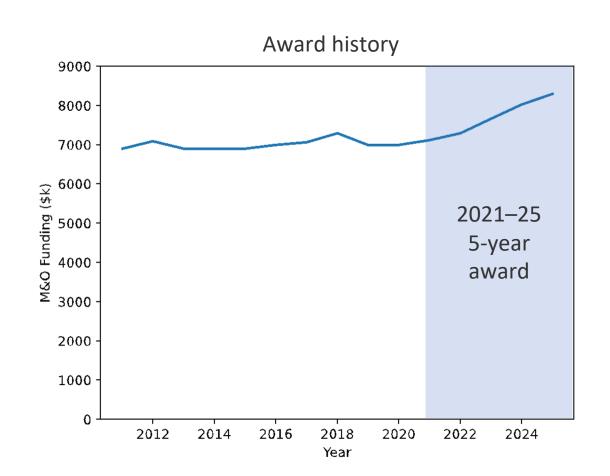


ICECUBE SOUTH POLE NEUTRING OBSERVATORY

M&O Management and Coordination


- Technical work by WBS
 - 2.2 Detector Operations: weekly operations calls
 - 2.3 Computing: daily standups, bi-weekly sprints
 - 2.4 Data Processing and Simulation: bi-weekly calls
 - 2.5 Software: bi-weekly software calls
 - 2.6 Calibration: weekly calibration calls
- Cross-WBS coordination + interface with physics working groups
 - bi-weekly IceCube Technical calls
 - monthly IceCube Coordination Committee (ICC) calls
- M&O leadership
 - weekly WIPAC M&O meetings
 - weekly calls with NSF program officers
 - bi-annual reports to NSF, collaboration (general and ICB), and annually to IOFG

Monetary Flow and Accounts



Current M&O Award (2021–25)

Budget summary table

NSF Funds	Budget Elements	Total NSF					
Request	Duaget Liements	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	TOTAL
A	Total Senior Personnel	\$308,770	\$314,944	\$343,955	\$350,833	\$357,850	\$1,676,352
В	Other Personnel	\$2,344,998	\$2,388,752	\$2,487,896	\$2,583,654	\$2,635,327	\$12,440,627
A+B	Total Salaries and Wages	\$2,653,768	\$2,703,696	\$2,831,851	\$2,934,487	\$2,993,177	\$14,116,979
С	Total Fringe	\$891,662	\$908,442	\$951,498	\$985,984	\$1,005,708	\$4,743,294
A+B+C	Total Salaries + Fringe	\$3,545,430	\$3,612,138	\$3,783,349	\$3,920,471	\$3,998,885	\$18,860,273
D	Capital Equipment	\$0	\$0	\$0	\$0	\$0	\$0
E1	Travel Domestic	\$132,217	\$136,004	\$141,702	\$146,585	\$149,467	\$705,975
E2	Travel Foreign	\$85,869	\$88,766	\$92,685	\$95,447	\$97,315	\$460,082
G1	Materials & Supplies	\$72,679	\$72,921	\$73,136	\$73,617	\$73,975	\$366,328
G3	Consultant Services	\$0	\$0	\$0	\$0	\$106,405	\$106,405
G4	Computer Services	\$30,000	\$75,000	\$75,000	\$75,000	\$75,000	\$330,000
G5	Subawards	\$1,035,147	\$1,097,785	\$1,175,968	\$1,326,791	\$1,292,235	\$5,927,926
G	Total Other Direct Cost	\$1,137,826	\$1,245,706	\$1,324,104	\$1,475,407	\$1,547,615	\$6,730,659
H (A thr G)	Total Direct Costs	\$4,901,342	\$5,082,614	\$5,341,840	\$5,637,910	\$5,793,282	\$26,756,989
I1	Labor Indirect	\$1,949,986	\$2,004,736	\$2,099,762	\$2,175,861	\$2,219,380	\$10,449,725
I2	Travel Indirect	\$119,935	\$124,752	\$130,102	\$134,335	\$136,959	\$646,083
I3	Materials & Supplies Indirect	\$39,973	\$40,471	\$40,591	\$40,857	\$41,056	\$202,949
I4	Overhead Setup	\$82,500	\$0	\$0	\$0	\$0	\$82,500
15	Consultant Services Indirect	\$0	\$0	\$0	\$0	\$59,055	\$59,055
16	Computer Services Indirect	\$16,500	\$41,625	\$41,625	\$41,625	\$41,625	\$183,000
I	Total Indirect Cost	\$2,208,894	\$2,211,584	\$2,312,080	\$2,392,678	\$2,498,075	\$11,623,311
J=H+I	Total Direct & Indirect	\$7,110,237	\$7,294,199	\$7,653,920	\$8,030,589	\$8,291,357	\$38,380,301

M&O budget largely flat vs. time (increase in PY3-PY5)

						Dollars		
Institution	Major Responsibilities	Average FTE PY1-PY5	PY1	PY2	PY3	PY4	PY5	Total PY1-PY5
Lawrence Berkeley National Laboratory	Computing infrastructure, long-term data archival, DOM firmware support	.05 Senior Personnel .14 Other Professional	\$ 82,688	\$ 91,822	\$ 95,571	\$ 106,807	\$ 110,475	\$ 487,363
Pennsylvania State	Simulation production, DAQ firmware support	.24 Post-Doctoral Scholars .25 Other Professionals	\$ 23,098	\$ 39,055	\$ 96,850	\$ 162,966	\$ 106,943	\$ 428,912
University of Delaware	IceTop calibration, monitoring and maintenance;IceTop simulation production	.65 Senior Personnel .25 Post-Doctoral Scholars	\$ 174,104	\$ 177,554	\$ 181,075	\$ 184,663	\$ 188,328	\$ 905,724
University of Maryland at College Park Original	Overall software coordination, IceTray software framework, online filter, simulation software and production	.02 Senior Personnel 2.4 Other Professional	\$ 635,366	\$ 643,918	\$ 652,605	\$ 718,288	\$ 728,089	\$ 3,378,266
After CR PY3-PY5	same as above	.02 Senior Personnel 2.5 Other Professional	\$ 635,366	\$ 643,918	\$ 762,484	\$ 811,590	\$ 812,369	\$ 3,665,727
University of Alabama at Tuscaloosa	Detector calibration, reconstruction and analysis tools	.08 Senior Personnel	\$ 30,101	\$ 30,703	\$ 31,318	\$ 31,944	\$ 32,584	\$ 156,650
Michigan State University	Simulation production, Northern Test System (NTS) maintenance	.2 Post-Doctoral Scholars	\$ 89,792	\$ 114,733	\$ 118,549	\$ 122,123	\$ 125,817	\$ 571,014

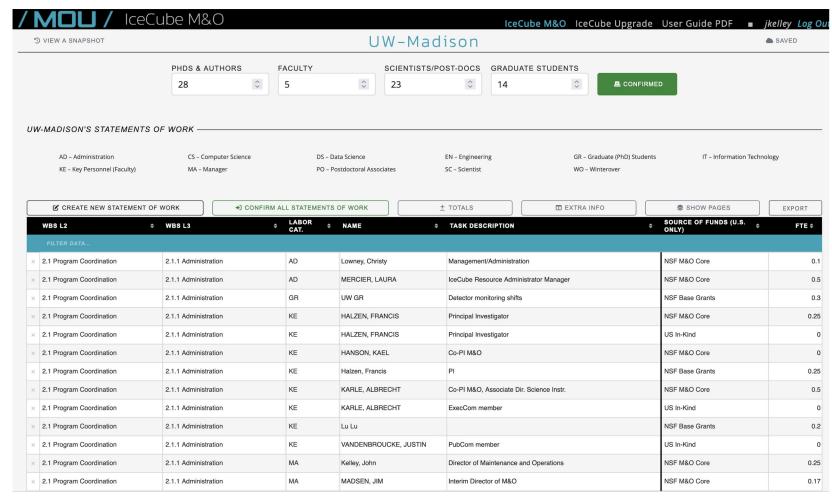
CR in PY3 to increase Univ. of Maryland subaward (same total budget)

Common Fund Contributions

- Both U.S. and non-U.S. full member institutions contribute to IceCube M&O via the common fund
 - \$13,650 / Ph.D. author / year
- U.S. Common Fund: NSF award increment divided into appropriate accounts based on current author count
- Non-U.S. Common Fund: WIPAC invoices foreign institutions annually
- Used to support "core activities that are agreed to be of common necessity for reliable operation of the IceCube detector and computing infrastructure" including:
 - winterover detector operators
 - data acquisition and filtering hardware and software at the South Pole
 - data transfer and archival hardware and software at the WIPAC data center

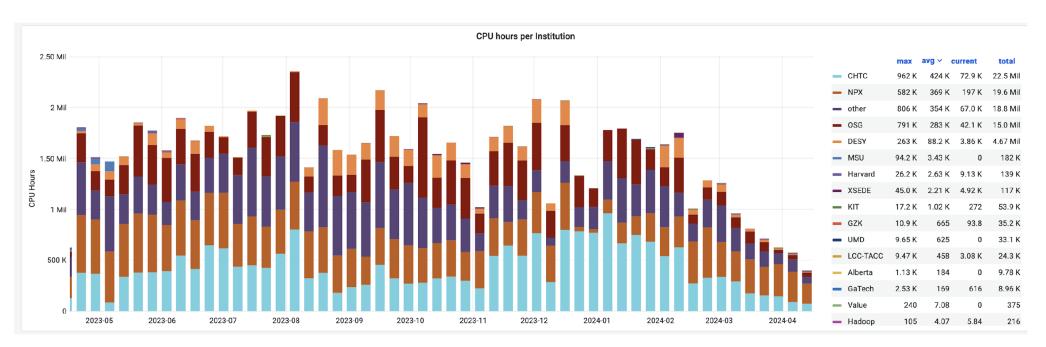
Common Fund PY1-PY3

	PY1		PY2		PY3		
	PhD. Authors	Planned	PhD. Planned		PhD. Authors	Planned	
Total CF Planned	162	\$2,211,300	172	\$2,347,800	183.5	\$2,504,775	
U.S. Contribution	88	\$1,201,200	97	\$1,324,050	106	\$1,446,900	
Non-U.S. Contribution	74	\$1,010,100	75	\$1,023,750	77.5	\$1,057,875	
		Actual		Actual		Actual	
Total CF Contributions		\$2,136,225		\$2,327,325		\$2,445,145	
U.S. Contribution		\$1,201,200		\$1,324,050		\$1,446,900	
Non-U.S. Contribution		\$935,025		\$1,003,275		\$998,245	
Difference (Actual-Planned)		\$(75 <i>,</i> 075)		\$(20,475)		\$(59,630)	


- small fraction of Non-U.S. CF contributions are in-kind
- contributions are in line with plan (within ~few%)

In-Kind Labor Contributions

- M&O labor contributions tracked through the MoU Dashboard
 - updates solicited bi-annually by Resource Coordinator
 - Institutional Leads update and confirm SoW
- Regular tasks include detector monitoring shifts by all institutions
 - training, organization by Run Coordinator
- Coordination boards prioritize work, set tasking
 - example: new offline filter development coordinated by ICC and TFT



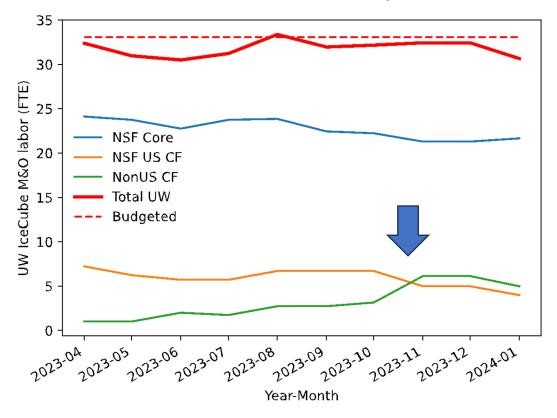
In-Kind Computing and Hardware Contributions

- In-kind computing resources integrated into IceCube grid
 - tracked per site and by resource type (CPU / normalized GPU)
 - DESY, MSU, Harvard, KIT, UMD et al. contributions
- Specialized hardware contributions also support M&O
 - example: surface array scintillator panels from KIT

Budget and Expenditures Summary

PY1-PY3 actual vs. budget

(a)	(b)	(c)	(d)= a - b - c
PY1-3	Actual Cost	Open	End of YEAR3 Balance
Budget	To Date	Commitments	
(Apr.'21-	through		
Mar.'24)	Mar. 2024		
\$22,058K	\$21,470K	\$658K	-\$70K


- PY1-PY3 balance is -\$70K (-0.3%)
 - · open commitments are subawards yet to invoice us
 - this is basically balanced (but after labor expenses shifted)
- Inflation has increased faster than award escalation
 - e.g. 4% COLA mandated by state of Wisconsin
 - personnel departures + rehiring at market rates

UW M&O Labor in FTEs by Fund

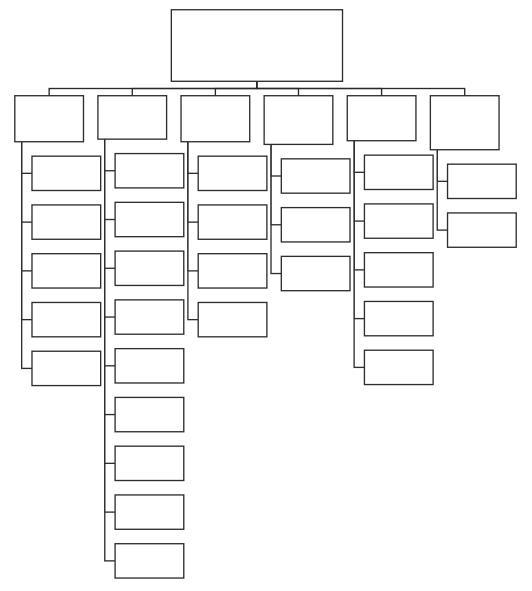
- M&O labor FTEs under budgeted plan
 - action is still needed due to labor inflation
- Labor rebalanced between U.S. and Non-U.S. Common Funds
 - core hardware and software maintenance
- South Pole server upgrade deferred until after Upgrade installation
 - solid logistical and financial reasons
 - ~\$800k deferred
 - focus on Upgrade pole activities
 - minimal technical risk

Non-U.S. Common Fund Expenditures

System	Computing Infrastructure	Detector Infrastructure	Labor	Total
South Pole System + Test System	\$4K	\$17K	\$201K	\$222K
Data Warehouse + UW Data Center	\$533K	_	\$21K	\$554K
PY1 TOTAL	\$537K	\$17K	\$222K	\$776K
South Pole System + Test System	\$231K	\$3K	\$162K	\$396K
Data Warehouse + UW Data Center	\$111K		\$56K	\$167K
PY2 TOTAL	\$342K	\$3K	\$218K	\$563K
South Pole System + Test System	\$281K	\$40K	\$330K	\$651K
Data Warehouse + UW Data Center	\$867K		\$75K	\$942K
PY3 TOTAL	\$1,148K	\$40K	\$405K	\$1,593K

- Caught up with infrastructure upgrades post-COVID
- Shift of labor to Non-U.S. CF will continue for PY4 and PY5
 - will maintain at least \$300K/yr budget for hardware upgrades

Summary


- Robust M&O management at all levels
 - WBS organization tracks technical effort
 - maintain active communication with stakeholders
 - continue to work to direct and manage in-kind contributions
- Significant hardware upgrades in PY1–3
 - largely funded by Non-U.S. Common Fund
 - caught up post-COVID
- Labor inflation challenging but under control
 - some maintenance deferred but minimal technical risk

Supplemental Slides

Work Breakdown Structure (WBS) to L3

