

Presenter Background

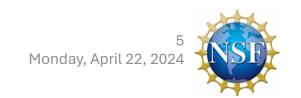
- Research Scientist at WIPAC
- IceCube M&O L2 Lead for Computing and Data Systems
- Heterogeneus Systems Lead for <u>Accelerated Al Algorithms for Data-Driven</u> <u>Discovery</u>
- Member of the Open Science Grid Council
- Active in IceCube 2011-2016; 2018-Present
- IceCube Ph.D. 2014

Outline

- Bird's Eye View
- Status of WBS 2.3 Performance Metrics
- Details for WBS 2.3
- PY1-3 Developments and Projects
- Additional Funding

IceCube Computing – Bird's Eye View

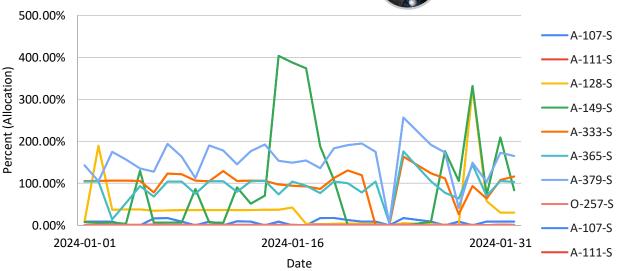
- Global heterogeneous resources pool
- Mostly shared and opportunistic resources
 - Collaboration institution resources, e.g. university HPC facilities
 - US: ACCESS, PATh, NSF Leadership class HPC
 - EU: <u>EGI</u>
- US- and collaboration-funded dedicated computing resources are centrally hosted at and operated out of UW-Madison and UMD
- Archival
 - Raw Data: At NERSC*, adding TACC**
 - Processed Data: DESY-Zeuthen
- Computing is continually evolving driven by changes in science goals (e.g. Multi-Messenger Astrophysics, Upgrade), analysis techniques (e.g. Artificial Intelligence), technology (e.g. Cloud Computing), and policy (e.g. NSPM-33)

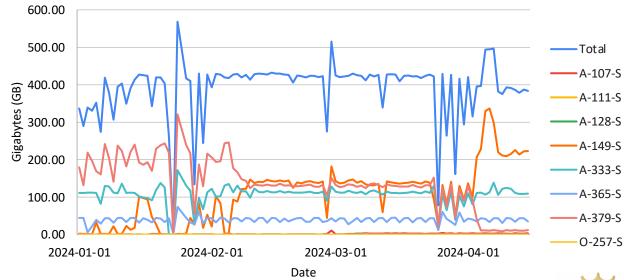


M&O WBS 2.3 Performance Metrics

Milestone/Metric	Target	Status
Core Infrastructure Uptime	>=95%	PY1-3: ✓
Non-Core Infrastructure Uptime	>=90%	PY1-3: ✓
Data Transfer Delay	< 2 Days	PY1-3: ☑ , PY3: / ☑
Replication of Processed Data	<= 7 Days	PY1-2: ☑ , PY3: ₩
Replication of Raw Data	<= 90 Days	PY1-3: ✓
IceProd Uptime	>= 90%	PY1-3: ✓
Non-production IceProd users	20 Users	PY1-3:

- Data Transfer Delay: Changes in processing increasing satellite demands during austral summer reaching above our allocation; satellite bandwidth management a subject of discussion with USAP and other experiments at South Pole
- Replication of Processed Data: Retirement of staff member causing delay in online processed/satellite data replication in PY3, offline processed data is within metric in PY3
- Non-production IceProd users: Working on user interface improvements, workshops, etc. PY1: 3 Users, PY3: 10 Users



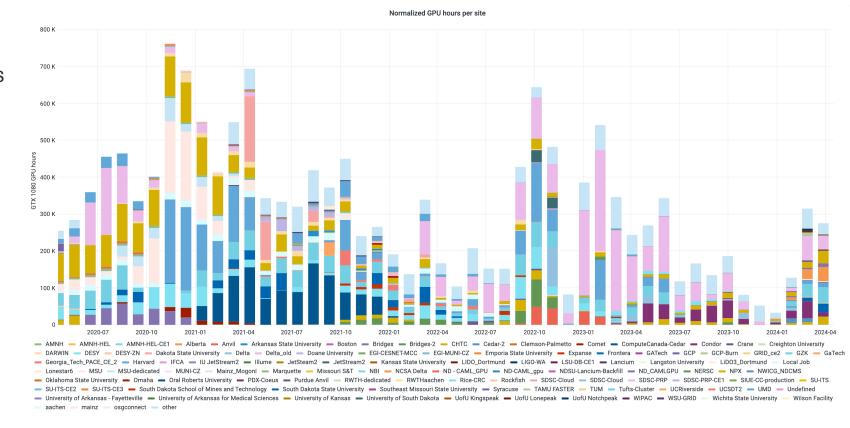


Data Transfer from Pole

- PY3: Overhauled processing at Pole
 - Increase data rate
 - Less biased sample
 - In preparation for Upgrade
- Satellite transmission delay during high-rate portion of year in first season of new filter
 - Requested increase was not granted previously – In discussion with USAP
 - Working with NSF and other experiments to balance satellite needs and ensure fair allocation

Dedicated CI – Compute

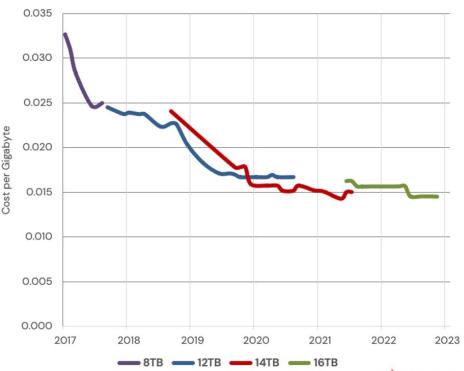
- Total dedicated:
 - UW: 4000 CPU cores, 300 GPUs
 - UMD: 300 CPU cores, 90 GPUs
- Significant deferred maintenance Most hardware is >7 years old (a good portion is >10 years)
 - Average hardware lifetime is 3-6 years
 - Hardware refresh and/or enhanced support for external resources potential solutions
- Expecting dedicated resources to shrink in size in short-term
 - Affecting mostly researchers, external resources have a steep learning curve
 - Balancing cost of storage vs. compute Storage wins
 - Consumer GPUs no longer available for servers Need to invest in more expensive "workstation" GPUs
- Significant challenges ahead:
 - GPU competition between simulation production and AI training and inference
 - AI:
 - How much AI will we see?
 - How complex will AI models be?
 - How do we support Al training in the future?
 - High-End Hardware is very costly (\$250-500k per server) and in high demand
 - Upgrade software resource needs, i.e. growth in RAM per core requirements, are an unknown Working to clarify needs





Contributed CI – Compute

- > 250 Sites used
- US:
 - ACCESS NSF HPC resources
 - PATh NSF HTC resources
 - National Research Platform (NRP)
 - NERSC
- EU
 - DESY
 - EGI
- Canada
 - Digital Alliance
- These resources are more plentiful, but relatively steep learning curve



Dedicated CI – Storage

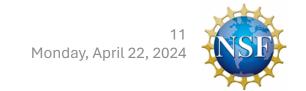
- PY1-3 replacement of all distributed storage infrastructure, i.e. simulation, data, user, and analysis storage
 - Went from ~10 to ~14 PB
 - All distributed storage converted to Ceph for increased reliability and resilience
 - Initial transition to Ceph created a two-week downtime because of issues with transition and lack of experience with new software and documentation
 - Second transition went without issues
- Long-term focus will be as data provider
 - Analysis will shift towards external resources
 - Cost of Storage is flattening
 - Data volume only increases
- Upgrade:
 - Depends heavily on data rate, current estimate is a 30% increase.
 Considered in most recent replacement
 - Reducing on disk data and simulation with new processing Impact to be assessed

Backblaze Average Cost per Gigabyte Since 2017

Drive sales grouped by drive size and month to compute average cost per month

VM Farm

- Hosts support services, websites, etc. Central to our operations
- Recently deployed new hardware after delays
- Delayed hardware upgrades to
 - Investigate alternatives to reduce cost
 - Hosting within UW-Madison's VM farm
 - Hosting storage within UW-Madison's VM farm
 - Exploring different VM hypervisor due to increase in prices of current one
 - Getting the most out of the current hardware
 - Work on other projects:
 - User management
 - Alternative virtualization infrastructure (Kubernetes)
 - Google Workspace
- Multiple O(hours) downtime due to hardware instability led us to replace hardware with an eye on future software replacement

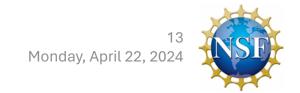


User Management

- PY1 and 2 we replaced our user management system to be more selfservice
 - Increased self-service Reduced need for human support
 - More automation
 - Cybersecurity features
- Still working out "business" rules
 - What email lists are a "controlled" environment?
 - When does a user become emeritus/retired?
 - How to automate certain changes in personnel/leadership?

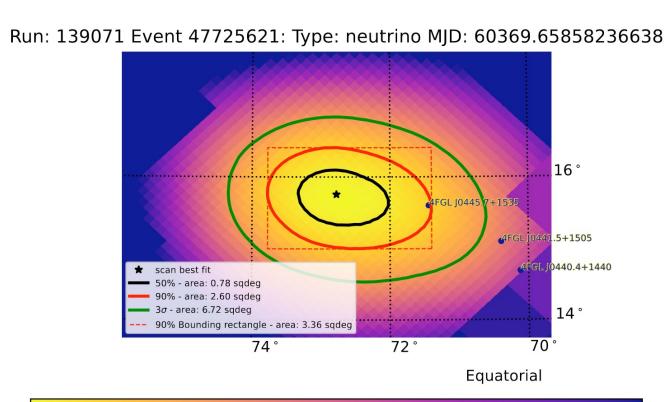
Google Workspace

- Moving self-hosted "business" (email, doc. management, email lists, etc.) services to Google Workspace
- Why transition?
 - Self-hosted infrastructure needed an upgrade on both software and hardware side
 - Self-hosting has it advantages, but uses resources that can be used better
 - Much higher uptime guarantees and better cybersecurity than self-hosted
 - The various services don't talk well to each other or are getting long in the tooth (DocuShare)
 - Cloud-based services are "cheaper" (in this case), provide integration between features, and modern features (search, calendaring)



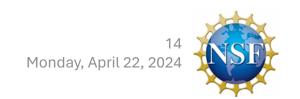
Cybersecurity

- Significant changes are in the works
- Working on TrustedCI Framework implementation
- Multi-Factor Authentication
 - US Federal guidelines, UW cybersecurity, and general best practices are pushing us towards Multi-Factor Authentication
 - Exploring options within User Management Software (KeyCloak) or from UW (Duo)
- HTTP(S)-based File Transfer
 - Moving to modern JWT auth
 - Long-term industry support
- New guidance on the horizon (NSPM-33, updated RIG) Waiting on specifics



SkyDriver – Reconstruction-a-a-S

- Replacement for Skymap Scanner to determine direction of events from Multi-Messenger Astrophysics Alerts
- Shifted resource pool to contributed rather than dedicated compute resources
 - Significantly larger resource pool
 - Less interruptions to analyzers
- Cloud computing a potential to reduce time to result further – Associated cost not budgeted for
- Development partially funded through a separate grant – NSF #2103963



20

 $-2\Delta \ln(L)$

25

35

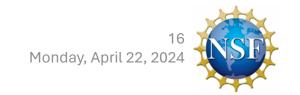
30

10

15

ML Inference-as-a-Service

- We are expecting the use of ML/AI-based tools to increase, some examples:
 - Event Topology Classifier
 - DNNCascade selection
- "90% of an AI model's lifetime is spent in inference"
- Competition between simulation and data analysis for GPUs
- 10x improvements on GPUs vs. CPU, but how well do we use the GPU?
- Other experiments are looking at dedicated GPUs for their ML/AI inference tasks
- ML Inference-as-a-Service to improve GPU utilization and availability
- Funded as part of <u>Accelerated AI Algorithms for Data-Driven Discovery</u> (A3D3) – <u>NSF #2117997</u>

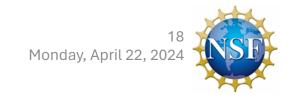


Pass 3

- New filtering in development
 - Online/Pole filtering is in production Includes new calibration
 - Offline/Northern filtering is under development
- Saw a significant improvement in analysis speed with "common" processing across different years of data
- Next data reprocessing (Pass 3) is in development
- Testing Pass 3 on NSF leadership-class HPC (TACC's Frontera) as part of the NSF #2139536
 - Next NSF leadership-class HPC system (Vista and Horizon) will be ARM64
 - IceCube codes run on ARM64

Cloud Computing

- Since 2019 have been doing extensive and successful proof-of-concept using cloud resources in collaboration with SDSC
 - 2020: <u>HPCWire Editors' Choice Awards</u> for Best Use of HPC in the Cloud (Use Case)
 - 2022: <u>HPCWire Readers' Choice Awards</u> for Best Use of HPC in the Cloud (Use Case)
- Cloud resources are too expensive compared to self-hosting resources
 - Steady state usage: ~\$8M/year
 - GPU and network cost are cost driver



Summary

- Leveraging non-M&O funding to help develop new projects and initiatives
- IceCube M&O computing shifting increasingly to external resources
- Providing storage and archival of IceCube data main priority
- Modernization of key systems is labor limited
- IceCube M&O computing adapting to a rapidly evolving environment

