IceCube Upgrade Rebaseline Review April 26-28, 2022

Tyce DeYoung WBS 1.4 Comms/Power/Timing (CPT) Systems

Overview of Work to Go

- Essentially complete (finished in PY4):
 - Penetrators
 - Surface cable assemblies
 - Cable load emulators
 - Northern Test System
- Mostly complete (need inputs to final design):
 - Surface junction boxes
 - ICL patch cabling

Overview of Work to Go

- Significant effort remaining:
 - Main Cable Assemblies cable design nearly complete, breakout connection design beginning
 - Breakout Cable Assemblies preliminary designs
 - FieldHubs (surface readout electronics) prototype under evaluation
 - Power systems redesign initiated
 - Timing systems preliminary design, based on IceCube surface array system

Main Cable Assemblies (Plan A)

- Prototype cable from Hexatronic (Gen1 supplier) in production
 - Electrical performance validated indistinguishable from Gen1 quads
 - Novel composite cable design, assembled in partnership with NKT in Falun, Sweden
 - Working closely with University of Uppsala (in-kind contribution)

Winding primary sub-components (signal cables)

Winding primaries with auxiliary quads

Controlling torsion during winding

Fully-wound cable ready for outer mantle

Main Cable Assemblies (Plan A)

- Prototype cable from Hexatronic (Gen1 supplier) in production
 - Electrical performance validated indistinguishable from Gen1 quads
 - Novel composite cable design, assembled in partnership with NKT in Falun, Sweden
 - Working closely with University of Uppsala (in-kind contribution)
- Pull test planned in next weeks to qualify raw cable mechanically (risk TECH38)
 - Confirm that subcomponents do not undergo relative motion under load
 - Load is applied via compressive cable grip, ensuring good frictional coupling between components...but need to test in real life
- Then select company to install breakout connectors
 - Discussions underway with subsea cable suppliers (JDR, Hydro Group, Fibron, South Bay)
 - Need to work on reducing costs
 - Samples of prototype main cable will reduce uncertainties for suppliers and facilitate finalization of design, including cost engineering
 - This work can proceed in parallel to production of raw main cables

Main Cable Assemblies (Plans B-D)

- Plan B: test cable from alternate supplier (Fibron) also in production
 - Full-length three-quad cable for evaluation of electrical properties/comms bandwidth
 - Scheduled delivery to MSU in mid-June
 - Would be used in NTS if Fibron is selected as MCA supplier
- Traditional cable design, essentially identical to Gen1 cables from Ericsson
- Fibron would also install breakouts, deliver completed product
- Based on costs of test cable, we expect cable costs to be around twice what Hexatronic is charging us (risk TECH40)
 - Likely to exceed MSU commitment, require financial support from project
 - Comms bandwidth expected to be lower than Hexatronic cable (TBD risk TECH45)
- Plans C&D: bid recently received from JDR; South Bay is working on another
 - Similar cost/performance concerns as for Fibron, and additional delays to obtain sample cable for qualification (around 6 months)

Breakout Cable Assemblies

- Shorter auxiliary one-to-several cable running from Main Cable to DOMs and instruments
 - Coupled to Main Cable design
- Preliminary designs received from several companies, others expected soon
- Iterating with cable, installation teams toward a preliminary design review in late spring
- Order and test prototype(s) leading into final design review this winter
 - Production in 2023

Color code:

Nominal O.D.--

Weight in Air---

FieldHubs

- Evolution from "mini-FieldHubs" used for DOM development, acceptance testing
- Rev1 prototype now assembled, in testing
 - Additional prototype cycles in 2022
- Production in summer/ fall 2023

IBE

Power System

- Redundant power supply to DOMs through the FieldHubs
 - Up to 1.3 kW / string, remote monitoring and control
- Preliminary design complete
 - trade study, evaluation of commercial power supplies
 - custom power control board design
- Next steps

JBE

- Complete modifications for increased DOM power requirements (risk ORG9)
- Testing at NTS with FieldHub prototype
- Final design review 11/2022

ICL Upgrade Rack

CPT central

power system

Central Timing/Comms System

- Timing and communications via CERN White Rabbit protocol
 - Similar system currently running in ICL for IceCube surface array, timing based on existing IceCube master clock
- Preliminary design complete
 - WR switch installed at NTS
 - WR node tested with mini-FieldHub
- Will test WR node in prototype FieldHubs
 - Procure additional WR-LENs for production FHs
- Gen1/Upgrade timing offset monitoring
 - Current cross-domain timing study: σ < 1 ns
 - Final timing monitoring system production 2024

ICL Upgrade Rack

