

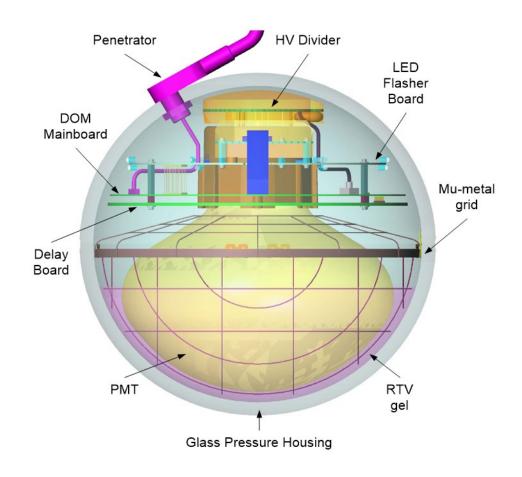
Brief Bio – Kael Hanson

Education University of Michigan (2000) PhD Physics MACRO detector at Gran Sasso

- Joined IceCube @ UPenn in 2000 when it was still AMANDA.
- Began with UW-Madison in 2002 shortly after IceCube MREFC started as postdoc.
- Led In-Ice Devices (2003-2006) and Instrumentation (2006-2008)
- Spent 6 years as faculty at Université Libre de Bruxelles (2008-2014)
- Rejoined UW-Madison as faculty / IceCube Director (2014)
- PI of Upgrade project.

IceCube: The Detector Array

IceCube construction began in 2002 with design and procurement of the drill. The first string to be deployed was in Jan 2005. Over the next 6 season 85 more strings were deployed with the last string being "tied off" on December 17, 2010. Full 86 string data taking started May 2011.

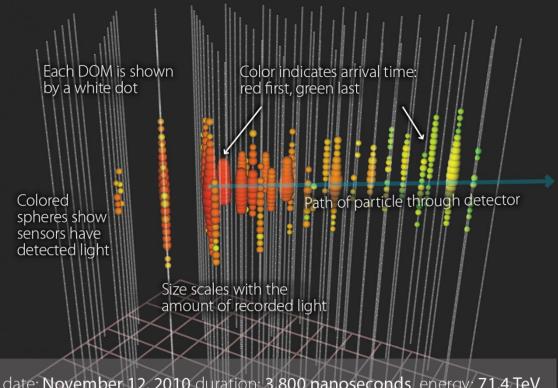

TPC: \$279M USD - \$40M non-US

The South Pole site was chosen

- Because there is a lot of ice;
- Logistic support: 10 million lbs. of cargo were delivered and 77 person-years of effort on-ice it took to make IceCube. Everything was at that time airlifted inside LC-130 Hercules aircraft.

IceCube Detector Element: The Digital Optical Module

Detecting Neutrinos in the Ice


IceCube is a "water" Cherenkov detector: we detect the charged ultra-relativistic secondaries which are produced in neutrino scattering in ice or detect CR muons and their stochastic secondaries.

Ice is a good calorimetric medium: we can get 10% resolution on E (dE/dX for muons).

Scattering and non-uniformity is problematic both for precision reconstruction and for simulation of the detector. Still we are able to obtain $O(\frac{1}{2})$ degree angular resolution for tracks.

How does IceCube work?

When a neutrino interacts with the Antarctic ice, it creates other particles. In this event graphic, a muon was created that traveled through the detector almost at the speed of light. The pattern and the amount of light recorded by the IceCube sensors indicate the particle's direction and energy.

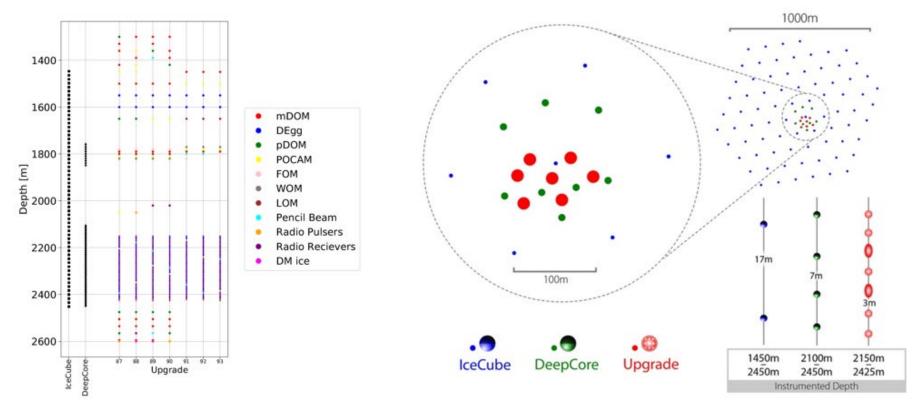
date: November 12, 2010 duration: 3,800 nanoseconds energy: 71.4 TeV declination: -0.4° right ascension: 110° nickname: Dr. Strangepork

The IceCube Upgrade

Infill array for neutrino physics and precision characterization of the ice.

equirements cience

SCIENCE OBJECTIVES - THE ICECUBE UPGRADE **Charge Question ST1** Tau Neutrino Ice Characterization for Appearance and the Neutrino Oscillations Indirect Dark Matter Sterile Neutrinos (2.2) better LE & HE flavor Unitarity of the PMNS (2.2)(2.2)physics (2.3) Matrix (2.1) Event Energy Range few to 100 GeV few to 100 GeV TeV to >PeV Any Any Measurement in 2-3 5-10% tau Expected Detectable Event Rate detection/improved detection/improved 100s / year measurement years Desired Angular Resolution <5 deg at O(20 GeV) Time Resolution Within Event 2-5 ns 2-5ns Absolute Time Accuracy 50 ns Instrumented Ice Volume About 2 million cubic meters Array Shape Compact Effective Volume Varies with energy level and event orientation (derived from other properties) Number of Strings multi-PMT Digital Optical 108 (90 in the dense physics region, others above and below for primarily calibration purposes) - 46 mDOMs, 38 D-Eggs, & 6 pDOMs Modules (mDOM) per String Total Number of mDOM ~750 (photocathode area is key parameter here) mDOM Spacing - Horizontal 22 meters (compromise between closer and drill constraints) mDOM Spacing - Vertical 3.0 m Physics region: 2150-2425m Upper region: 1450-2150 Deep region: 2425-2600m Detector Depth Sensitivity of mDOM Single Photo Electron (SPE) mDOM Photon Event Dynamic SPE to >200 PE / 15 ns Range mDOM Field of View Spherical with <10% variation, except for cable shaddowing. Digitization Rate 300 megasamples / second Waveforms < 400 ns Digitization Rate 40 megasamples / second Waveforms > 400 ns Absolute Amplitude Calibration < 5 % Accuracy Timing Accuracy < 5 ns mDOM Noise Rate O(10kHz) total noise rate, <850 Hz per PMT mDOM Data Processing Initial waveform capture and digitization in DOM, context sensitive compression of data prior to transfer Local Coincidence Function In mDOMs, might require N of 24 PMTs hit within time window to suppress noise. **Event Trigger Function** Global (surface) trigger logic to package event data and discriminate noise Veto Function Surface Array (IceTop) allows identification and discrimination of downgoing background Incoming Data Stream from 150 Gig / day Sensor Array Non-Volatile Storage at South 1-2 Day Buffer / Archive Capacity & Full Redundancy Requirements South Pole High Priority At all times, it must be possible to complete a minimum 10KB transfer to the Northern Hemisphere within 10 minute period. (SNEWS and GRB Reporting) Communications South Pole Medium Priority 500 MB / day Communications South Pole High Volume Data >30 GB / day Northern Hemisphere Data Fully Buffered / Archive Capacity & Redundancy Requirements Warehouse


Scientific Goals -> Technical Requirements

- Module design (segmented PMT) + array geometry (photocathode density) determine reconstruction accuracy in function of E
- Array geometry (instrumented volume) determines event rate
- IceCube provides surrounding veto for background elimination
- New calibration instruments (cameras, flashers, POCAM, Pencil Beam) probe ice properties on baselines shorter than 1 scattering length and with enhanced precision.
- Increased instrumentation density → more modules per wire pair → power
 + B/W constraints
- Upgrade array must interoperate seamlessly with IceCube ("just another string or set of strings") – module communication standardized by ICM ("all devices speak DOM")

Project Objectives Unchanged

- 7 strings 693 Optical sensors:
- 277 D-Eggs (2x 8" PMT)
- 402 mDOMs (24x 3" PMT)
- 14 PDOMs
- Calibration devices

Single Drill / Install Season

Simulations of 5 strings show 10-20% loss of performance: call 5 strings "success" if unable to install all 7 strings.

More details on scope ... see Upgrade *Scope Management Plan*

- 1. Neutrino Properties
- 2. Recalibration and Reanalysis of IceCube Data
- 3. IceCube-Gen2 Research and Development

The Four Pillars of the Upgrade

National Science Foundation

MPS/PHY Funded (\$22.983M original TPC)

GEO/OPP provides logistics support including cargo, fuel, on-ice field work and population support **not costed in Project budget.**

IceCube Upgrade Project

- Project Management
- Drilling & Installation
- Sensors
- Cable Systems
- Calibration
- M&O Data Systems Integration

IceCube M&O

Supports integration of Upgrade Project into IceCube Detector and Software Systems – much of M&O Data Systems labor resources are supported by the M&O program.

Upgrade will transition into mature operations program at little additional cost.

IceCube Collaboration

Collaboration in-kind contributions of instrumentation: D-Eggs, mDOMs, calibration devices, and downhole raw cable – approx. \$14M (F. Feyzi presentation in PM breakout)

Collaboration labor and computing resources coordinated through M&O structures.

GERMANY

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt-Universität zu Berlin Karlsruhe Institute of Technology Ruhr-Universität Bochum RWTH Aachen University Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

NEW ZEALAND University of Canterbury

REPUBLIC OF KOREA Sungkyunkwan University

SWEDEN

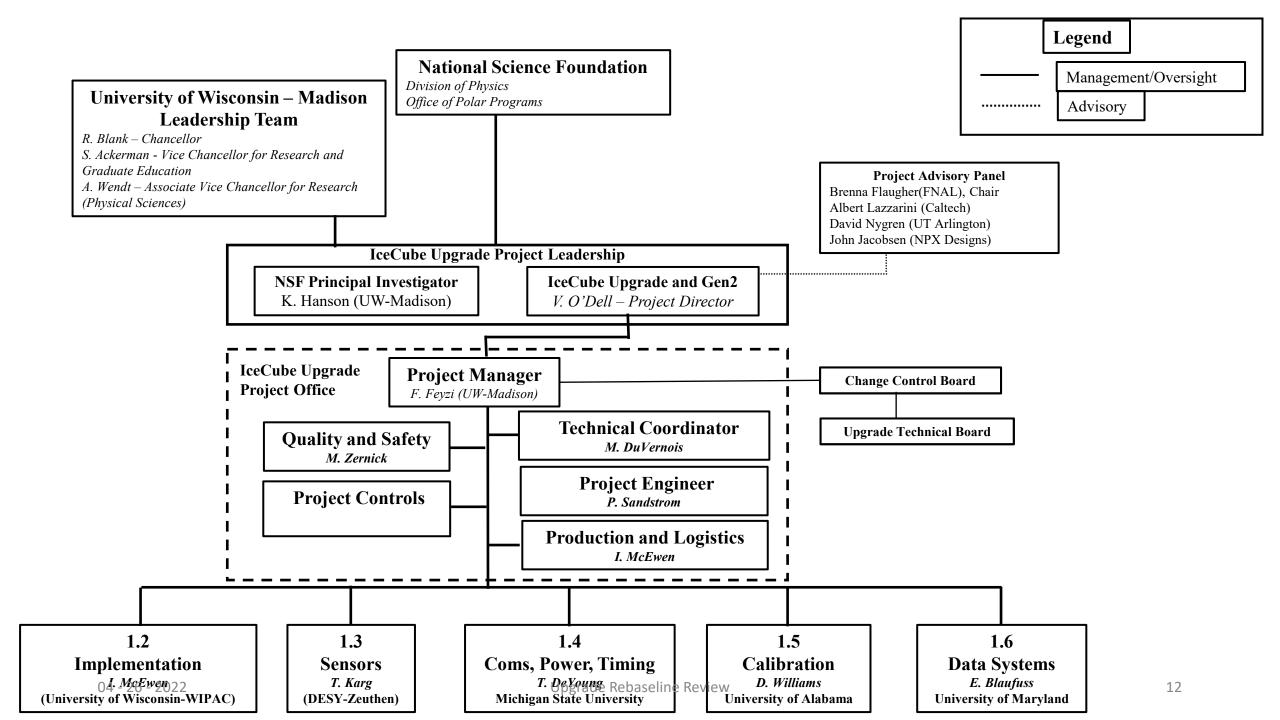
Stockholms universitet Uppsala universitet

SWITZERLAND Université de Genève

UNITED STATES

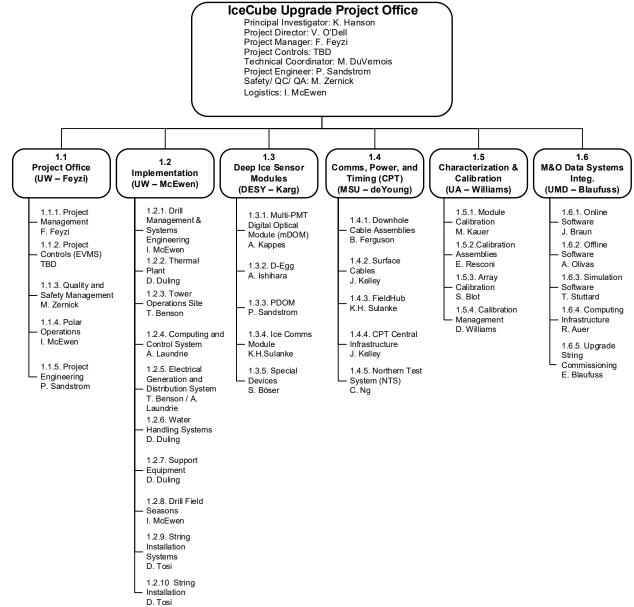
Clark Atlanta University **Drexel University** Georgia Institute of Technology Harvard University Lawrence Berkeley National Lab Loyola University Chicago Marquette University Massachusetts Institute of Technology Mercer University Michigan State University **Ohio State University** Pennsylvania State University

South Dakota School of Mines and Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland


University of Rochester University of Texas at Arlington University of Utah University of Wisconsin-Madison University of Wisconsin–River Falls Yale University

FUNDING AGENCIES

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds-Wetenschappelijk Onderzoek-Vlaanderen German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)


The Swedish Research Council (VR) Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) University of Wisconsin Alumni Research Foundation (WARF) Knut and Alice Wallenberg Foundation US National Science Foundation (NSF)

Following talks by L2 managers will go into further detail on major deliverable areas. WBS deliverables defined through *WBS Dictionary* to L4 *and* under change control.

WBS Tree structured functionally not by institution.

13

04 - 26 - 2022

Cost (vs Time)

2018 Initial Cooperative Agreement Budget

\$20.1M Base \$2.8M Contingency Increased On-Project Cost

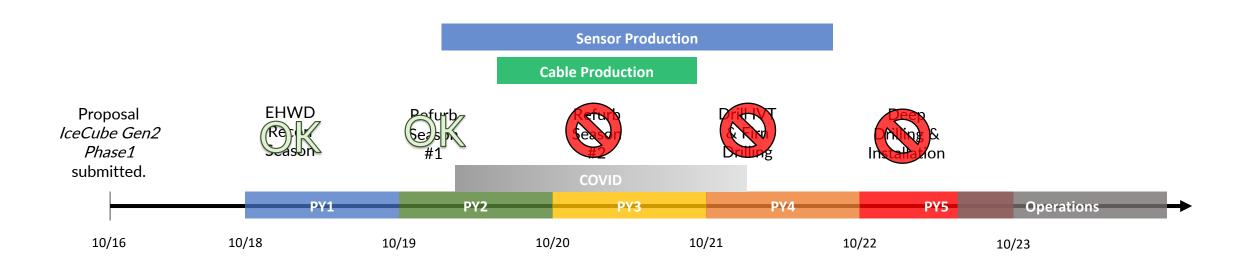
Add PO & technical staff
Surface cables

COVID

Loss of 3 field seasons
60 months → 91 months

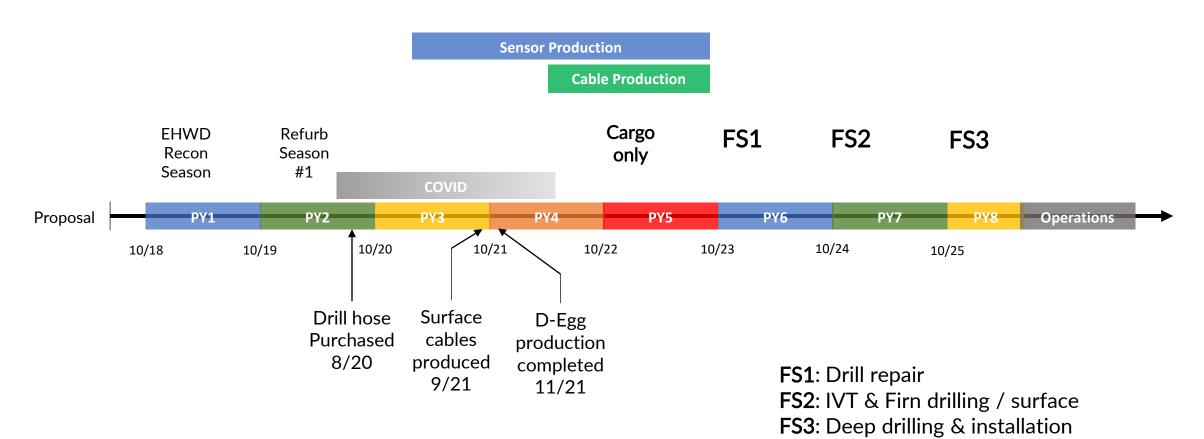
Additional in-kind contribution of PMTs from KIT

Reuse EHWD Generators instead of MicroTurbines


2022 Rebaseline \$32.2M Base \$3.7M Contingency

Decreased On-Project Cost

Sources of Cost Increase Can Be Broadly Distributed into Two Categories	
COVID	Non-COVID
 Loss of 3 field seasons; project is now 8 year. Staff, in particular those requiring on-site access were not working at full efficiency for months/years 	 Incomplete estimation in PO and S/W support, although we were able to recover most of this by increasing contributions from in-kind sources (KIT 2.0 MEUR) and would have fit in the contingency for 5 year project. Addition of surface cables (2019) Loss of contributed drill labor (it's now an opportunity) Technical issues (e.g. MCA redesign, additional firmware on project)



Simplified Project Timeline - Baseline Plan

Simplified Project Timeline - Rebaseline 2022

Hand-Off To Operations

- Handoff complete following FY26 drilling, installation, commissioning of strings: Milestone date is 04/06/2026 this is within the first week of the next M&O cycle.
- Project complete 04/30/2026.
- Drill equipment packed during FY26 season, ready to retro.
- Retro to occur with small field team under M&O following season, or, alternatively equipment could remain on site for IceCube-Gen2 activities.

