IceCube Upgrade NSF Rebaseline Review April 26-28, 2022

Erik Blaufuss 1.6 – Data Systems and Icecube Integration Breakout session

1.6 critical areas

WBS 1.6 Scope

- Targeted additions to key online systems to support new OMs
 - On-board OM Software and field hub software
 - DAQ, experiment control, online filtering
 - Computing systems
- Add support for Upgrade devices to offline software systems
 - IceTray framework and classes
 - Simulation
 - Reconstruction tools
- Provide device commissioning for newly deployed devices before operating

Regardless of who pays for the work, we track the activity in schedule with tasks and milestones

1.6.1 Online Software & in OM software (On project and in-kind M&O)

- Work completed
 - DVT/FAT testing full software suite available that enables end to end testing of:
 - Stand alone mainboards, integrated OMs, groups of OMs with linked GPS timing
 - FAT/DVT test results fed directly to testing DB and visualization site
 - STF and FAT
- Work remaining
 - Full implementation of self-triggering "DAQ mode" for in-OM software
 - Existing IceCube DAQ, Experiment control, online filtering extended to support both Gen1 IceCube DOM data AND Upgrade OM data
 - Work being done by M&O system experts ahead of deployment
 - Plan reviews of system extension plans for OMs (2023) and Special devices (2024)
 - Will use NTS (fully integrated with our current Gen1 test area SPTS) for development and testing
 - Support and integration of special and calibration devices
 - SPAT testing suite and detailed plan

FATCaT Devices

Device Details for mdom_DVT_03_v1

Device UID Production Site Production Date Device Type	mdom_DVT_03_v1 desy 2021-03-17 mdom						
Subdevices	MICROBASE	MICROBASE	MICROBASE	MICROBASE	MICROBASE	MICROBASE	MICROBASE
	microbase_0020323742	microbase_0020323742	microbase 0020323742	microbase_0020323742	microbase_0020323742	microbase_0020323742	microbase 0020323742
MICROBASE	MICROBASE	MICROBASE	MICROBASE	MICROBASE	MICROBASE	MICROBASE	MICROBASE
microbase 0020323742	microbase 0020323742	microbase_0020323742	microbase 0020323742	microbase_0020323742	microbase_0020323742	microbase_0020323742	microbase_0020323742
MICROBASE	MICROBASE	MICROBASE	ILLUM-BOARD	ILLUM-BOARD	ILLUM-BOARD	CAMERA	CAMERA
microbase_0020363146	microbase_0020363146	microbase_0020363146	ILL_M051	ILL_M063		CAM_004435982144aa33	CAM_0044359821486202
CAM-ILLUM-UNIT CAM- ILL 0044a13 M176	ILLUM-BOARD ILL_M419	рмт рт. DM00453	р <u>т DM00460</u>	рмт pmt_DM00531	PMT pmt_DM00530	PMT pmt_DM00527	РМТ pmt_DM00537
рмт	PMT	PMT	PMT	PMT	рмт	PMT	PMT
pmt_DM00051	pmt_DM00003	pmt_DM00061	pmt_DM00084	pmt_DM00064	pmt_DM00072	pmt_DM00093	pmt_DM00138
PMT	рмт	PMT	рмт	MDOM-PMT-UNIT	MDOM-PMT-UNIT	MDOM-PMT-UNIT	MDOM-PMT-UNIT
pmt_DM00509	pmt_DM00500	pmt_DM00498	pmt_DM00526	DM00453_003720323742	DM00460_005e20323742	DM00531_003020323742	DM00530_004020323742

- 1.6.2 Offline software (In kind M&O and IceCube collaboration)
 - Ensuring data analysis framework and reconstruction tool are ready for Upgrade data processing and analysis
 - Base support in IceTray framework (as designed simulation use)
 - Support for more advanced reconstructions of Upgradata expected from collaboration to need support.
- 1.6.3 Simulation software (IceCube collaboration)
 - Delivered "as designed" simulation samples for DEgg/mDOM simulations
 - Lacks some of the details needed for final simulation, but allows for other software development efforts to make progress.
 - Final "as built" simulation planned post-deployment that will be used for analysis work.

Upgrade simulation of mDOM impacts

- 1.6.4 Computing Infrastructure (On project (HW) and in kind M&O)
 - Provide and support COTS computing infrastructure needed for online and test system HW
 - Project provides computing to support additional DAQ processes in Upgrade
 - Delivered: computing infrastructure and support for NTS, Pole SPS expansion planned
- 1.6.5 String Commissioning (In kind M&O)
 - Intended as final checkout and operational readiness test of newly deployed instrumentation
 - Monitor hardware during freeze-in
 - Find initial operating values for HW settings based on calibration and testing
 - Will largely use DVT/FAT/SPAT tools
 - Will deliver to M&O for standard operations post commissioning

Milestones

- Completed milestones
 - Test DAQ ready Plan: 12/30/2019 Delivered: 11/1/2020
 - Review in OM Software development plans Plan: 10/31/2021. Delivered: 12/17/2021
 - Offline software and as-designed sim release. Plan: 11/1/2021. Delivered: 2/25/2022
- Major Upcoming:
 - May 2023: Review Online systems support plans for operating Upgrade Oms
 - May 2024: Review Online systems support plans for operating Calibration and special devices
 - Dec 2025: Online software systems ready for use at Pole
 - Mar 2026 IceCube simulation and reconstruction tools available for analysis of IceCube data including Upgrade devices.

1.6 Critical Path

- WBS 1.6 has few critical deliveries needed to enable module deployment
 - SPAT testing at Pole of ALL modules post-transport.
 - Ensures modules in good condition, ready to deploy with correct software preloaded
 - Field Season 2: First 2 strings of devices tested Dec 2024 Feb 2025
 - Field Season 3: Test remaining hardware pre deployment Nov 2025 Jan 2026
- Post deployment: 1.6 IS the critical path to new modules being prepared for data taking:
 - Commissioning of new devices: Dec 2025 March 2026
 - Will begin immediately after strings are deployed and connected
 - Deliver online software systems ready to integrate new modules into IceCube operations
 - Delivery Jan 2026 for OM devices, Feb 2026 for special devices.
 - Expect routine operations to begin AFTER commissioning efforts complete

Transitions to IceCube M&O

- Final milestone: Mar 2026 Deliver commissioned strings to IceCube M&O for inclusion in standard ops
 - The IceCube Upgrade delivers
 - Deployed strings, including OMs, special devices and calibration devices
 - Surface communication hardware (+spares)
 - Full in-OM software suite for debugging and operating hardware
 - Online software systems to operate new hardware as a fully integrated portion of overall IceCube detector.
 - DAQ, Experiment Control, data filtering, core data processing software
 - Detailed "as-built" documentation of hardware systems
 - Full characterization of all hardware from commissioning activities
- Then Upgrade strings to be included in standard IceCube operations
 - Modest impact on "online" raw data bandwidth Multi-sensor modules produce more data
 - Limited impact on data transfer requirements
 - Effective data volume compression and veto-filtering methods used in IceCube will continue to function effectively for IceCube + Upgrade.

Conclusion

- Experts from across M&O team and wider IceCube Collaboration are ready to bring the IceCube Upgrade online as part of IceCube.
- WBS 1.6 activities well underway
 - Delivered testing software for optical module design verification and production testing
- Replan schedule has been developed that delivers needed software and integration efforts ahead of deployment activities at Pole in all scenarios
 - Effort largely provided as an in-kind effort by the IceCube M&O team and collaboration
 - Regardless, detailed schedule tracks effort across all source

Backup Material

1.6 Risks

- Primary risks still being tracked in 1.6 now are related to scaling table-top/lab readout of handfuls of modules to full-string readouts via the full Field-Hub systems. These remain important with higher mDOM PMT noise rates.
 - Tech47, Tech 48, Tech49, Tech50, Tech51
 - In-OM processing needs sufficient processing power to format, transmit and perform indevice noise mitigations
 - IceCube surface DAQ must be able to handle additional rate of DEgg and mDOM hits into trigger system
 - FieldHub data throughput and processing capacity must be able to handle total data rate from all devices on an Upgrade string.
- Active mitigations being pursued for these in the next 6-9 months
 - Retire: Data rate scaling tests using prototype systems and/or simulated data volumes to ensure full string readouts are working
 - Mitigations: Software mitigations available to further reduce noise-like events to reduce data volumes with small impact on physics.

1.6 Interfaces

WBS 1.6 is an area where data interfaces from several Upgrade areas comes together

- WBS 1.3 Sensors DVT and FAT testing of mDOM and DEgg devices well underway
 - Provide on-board OM software to support testing and operation of in-ice devices
 - OM Software/Hardware level interfaces
 - Calibration/configuration items needed in operation
 - IceCube Communications Module On-OM software and DAQ interfaces
 - OM hardware details and performance for detailed system simulation
- WBS 1.4 CPT Software controlling mDOM/DEgg in use for mini-FieldHub
 - DAQ interface to Field Hub, timing infrastructure and cable systems
 - Shared responsibility to build-out test systems
- WBS 1.5 Calibration devices *Control and readout of common Mini-Mainboard in place*
 - Provide on-board OM software to support testing and operation of calibration devices
 - DAQ/Experiment control of all calibration devices
 - Calibration/configuration items needed in operation
 - Calibration hardware details and performance for detailed system simulation

1.6 Major Milestones

- WBS 1.6 milestones are focused on targeted software/firmware readiness reviews and deliverables ahead of programmatic needs
- Major milestones in the project schedule for 1.6 include:
 - May 2023 Review online system (DAQ, Experiment Control, Filters) plans to support operations of new OM modules in IceCube standard operations
 - May 2024 Review online system (DAQ, Experiment Control, Filters) plans to support operations of new Calibration/Special devices in IceCube operations.
 - All deployed special devices will be controlled by IceCube DAQ/Exp. Control.
 - June 2024 Review South Pole Acceptance Testing (SPAT) plans
 - Dec 2024 & Nov 2025 SPAT testing at Pole for modules pre-deployment
 - **Dec 2025** Online software systems ready for deployment to pole supporting new Oms
 - Feb 2026 Online software systems ready for special device operations.
 - Dec 2025 Computing system at SPS expanded to support Upgrade strings
 - Mar 2026 Deliver commissioned strings to IceCube M&O for inclusion in standard ops
 - Major component of Upgrade "Project Deliverables" document
 - Mar 2026 IceCube simulation and reconstruction tools available for analysis of IceCube data including Upgrade devices.

Current Technical Status and Work to Go

- Full testing control and readout system available and in wide use for module testing and development
 - High-level scripted control of modules
 - Mini-FieldHub control of multiple OM devices per wire-pair via ICM-enabled string communication
 - GPS-corrected time stamping of data
 - On-board OM software and firmware with the ability to readout waveforms, perform self-tests, self-calibrated devices.
- Work to go primarily focuses on integration into existing IceCube data systems:
 - OM-software data acquisition app under control of IceCube DAQ
 - Experiment control of all Upgrade OMs and Special devices
 - Integration into full IceCube data stream for analyses
 - Simulation and reconstruction
- String commissioning after deployment and refreezing

Charge Question O-1

PCTS setup at UW mDOM and DEgg MBs

NTS setup — integrated w/ SPTS test system

1.6: Cost and Main Cost Drivers

- WBS 1.6 effort largely an in-kind effort
 - IceCube M&O team experts in DAQ, Experiment control, online and offline software contributing effort to complete Upgrade integration.
 - Broader IceCube science collaboration provides support for Upgrade simulation and reconstruction software efforts.
- Upgrade project funded efforts focused in a few key areas
 - Project management (\$450K total, \$250K to go)
 - Fractional L2/L3 manager support
 - Travel for reviews and development workshops
 - In-OM software and testing software development building toward self-sufficient data collection units controlled by higher level IceCube DAQ. (\$1,150K total, \$800k to go)
 - Modest computing hardware to support expanded DAQ systems at test systems and at SPS computing setup. (\$50K total, \$15k to go)
 - Deployments for SPAT and commissioning on-ice efforts.(\$180K total/to go)

1.6: Cost and Main Cost Drivers

- WBS 1.6 effort largely an in-kind effort
 - IceCube M&O team experts in DAQ, Experiment control, online and offline software contributing effort to complete Upgrade integration.
 - Broader IceCube science collaboration provides support for Upgrade simulation and reconstruction software efforts.
- Upgrade project funded efforts focused in a few key areas
 - Project management (\$260K)
 - Fractional L2/L3 manager support
 - Travel for reviews and development workshops
 - In-OM software and testing software development building toward self-sufficient data collection units controlled by higher level IceCube DAQ. (\$675K)
 - Modest computing hardware to support expanded DAQ systems at test systems and at SPS computing setup. (\$15K)
 - Deployments for SPAT and commissioning on-ice efforts.(\$150K)

