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Introduction
The following tech note describes all the changes to the MC processing implemented to 
include the SPE Templates v2. I’ve tried to make it as simple as possible to get the useful 
information to the reader, but there’s a lot to cover. We have a 15 page paper that goes 
through the procedure and results it in detail (see https://wiki.icecube.wisc.edu/index.php/
SPE_Templates_Paper). This document will likely be useful for people trying to implement 
the SPE Templates in their MC, understand terminology, and how to rerun my code.

P.S. The MEOWS analysis used the SPE Templates V2.
The following projects were modified and currently included in COMBO:

1. DOM Launcher: 
• Accounts for the discriminator change. (0.93 scaling factor applied to 

discriminator)
• Looks to the GCD file for the SPE charge distribution. 

2. Dataclasses:
• Understands the new SPE templates GCD file entries
• Scales the SPE Template in the GCD file by the residual

3. CLSim:
•  Applies the compensation factor. Same manner that the RDE is applied.

4. GCD File:
• Has entries in the I3Calibration object that describe the shape and the charge 

scaling factor, as well as the compensation factor.
5. Vuvuzela:

• Vuvuzela now looks into the GCD file for the noise parameters. 

6. WaveDeform:
• Changed to allow for the apply_spe_correction option to be used also with MC.

To minimize the uncertainty on the fit, for a given DOM, we take all the pulses from 
2011-2017 and fit to that. This is what is called the AVG distributions. These are what will be 
used for MC. The Gaussian Mean location is determine by fitting that particular season 
though. We are not going to have SPE Templates in MC for each season.

A useful file for people looking into correlations, or seeking further information about the DOMs can be found in this JSON 
file. It contains all the information I’ve collected about the DOMs over the years:

/data/ana/SterileNeutrino/IC86/HighEnergy/SPE_Templates/SPE_harvesting/scripts/jobs/DOM_properties.json 
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How to use the SPE Templates
1. Use the trunk of COMBO for Detector level (still investigating the noise module in 

vuvuzela). This requires py2v3.1.1.
2. Use my GCD file. They will have {Pass1,Pass2,Pass3} in the label indicating which pass 

you want to simulate. 
3. Use the updated icerec so that you can set WaveDeform apply_spe_corection to True in 

L1:
   tray.AddSegment(OnlineFilter, "OnlineFilter",
                    decode=False, simulation=True,
                    vemcal_enabled=False,
                    alert_followup_omit_GCD_diff = True,
                    needs_wavedeform_spe_corr = True,
                    **online_kwargs
                    )

Key words and overview of modifications
SPE Templates: The GCD file now contains the description of the individual DOM 

single photoelectron charge distribution. This is represented as the sum of two exponentials 
and a gaussian. DOM Launcher assigns a charge to the photoelectron by sampling from the 
SPE charge distribution. A single DOM’s charge distribution is now described by the shape in 
terms of exp1+exp2+gaussn, a global residual correction (see below), a compensating factor 
to scale the DOM efficiency, and a charge scaling factor to mimic the Pass2/Pass3 shifts.

Compensation Factor: Since the SPE templates change the average amount of charge 
per photoelectron, this shifts the DOM 
efficiency. To compensate for the DOM 
efficiency shift, we scale the number of 
photons produced by the average 
charge of the TA0003 distribution by 
the average charge of the SPE 
templates. It turns out to be ~1.3. 
CLSIM generates roughly 30% more 
photons (internally), in the same what 
that it handles the HQE DOMs. Note: 
HQE DOMs have a noticeably different 
shape than the NQE DOMS, resulting 
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in their mean charge being 3.54% lower than the NQE DOMs (Figure below).  The 
compensation factor is set to 3.54% higher (effectively 3.54% higher RDE) so that their total 
charge collected remains the same after implementing the SPE Templates.

Residual Correction: The functional form of the 
SPE Template is assumed to be Exp+Exp+Gausn. 
This likely isn’t the exact shape of the distribution 
in nature. After we extract the values from each fit, 
we calculate the residual (how far off the fit is from 
the actual distribution in percentage points). The 
average residual is used as a correction to all of the 
charge distributions. The plot on the left shows the 
that the Exp+Exp+Gausn distributions 

underestimate the measured distribution by ~13% at 0.45PE. This correction is applied in 
dataclasses.

MeanATWDCharge and MeanFADCCharge: These entries in the I3Calibration object 
in the GCD file determine the scaling factor used by WaveDeform to scale the charge. It 
allows you to scale the charge identically to that used in Pass1/Pass2/Pass3. Simply set these 
values to the values used in Data, and it will be properly scaled as well in MC. For example, 
Pass2 scaled the charge of DOM (1,1) from the ATWD by 1.032, if you want to simulate Pass2, 
then set MeanATWDCharge to 1.032. The labelling in the GCD file tells you what scaling 
factor I applied.
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Discriminator setting: In developing the SPE 
Templates, the measured charge distributions were 
found have data/MC disagreement near the 
discriminator. Originally it was set to 0.25PE, 
however, PE refers to the quantity that is output 
from WaveDeform. The discriminator triggers on the 
waveform voltage. By simulating several sets, a 
value of 0.93*(discriminator threshold) was found to 
produce the best results. This was found 
independently in LE/Osc and in calibration by 
Martin Rongen. The discriminator modification is 
implemented in DOMLauncher.

Vuvuzela noise update: The SPE Templates require an update to the noise. To 
reproduce the timing distribution of the noise, the noise is scaled by the area above the 
discriminator compared to the area above the discriminator of the TA0003 distribution. A 
comparison between the noise before and after the scaling is shown in red and yellow below, 
while the noise model used before the SPE templates is shown in green.
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Introduction
The single photoelectron (SPE) templates represent the probability density function for 

the charge distributions on all in-ice DOMs. The functional form used to describe the 
distribution is the sum of two exponentials and a Gaussian, Exp1+Exp2+Gaus., explicitly:

Where charge, q, is the quantity calculated in WaveDeform. WaveDeform deconvolve 
the digitized waveform into a pulse series (pulse times and charges). This is accomplished by 
fitting SPE pulse templates (templates which are dependent on the version of the AC 
coupling used in the DOM) to the digitized waveforms via a χ2. The charge associated with a 
fitted pulse is determined by dividing the the area of the fitted SPE pulse template by the 
load resistance (and further scaling it by the gain of the PMT). WaveDeform is capable of 
fitting multiple SPE pulse templates to multi-PE pulses, and deconvolving them into their 
separate photoelectrons. Since it may occasionally deconvolving a non-multiPE pulse, we 
must always sum up the pulses from WaveDeform to make a comparison between MC and 
Data (i.e. we need to reassemble pulses that may have been accidentally split). 

For this study, all frames (events) that pass the MinBias filter are then passed through 
WaveDeform. This filter works by randomly selecting HLC events, at a rate of 1/1000 
triggers. The MinBias filter saves the full digitized waveform from the ATWD and fADC. 
This allows us to rerun WaveDeform with different settings (this will be useful later). This 
study will also use the BeaconLaunch dataset. This dataset represents forced time windows. 
That is, it is not triggered by a pulse, rather, it is triggered by a time. Normally, a random 
force trigger will readout the ADC baseline, and it is rare that it record actual pulse.  Since 
these frames are primarily baseline fluctuations, we can use this dataset to analysis the 
accidental pulse reconstruction associated with ADC fluctuations (referred to as noise).

This tech note will begin with a set of condensed instructions for those familiar in the 
procedure already. Then, I’ll provide much more informative description of every step. We 
use a modern simulation Metaproject (e.g. V06-00-03), and recent updates to WaveDeform 
mean that we need to use the current trunk versions (http://code.icecube.wisc.edu/svn/
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projects/wavedeform/trunk/). Later, this modified version of WaveDeform will be added to 
the release. Changing the meta project involves simply replacing the hashtag Metaproject 
identifier at the top of the processing scripts. WaveDeform is only used in the harvesting.py 
script.
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Condensed instructions
The "inlocation” variable will be defined as the location of the GitHub project.

The processing files are located here :
inlocation + /SPE_harvesting/scripts/jobs/

The output from these files are sent here:
inlocation +/SPE_harvesting/

I typically have a “setup-X.py” file that generates the dagman to run X.py script on the 
cluster.  You will have to modify the setup-X.py script so that it generates dagmans in your 
scractch/ dir. You will also have to copy the .submit scripts for the dagman to your location. 

Essentially there are four steps. We first harvest the pulses from the MinBias and 
BeaconLaunch data (you won’t need the BeaconLaunch data, but it’s automatically 
generated). Then, we histogram all the found pulses in a season together into a common 
JSON file. Finally, we fit the distributions using the convolutional fitter and make a GCD file 
from the results.

Harvesting pulses

1. Run setup-extract_i3.py, by passing it the season name. Like IC86.2011.  It will try to 
find the PFFilt files of that season, and only extract the frames that pass the MinBias filter.

2. The events that pass the MinBias filter are now in an i3 file. Send the output .i3 file 
of (1) through harvest.py.  You can run setup-harvest.py but you have to specify what you 
want this set of pulses to be called in the “identifier” variable  (like “OWD_50ns”) and 
the WaveDeform parameters (you will always want to use 923). This file will run 
WaveDeform on every frame. It will find the pulses of interest (pulses that pass the pulse 
selection).  The output of harvest.py will be JSON files that contain the individual pulses 
extracted sorted by each DOM and digitizer. The name of this harvest set will be called 
OWD_50ns_923, and a folder will be generated for the season of interest with that name.

3. Merge the all the files in (2), by running merge_harvest.py. You need to specify the 
name from the previous step (OWD_50ns_923). During this merging process, the 
individual charges are binned. We use a 1000 bins from 0 to 5PE for the ATWD and 200 
bins over the same range for the SLC. 
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The output of the pulse harvesting is a single JSON per season which includes the binned 
charges for all DOMs, for ATWD0 and FADC (SLC), for both the MinBias and for the 
BeaconLaunch.

Fitting and making the GCD file

1. Run setup-convolutional_fitter.py. You need to specify the name of this fit set in the 
“description” variable, as well as the name of the pulse set above in the “identifier” 
variable. You will fit one string at a time by passing the string number (1-86) and digitizer 
(ATWD or SLC) to the convolutional fitter (convolutional_fitter.py). It will produce a 
JSON file per string, in a directory called “pdf,” along with plots of all the fits. I start the 
fit for ATWD at bin 30, and bin 14 for the SLC. The convolutional fitter requires the 
identifier name, which just specifies the file merged in step (3) above. 

2. The output will be a JSON file that contains the fit parameters for all the DOM on the 
desired string and digitizer. These now need to be merged using the 
merge_convolutional_fitter.py script. The output is a fantastic file that contains all the fit 
information (plus all other information that I have collected on all the DOMs — it’s a 
really useful file). It will also produce a file with the “_lite” name which contains the 
minimum amount of information for the SPE Templates.

3. Pass the fitted JSON file to make_GCD_SPE.py. You must specify what kind of GCD you 
want. Do you want the Gaussian mean to be at unity? Do you want to simply produce the 
TA0003 distribution, or do you want to use the SPE Templates?

The not at all condensed instructions
Extracting pulses

Since we are interested in single photoelectrons, we are using the digitized waveforms 
from ATWD0 are used. We cannot use the trigger pulse, since this would limit us to the 
discriminator threshold (0.25PE) therefore we devised a method to extract pulses after the 
window is open. This allows us to collect charges down to the limit of which WaveDeform 
will try to extract pulses. The pulse selection is described in this section.
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The pulse selection is the method used to extract candidate, unbiased, single 
photoelectron pulses from data, while minimizing the multi-PE contamination. It avoids 
collecting afterpulses, rejects late pulses from the trigger, reassembles late pulses, accounts for 
the discriminator threshold, reduces the effect of droop and baseline undershoot, and gives 
sufficient statistics to perform a season-to-season measurement. An illustrative diagram of 
the pulse selection is shown in the left side of Fig. 1, while a description of the procedure is 
detailed below.

Fig. 1: Left: an illustration of the pulse selection. Set the ‘pdf’ option in SPE_harvest.py 
to make these plots for every pulse. Right: the extracted charge distribution for DOM 1,1. You 
could make this plot after JSON files have been merged.

In order to trigger a DOM, the input to the front-end amplifiers must exceed the 
discriminator threshold. To avoid the selection bias of the discriminator trigger, we ignore the 
trigger pulse as well as the entire first 100~ns of the time window. Ignoring the first 100~ns 
has the added benefit of also removing late pulses that could be attributed to the triggering 
pulse. To ensure we are not accepting afterpulses into the selection, we also enforce that the 
pulse of interest (POI) is within the first 375~ns of the ATWD time window. In the vicinity of 
the POI, we check that WaveDeform did not reconstruct any pulses up to 50~ns prior to the 
POI, or 100-150~ns after the POI (the light-gray region of Fig.~\ref{fig::pulse_selection} Left). 
This later constraint is to reduce the probability of accidentally splitting a late pulse in the 
summation window.
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Restrictions are put on the full ATWD waveforms as well, such as ensuring that the 
trigger pulse does not exceed 10~mV (to reduce the effect of the subsequent baseline 
undershoot due to the AC coupling or other artifacts from large pulses) as well as a global 
constraint that the time window cannot contain any pulses that exceeds 20~mV. 

If a pulse is reconstructed between 100 and 375~ns after the time window is opened 
and the voltage criteria is met, it is accepted as a candidate photoelectron and several checks 
are performed on the waveform prior-to and after the pulse.  The first check is to ensure that 
the waveform is near the baseline just prior to the rising edge of the POI.  This is 
accomplished by ensuring that the waveform does not exceed 1~mV, 50 to 20~ns prior to the 
POI, and eliminates cases where the POI is late pulse. We also ensure the waveform returns to 
the baseline by checking that no ADC measurement exceeds 1~mV, 50 to 100~ns after the POI 
(these constraints are illustrated as the red-dotted lines and black arrows in 
Fig.~\ref{fig::pulse_selection} Left). 

If all the above criteria are met, we sum the reconstructed charges from the POI time 
(given by WaveDeform) to +50~ns (the dark gray area of in Fig.~\ref{fig::pulse_selection} 
Left). This ensures that any nearby pulses are either fully separated or fully added (in-case 
WaveDeform incorrectly split the pulse, and to reassemble late pulses). The 50~ns summation 
also means that the pulse selection we will occasionally be accepting multi-PE (MPE) events.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �11

0 50 100 150 200 250 300 350 400
Time [ns]

0

2

4

6

8

10

V
ol

ta
ge

[m
V

] 1.
08

P
EWaveform Flag

DOM(51,13) ATWD0 Invalid

0 50 100 150 200 250 300 350 400
Time [ns]

0

2

4

6

8

10

V
ol

ta
ge

[m
V

] 0.
17

P
E

DOM(10,15) ATWD0 Valid



Fig. 3 (left) shows a pulse that we reject. The reason for this is that there is another pulse 
too close to the one of interest. Specifically there is a waveform flag, indicating that the 
voltage before or after the pulse was too high. You can also see the fADC in green, and the 
calculated SLC pulse with the red dots. The pulse of interest is the smaller pulse in the grey 
time window, followed by what looks like a late pulse. The sum of these two pulses is found 
to be 1.08PE (sum of the two output from WaveDeform). Fig. 3 (right) shows a sub 
discriminator threshold pulse (0.17PE).

How to extract Pulses

We fist run the PFFilt files through extract_i3.py, which simply removes all frame from 
these files (/data/exp/IceCube/'+year+'/filtered/PFFilt/'+folder + ‘/*.bz2') that do not pass the MinBias filter.

These files are then sent to harvest.py script. This script requires:
1. MinBias files. From extract_i3.py but only contains frames that pass the MinBias 

filter. Example files:
inlocation  + /SPE_harvesting/IC86.2017/i3/2017_10/PFFilt_MinBias_IC86.2017_Y2017_M10_D14_Run130125.i3.bz2

2. The correct GCD file for the PFFilt file:
/data/exp/IceCube/2017/filtered/level2/1014/Run00130125/Level2_IC86.2017_data_Run00130125_1014_68_344_GCD.i3.zst

3. The processing script harvest.py requires several options:
1. Infile - the name and location of the MinBias file
2. Outfile - the name and location of the output file
3. GCDfile - the name and location of the gcd file
4. Pdf - This is the desired location to save the waveform of the pulse. If not specified, the pulse will not be 

plotted.  Setting this option, say to “/data/user/saxani”ike the one shown in Fig. 3.
5. NFrames - The number of frames to process. Set to 0 to process the full file.
6. Skip_beacons - set to string “True” to skip the beacon pulses and only look at the non-beacon pulses. 

Otherwise, it will run the BeaconLaunches first, then look through the non-BeaconLaunches. 
7. Tolerance - this is a parameter passed to WaveDeform. It defines a metric of how good the SPE pulse fit 

should be. The default value, and that used for processing normal IceCube data is 9. I set this to 6 in order for 
WaveDeform to reconstruct smaller pulses.

8. Noise threshold. This is a parameter passed to WaveDeform. All ADC values below this will be set to zero. 
Default value for IceCube data is 2.

9. Basis threshold. This is also a parameter passed to WaveDeform. It defines the minimum size of bin to 
consider fitting. Default value for IceCube is 3.

I run setup-harvest.py, which generates the dagman used to submit all my jobs. In this 
script, I define the IceCube season and identifier name — a string which defines essentially 
the name of the output folder. The values for the Tolerance, Noise, and Basis Threshold are 
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added to the identifier. For example, for the year 2011, and an identifier NewWaveDeform, 
the data from harvest.py is sent to this folder:

invocation + /SPE_harvesting/IC86.2011/923_NewWaveDeform

The data in this folder is all the pulses that pass the pulse selection, organized by 
month, by DOM, in JSON files. It is also separated into pulses extracted from ATWD0 and 
from calculated SLC pulses. The file should be pretty self-explanatory. The next step is to 
merge all the files in a given IceCube season. This is done with the merge_harvest.py script. 

Again, this can be set up using the setup-merge_harvest.py script. In this script, I 
specify the identifier, or 923_NewWaveDeform (in the previous example). It then generates a 
dagman that runs jobs to merge all the JSON files from the seasons selected in this script. The 
merge_harvest.py script also histograms all the ATWD charges into 1000 bins from 0 to 5PE 
(The SLC binning is more coarse, we use 200 bins from 0 to 5PE). The merged files are sent to, 
for example:

inlocation + /SPE_harvesting/Final_charge_distributions/IC86.2011_923_NewWaveDeform.json

Suppose you want the histogram of the charge distribution for DOM (1,1) from 
IC86.2011 from the WaveDeform with the settings 923, then open the file above with a JSON 
reader like so:

import json

infile = inlocation + '/SPE_harvesting/Final_charge_distributions/IC86.2011_923_NewWaveDeform.json'
with open(infile) as data_file:    
    data = json.load(data_file)

charge_dist = data[‘1,1']['MinBias']['hist']['ATWD']['binContents']
number_of_bins = data[‘1,1’]['MinBias']['hist']['ATWD']['nbins']
min_charge = data[‘1,1’][‘MinBias']['hist']['xmin']
max_charge = data[‘1,1’]['MinBias']['hist']['xmax']

You could also look at SLC rather than ATWD, or BeaconLaunch rather than MinBias, 
for any in-ice DOM. There aren’t many BeaconLaunch pulses, since the BeaconLauch is a 
forced time window, which means that a pulse will either be accidental or noise. Fig. 4 shows 
the charge distribution for summing over all DOMs, over all seasons, for the MinBias and the 
BeaconLaunches. These are subsequently divided into the set of data with WaveDeform set to 
923 and 623. The 623 set is simply used to try and determine the Low charge region. 
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Fig. 4 shows that BeaconLaunch data in red, and the MinBias in black. The 
BeaconLaunch data was scaled by 28.4, which is the ratio of the MinBias lifetime to the 
BeaconLaunch live time. The noise is determined by subtracting the shape of the MinBias 
data by the BeaconLaunch data. We see when we modify WavDeform (Fig. 4 right), the 
amount of noise increases (to a maximum of 1.7% of the data), but allows us to examine the 
distribution down to approximately 0.10PE. We can verify the factor 28.4 by plotting the low 
charge region for different settings on WaveDeform. After subtracting the background from 
the MinBias data, we should see rough agreement between settings. This is shown in Fig. 5 
left. If the scaling factor was too large, one would see something like Fig. 5 right.

Fig. 4. Left: The normal 923 settings for WaveDeform. Right: stetting WaveDeform to 
623. We only use the BeaconLaunch data to describe the low-PE region. This region (sub 
0.25PE) really only effects the DOM efficiency, since if you randomly sample from a 
distribution with a large area below the discriminator, that photon will just be thrown away 
(which is what the DOM efficiency is). It’s important to describe the data as accurately as 
possible, and therefore we do the best job that we can, but in reality, the shape  in the region 
where there is no data is fully compensated for with the DOM efficiency.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �14

0.1 0.25 1 2
Charge [PE]

102

103

104

105

106

107

108

109

E
ve

nt
s

[b
in

�
1 ]

Nominal WaveDeform

MinBias Dataset ⌘ MNom

BeaconLaunch Dataset ⌘ BNom

BNom - MNom (BNom|1PE
/MNom|1PE

)

0.1 0.25 1 2
Charge [PE]

102

103

104

105

106

107

108

109

E
ve

nt
s

[b
in

�
1 ]

Modified WaveDeform

MinBias Dataset ⌘ MMod

BeaconLaunch Dataset ⌘ BMod

BMod - MMod (BMod|1PE
/ MMod|1PE

)



Fig. 5. Using three different settings for WaveDeform 923 in light blue, 723 in green, and 
623 in dark blue. Left: scaling factor between MinBias and BeaconLaunch set to 28.4. Right: 
scaling factor set to 100. You can see that with the improper scaling factor, the curves do not 
agree. 

Convolutional Fitting
As of now, we have the charge distributions for all seasons, ATWD, SLC, per DOM, for 

two settings  of WaveDeform (923 and 623). Now, we use the convolutional fitter to fit the 
background subtracted data. This is done using the convolutional_fitter.py script located 
here:

inlocation + /SPE_harvesting/scripts/jobs/convolutional_fitter.py

This file takes a few arguments. 
1. Identifier - for example 923_NewWaveDeform.
2. Starting bin - this is the bin you wish to start fitting at. ATWD 923 I set  to 30 (0.15PE), SLC 923 I set to 14. 

For the 623 set, we can lower the starting bin to 20 (0.1PE). 
3. year — this is the IceCube season. It selects the year to fit, as well used for the titles on the plots, as well as 

the name of the outfile.
4. Pdf location — if this is set to a directory, the plot of every fit will be saved to that directory.
5. set_exp — if this is set to the string ‘True’ then it will use the default shape of the EXP1, ie. 6.9 amplitude 

and 0.032 for the exponential decay. If set to False, you should be using the 623 set, and it will try to determine the 
shape of the exp1.

6. DOM — if specified, a string like 1,1, it will only fit that single DOM.
7. String — if specified, it will only fit that string. Example, set to 1 to only fit string 1. When I submit jobs to 

the cluster to fit, I fit one string per job.
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8. digitizer — You can specify either ATWD or SLC. This means that it will fit the ATWD or the SLC 
distribution from the input file.

An example fit for DOM 1,1 with the year set to AVG (sum over 2011-2016 data), the 
set_exp to True, the starting bin is 30, ATWD, is shown in Fig. 6. In this figure, you can see 
that the exponential EXP1 is set to the default value of 6.9 and 0.027 decay width. The other 
components of the fit: EXP2 and Gaus are shown in blue, along with the 2PE component, 
determined by the convolutional fitter. The purple distribution shows the Full (all years, all 
DOMs) BeaconLaunch dataset, scaled by 28.4, then scaled again by a factor of 30 such that it 
is visible. The charge data from the pulse selection is shown in the black histogram, while the 
full convolutional fit is shown in the black line. The fit values, are all shown in the description 
on the side, along with the uncertainty. The large uncertainty in the EXP1 component is due 
to the fact that we are fitting the 923 set, which can’t say much about the low-PE region. The 
text in the plot also shows the number of entries, the validity (whether the fit succeeded), the 
peak-to-valley ratio, the reduced chi2 of the distribution and fit, and the mean charge of the 
fit.

Fig. 6. An example output of the convolutional fitter for the ATWD, DOM 1,1 of all the years 
data summed together. The SPE Template is the red distribution. The semi-opaque region 
around the peak is where we prioritize the fitter. This is accomplished by minimizing the 
uncertainty in the data around the peak. The scipy fitting code has an option called sigma 
which allows you to specify the uncertainty.
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The output of the convolutional_fitter.py is a JSON file that contains all the fit information. I 
perform the fitting on the cluster using the setup-convolutional_fitter.py script. Which will fit 
each string, per job. Then I run the merge_convolution_fitter.py script located:

inlocation + /SPE_harvesting/scripts/jobs/merge-convolutional_fitter.py

In the merging file above, it goes through the strings, and merges all the JSON files 
together. There’s often 1 string that might fail on the cluster. If you re-run it, it will succeed. 
This merging script also populates the final JSON file with all the information related to each 
DOM. Have a look at this example output file:

inlocation + /SPE_harvesting/SPE_fits/Fits_923_NewWaveDeform/IC86.2011_923_NewWaveDeform.json

In this file, you can find a ton of information, such as:
ATWDFitParams: an array of the components of the fit. 
ATWDFitParams_err: the error of the fit values
ATWD_fit: The information related to the output of the convolutional fitter for the 

ATWD.
Absorption: This is the Spice3.2 absorption value at the depth of the DOM.
AnodeSens: The sensitivity of the anode. As Chris Wendt, I’m not sure what the units 

are.
BlueSens: DOM sensitivity to blue light?
CalDate: I retrieve the HV and Gain values of every DOM at one point per year to 

compare. These are the dates of the measure HV and Gain settings.
CathSens: DOM cathode sensitivity?
DOMid: the id of the DOM
DeadDOM: if the DOM is labelled as dead in the GCD file, I set this to 1. 
DeepCore: boolean if the DOM is part of DeepCore.
DeploymentDay: the MJD date that the DOM was deployed in-ice
DeploymentSeason: the month and year of the deployment.
Depth: The position of the DOM. Distance from top of the ice. 
Gain: I record the gain once per year. The measure time is given in the CalDate.
GainAVG: simply the average of the Gain value above.
HQE: if the DOM is HQE, set to 1.
HV: I record the HV of the DOM once per year. The time is given in CalDate.
HV1e7: this is HV setting to get 1E7 given by Hamamatsu? or lab?
HVAvgInIce: The average of the HV values above.
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HVSlope: the slope of the HV values above.
MBid: the id of the main board. 
MJD: The modified julian date of the deployment.
MeanCharge: the calculated mean charge of the ATWD fit.
NEntries: the number of entries in the ATWD fit.
NickName: the DOM nickname
OM: the optical module number.
Order: the DOM deployment order? 
PMTSerial: the serial number of the PMT. We are missing some of these.
PVRInIce: This is my measurement of the PVR.
PVRLab: This is Hamamatsu’s measurement of the PVR.
QE: set to 0 if dead. Set to 1 if standard quantum efficiency, set to 2 if HQE.
RDE: This should be 1 for standard and 1.35 for HQE.
RelSens: relative sensitivity? Ask Chris. 
SLC_Fit: the fit values from the SLC.
Scattering: the Spice3.2 scattering values at the depth of the DOM (not taking into 

account position, just depth).
String: The string that the DOM is on.
TemperatureCalc: Temperature calculated from the depth fit.
TemperatureInIce: the measured onboard DOM temperature sensor.
Toroid: the version of the AC coupling used on the DOM. 1 for old, 2 for new. 0 for 

dead.
Valid: is the fit valid? 1 for true.
Velocity: the velocity of the DOM.
VelocityGradient: the calculated velocity relative to the DOMs below and above it. So 

0.01m/yr means that this DOM is moving 1cm per year relative to the DOM above and 
below it.

X, Y, Z: the position of the DOM.

The residual can be calculated with the script:
inlocation + /SPE_harvesting/scripts/jobs/make_Residual.py

If you make dramatic changes to the fit, then the residual will likely change. The 
residual is described as a scaling factor as a function of charge. The distribution is shown 
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below. In dataclasses, where the charge distribution functional form is defined, there is a long 
array called yData and xData, it’s simply (1+ the curve below).

Making a GCD file with the SPE Templates
The JSON file that is output from the merge_convolutional_fitter.py script contains the values 
of the parameters in Eq. 1. These values represent the SPE Templates. We now need to insert 
them into the GCD file. There is a script to do this called inject_spe_templates.py.

inlocation + /SPE_harvesting/scripts/jobs/inject_SPE_templates.py

This file takes several arguments:
1. Identifier - the name of the set of convolutional fits.
2. description - This just appends a description to the GCD file output name
3. season —This is the IceCube season you want to make the GCD for. You will need to modify the script to 

take in the correct GCD file for you. For MC, it finds the appropriate GCD file to input the SPE_Templates.
4. scale factor — set to 1 for not charge scaling. This scales the measured distribution by some factor. For 

example, suppose you want a Pass2 GCD. DOM 1,1 had its charge scaled by 1.037. If we want to further scale this 
number by 1%, we can put 0.99 in as a scaling factor.

The options above allow you to specify two things: the scaling factor (ie. how to stretch the 
distribution), and the shape of the charge distribution (SPE Templates, or default TA0003).

This script creates a field in the domCal called combined_spe_charge_distribution. This holds 
the fit values for the SPE template associated with that DOM. There is one caveat to this, it 
was found that the HQE DOMs in IceCube have a measurable different shape than the 
standard DOMs. This caused the average charge of their distributions to be 3.54% lower than 
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the standard DOMs. In simulation, this would look  like a 3.54% change in DOM efficiency 
for the HQE DOMs. In order to take this into account, we scale the compensation factor by 
3.54% (the actual value is calculated in this script). 

This file also updates the noise in the GCD file according to the SPE templates. We then want 
vuvuzela to use the values in the GCD file.

This GCD is now ready to be used for Simulation. If using it for data, make sure that you 
have the correct initial GCD file. The name of the GCD specifies what it is. You want to use 
GCD files that say “AVG” to indicate that they were fit using all the data. You also want to 
watch out for “Pass1/Pass2/Pass3”. They indicate what the produced MC should be 
compared agains.

Results from fits    
The failed fits are almost entirely dead DOMs. I won’t describe each plot, although they 

should hopefully be self-explanatory. If not, feel free to send me an email at saxani@mit.edu. 
More information may be available in the paper, as well as in my upcoming thesis.
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The following plots show various extracted properties as a function of PMT id. The IDs 
are separated into an identifier (like TA, MA, AA…) and number (1,2,3, …)

We can sort the groups of PMT identifiers by their number to look for correlations. 
Assuming that the ID number is was sequentially assigned to the PMT during 
manufacturing, observed changes in the following extracted quantities over the ID number 
are likely due to manufacturing. First of, the location of the ID identifiers are:

The majority of the standard QE DOMs have a TA identifier. The MA corresponds 
primarily to the HQE DOMs. The vertical lines in the plots below indicate DOMs which are 
instrumented with the old toroids.
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