
SPE Templates V2
Technote
Extracting and fitting procedure

Spencer N. Axani - July 2, 2019
 

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �1

Introduction
The following tech note describes all the changes to the MC processing implemented to
include the SPE Templates v2. I’ve tried to make it as simple as possible to get the useful
information to the reader, but there’s a lot to cover. We have a 15 page paper that goes
through the procedure and results it in detail (see https://wiki.icecube.wisc.edu/index.php/
SPE_Templates_Paper). This document will likely be useful for people trying to implement
the SPE Templates in their MC, understand terminology, and how to rerun my code.

P.S. The MEOWS analysis used the SPE Templates V2.
The following projects were modified and currently included in COMBO:

1. DOM Launcher:
• Accounts for the discriminator change. (0.93 scaling factor applied to

discriminator)
• Looks to the GCD file for the SPE charge distribution.

2. Dataclasses:
• Understands the new SPE templates GCD file entries
• Scales the SPE Template in the GCD file by the residual

3. CLSim:
• Applies the compensation factor. Same manner that the RDE is applied.

4. GCD File:
• Has entries in the I3Calibration object that describe the shape and the charge

scaling factor, as well as the compensation factor.
5. Vuvuzela:

• Vuvuzela now looks into the GCD file for the noise parameters.

6. WaveDeform:
• Changed to allow for the apply_spe_correction option to be used also with MC.

To minimize the uncertainty on the fit, for a given DOM, we take all the pulses from
2011-2017 and fit to that. This is what is called the AVG distributions. These are what will be
used for MC. The Gaussian Mean location is determine by fitting that particular season
though. We are not going to have SPE Templates in MC for each season.

A useful file for people looking into correlations, or seeking further information about the DOMs can be found in this JSON
file. It contains all the information I’ve collected about the DOMs over the years:

/data/ana/SterileNeutrino/IC86/HighEnergy/SPE_Templates/SPE_harvesting/scripts/jobs/DOM_properties.json

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �2

https://wiki.icecube.wisc.edu/index.php/SPE_Templates_Paper
https://wiki.icecube.wisc.edu/index.php/SPE_Templates_Paper

How to use the SPE Templates
1. Use the trunk of COMBO for Detector level (still investigating the noise module in

vuvuzela). This requires py2v3.1.1.
2. Use my GCD file. They will have {Pass1,Pass2,Pass3} in the label indicating which pass

you want to simulate.
3. Use the updated icerec so that you can set WaveDeform apply_spe_corection to True in

L1:
 tray.AddSegment(OnlineFilter, "OnlineFilter",
 decode=False, simulation=True,
 vemcal_enabled=False,
 alert_followup_omit_GCD_diff = True,
 needs_wavedeform_spe_corr = True,
 **online_kwargs
)

Key words and overview of modifications
SPE Templates: The GCD file now contains the description of the individual DOM

single photoelectron charge distribution. This is represented as the sum of two exponentials
and a gaussian. DOM Launcher assigns a charge to the photoelectron by sampling from the
SPE charge distribution. A single DOM’s charge distribution is now described by the shape in
terms of exp1+exp2+gaussn, a global residual correction (see below), a compensating factor
to scale the DOM efficiency, and a charge scaling factor to mimic the Pass2/Pass3 shifts.

Compensation Factor: Since the SPE templates change the average amount of charge
per photoelectron, this shifts the DOM
efficiency. To compensate for the DOM
efficiency shift, we scale the number of
photons produced by the average
charge of the TA0003 distribution by
the average charge of the SPE
templates. It turns out to be ~1.3.
CLSIM generates roughly 30% more
photons (internally), in the same what
that it handles the HQE DOMs. Note:
HQE DOMs have a noticeably different
shape than the NQE DOMS, resulting

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �3

in their mean charge being 3.54% lower than the NQE DOMs (Figure below). The
compensation factor is set to 3.54% higher (effectively 3.54% higher RDE) so that their total
charge collected remains the same after implementing the SPE Templates.

Residual Correction: The functional form of the
SPE Template is assumed to be Exp+Exp+Gausn.
This likely isn’t the exact shape of the distribution
in nature. After we extract the values from each fit,
we calculate the residual (how far off the fit is from
the actual distribution in percentage points). The
average residual is used as a correction to all of the
charge distributions. The plot on the left shows the
that the Exp+Exp+Gausn distributions

underestimate the measured distribution by ~13% at 0.45PE. This correction is applied in
dataclasses.

MeanATWDCharge and MeanFADCCharge: These entries in the I3Calibration object
in the GCD file determine the scaling factor used by WaveDeform to scale the charge. It
allows you to scale the charge identically to that used in Pass1/Pass2/Pass3. Simply set these
values to the values used in Data, and it will be properly scaled as well in MC. For example,
Pass2 scaled the charge of DOM (1,1) from the ATWD by 1.032, if you want to simulate Pass2,
then set MeanATWDCharge to 1.032. The labelling in the GCD file tells you what scaling
factor I applied.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �4

0.0 0.2 0.4 0.6 0.8 1.0
Charge [PE]

�10

�5

0

5

10

15

20

A
ve

ra
ge

R
es

id
ua

l
[%

]

0.00

0.01

0.02

0.03

0.04

0.05 Pass1 Charge Distribution
MC: SPE Templates

MC: Default (TA0003)

Data: IC86.2012

0.0 0.5 1.0 1.5 2.0 2.5
Charge [PE]

0.9
1.0
1.1

R
at

io

0.00

0.01

0.02

0.03

0.04

0.05 Pass2 Charge Distribution
MC: SPE Templates

MC: Default (TA0003)

Data: IC86.2017

0.0 0.5 1.0 1.5 2.0 2.5
Charge [PE]

0.9
1.0
1.1

R
at

io

Discriminator setting: In developing the SPE
Templates, the measured charge distributions were
found have data/MC disagreement near the
discriminator. Originally it was set to 0.25PE,
however, PE refers to the quantity that is output
from WaveDeform. The discriminator triggers on the
waveform voltage. By simulating several sets, a
value of 0.93*(discriminator threshold) was found to
produce the best results. This was found
independently in LE/Osc and in calibration by
Martin Rongen. The discriminator modification is
implemented in DOMLauncher.

Vuvuzela noise update: The SPE Templates require an update to the noise. To
reproduce the timing distribution of the noise, the noise is scaled by the area above the
discriminator compared to the area above the discriminator of the TA0003 distribution. A
comparison between the noise before and after the scaling is shown in red and yellow below,
while the noise model used before the SPE templates is shown in green.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �5

Introduction
The single photoelectron (SPE) templates represent the probability density function for

the charge distributions on all in-ice DOMs. The functional form used to describe the
distribution is the sum of two exponentials and a Gaussian, Exp1+Exp2+Gaus., explicitly:

Where charge, q, is the quantity calculated in WaveDeform. WaveDeform deconvolve
the digitized waveform into a pulse series (pulse times and charges). This is accomplished by
fitting SPE pulse templates (templates which are dependent on the version of the AC
coupling used in the DOM) to the digitized waveforms via a χ2. The charge associated with a
fitted pulse is determined by dividing the the area of the fitted SPE pulse template by the
load resistance (and further scaling it by the gain of the PMT). WaveDeform is capable of
fitting multiple SPE pulse templates to multi-PE pulses, and deconvolving them into their
separate photoelectrons. Since it may occasionally deconvolving a non-multiPE pulse, we
must always sum up the pulses from WaveDeform to make a comparison between MC and
Data (i.e. we need to reassemble pulses that may have been accidentally split).

For this study, all frames (events) that pass the MinBias filter are then passed through
WaveDeform. This filter works by randomly selecting HLC events, at a rate of 1/1000
triggers. The MinBias filter saves the full digitized waveform from the ATWD and fADC.
This allows us to rerun WaveDeform with different settings (this will be useful later). This
study will also use the BeaconLaunch dataset. This dataset represents forced time windows.
That is, it is not triggered by a pulse, rather, it is triggered by a time. Normally, a random
force trigger will readout the ADC baseline, and it is rare that it record actual pulse. Since
these frames are primarily baseline fluctuations, we can use this dataset to analysis the
accidental pulse reconstruction associated with ADC fluctuations (referred to as noise).

This tech note will begin with a set of condensed instructions for those familiar in the
procedure already. Then, I’ll provide much more informative description of every step. We
use a modern simulation Metaproject (e.g. V06-00-03), and recent updates to WaveDeform
mean that we need to use the current trunk versions (http://code.icecube.wisc.edu/svn/

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �6

f (q)SPE = E1e
−q/w1 + E2e

−q/w2 + Ne
− (µ−q)

2

2σ 2

projects/wavedeform/trunk/). Later, this modified version of WaveDeform will be added to
the release. Changing the meta project involves simply replacing the hashtag Metaproject
identifier at the top of the processing scripts. WaveDeform is only used in the harvesting.py
script.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �7

Condensed instructions
The "inlocation” variable will be defined as the location of the GitHub project.

The processing files are located here :
inlocation + /SPE_harvesting/scripts/jobs/

The output from these files are sent here:
inlocation +/SPE_harvesting/

I typically have a “setup-X.py” file that generates the dagman to run X.py script on the
cluster. You will have to modify the setup-X.py script so that it generates dagmans in your
scractch/ dir. You will also have to copy the .submit scripts for the dagman to your location.

Essentially there are four steps. We first harvest the pulses from the MinBias and
BeaconLaunch data (you won’t need the BeaconLaunch data, but it’s automatically
generated). Then, we histogram all the found pulses in a season together into a common
JSON file. Finally, we fit the distributions using the convolutional fitter and make a GCD file
from the results.

Harvesting pulses

1. Run setup-extract_i3.py, by passing it the season name. Like IC86.2011. It will try to
find the PFFilt files of that season, and only extract the frames that pass the MinBias filter.

2. The events that pass the MinBias filter are now in an i3 file. Send the output .i3 file
of (1) through harvest.py. You can run setup-harvest.py but you have to specify what you
want this set of pulses to be called in the “identifier” variable (like “OWD_50ns”) and
the WaveDeform parameters (you will always want to use 923). This file will run
WaveDeform on every frame. It will find the pulses of interest (pulses that pass the pulse
selection). The output of harvest.py will be JSON files that contain the individual pulses
extracted sorted by each DOM and digitizer. The name of this harvest set will be called
OWD_50ns_923, and a folder will be generated for the season of interest with that name.

3. Merge the all the files in (2), by running merge_harvest.py. You need to specify the
name from the previous step (OWD_50ns_923). During this merging process, the
individual charges are binned. We use a 1000 bins from 0 to 5PE for the ATWD and 200
bins over the same range for the SLC.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �8

The output of the pulse harvesting is a single JSON per season which includes the binned
charges for all DOMs, for ATWD0 and FADC (SLC), for both the MinBias and for the
BeaconLaunch.

Fitting and making the GCD file

1. Run setup-convolutional_fitter.py. You need to specify the name of this fit set in the
“description” variable, as well as the name of the pulse set above in the “identifier”
variable. You will fit one string at a time by passing the string number (1-86) and digitizer
(ATWD or SLC) to the convolutional fitter (convolutional_fitter.py). It will produce a
JSON file per string, in a directory called “pdf,” along with plots of all the fits. I start the
fit for ATWD at bin 30, and bin 14 for the SLC. The convolutional fitter requires the
identifier name, which just specifies the file merged in step (3) above.

2. The output will be a JSON file that contains the fit parameters for all the DOM on the
desired string and digitizer. These now need to be merged using the
merge_convolutional_fitter.py script. The output is a fantastic file that contains all the fit
information (plus all other information that I have collected on all the DOMs — it’s a
really useful file). It will also produce a file with the “_lite” name which contains the
minimum amount of information for the SPE Templates.

3. Pass the fitted JSON file to make_GCD_SPE.py. You must specify what kind of GCD you
want. Do you want the Gaussian mean to be at unity? Do you want to simply produce the
TA0003 distribution, or do you want to use the SPE Templates?

The not at all condensed instructions
Extracting pulses

Since we are interested in single photoelectrons, we are using the digitized waveforms
from ATWD0 are used. We cannot use the trigger pulse, since this would limit us to the
discriminator threshold (0.25PE) therefore we devised a method to extract pulses after the
window is open. This allows us to collect charges down to the limit of which WaveDeform
will try to extract pulses. The pulse selection is described in this section.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �9

The pulse selection is the method used to extract candidate, unbiased, single
photoelectron pulses from data, while minimizing the multi-PE contamination. It avoids
collecting afterpulses, rejects late pulses from the trigger, reassembles late pulses, accounts for
the discriminator threshold, reduces the effect of droop and baseline undershoot, and gives
sufficient statistics to perform a season-to-season measurement. An illustrative diagram of
the pulse selection is shown in the left side of Fig. 1, while a description of the procedure is
detailed below.

Fig. 1: Left: an illustration of the pulse selection. Set the ‘pdf’ option in SPE_harvest.py
to make these plots for every pulse. Right: the extracted charge distribution for DOM 1,1. You
could make this plot after JSON files have been merged.

In order to trigger a DOM, the input to the front-end amplifiers must exceed the
discriminator threshold. To avoid the selection bias of the discriminator trigger, we ignore the
trigger pulse as well as the entire first 100~ns of the time window. Ignoring the first 100~ns
has the added benefit of also removing late pulses that could be attributed to the triggering
pulse. To ensure we are not accepting afterpulses into the selection, we also enforce that the
pulse of interest (POI) is within the first 375~ns of the ATWD time window. In the vicinity of
the POI, we check that WaveDeform did not reconstruct any pulses up to 50~ns prior to the
POI, or 100-150~ns after the POI (the light-gray region of Fig.~\ref{fig::pulse_selection} Left).
This later constraint is to reduce the probability of accidentally splitting a late pulse in the
summation window.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �10

Restrictions are put on the full ATWD waveforms as well, such as ensuring that the
trigger pulse does not exceed 10~mV (to reduce the effect of the subsequent baseline
undershoot due to the AC coupling or other artifacts from large pulses) as well as a global
constraint that the time window cannot contain any pulses that exceeds 20~mV.

If a pulse is reconstructed between 100 and 375~ns after the time window is opened
and the voltage criteria is met, it is accepted as a candidate photoelectron and several checks
are performed on the waveform prior-to and after the pulse. The first check is to ensure that
the waveform is near the baseline just prior to the rising edge of the POI. This is
accomplished by ensuring that the waveform does not exceed 1~mV, 50 to 20~ns prior to the
POI, and eliminates cases where the POI is late pulse. We also ensure the waveform returns to
the baseline by checking that no ADC measurement exceeds 1~mV, 50 to 100~ns after the POI
(these constraints are illustrated as the red-dotted lines and black arrows in
Fig.~\ref{fig::pulse_selection} Left).

If all the above criteria are met, we sum the reconstructed charges from the POI time
(given by WaveDeform) to +50~ns (the dark gray area of in Fig.~\ref{fig::pulse_selection}
Left). This ensures that any nearby pulses are either fully separated or fully added (in-case
WaveDeform incorrectly split the pulse, and to reassemble late pulses). The 50~ns summation
also means that the pulse selection we will occasionally be accepting multi-PE (MPE) events.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �11

0 50 100 150 200 250 300 350 400
Time [ns]

0

2

4

6

8

10

V
ol

ta
ge

[m
V

] 1.
08

P
EWaveform Flag

DOM(51,13) ATWD0 Invalid

0 50 100 150 200 250 300 350 400
Time [ns]

0

2

4

6

8

10

V
ol

ta
ge

[m
V

] 0.
17

P
E

DOM(10,15) ATWD0 Valid

Fig. 3 (left) shows a pulse that we reject. The reason for this is that there is another pulse
too close to the one of interest. Specifically there is a waveform flag, indicating that the
voltage before or after the pulse was too high. You can also see the fADC in green, and the
calculated SLC pulse with the red dots. The pulse of interest is the smaller pulse in the grey
time window, followed by what looks like a late pulse. The sum of these two pulses is found
to be 1.08PE (sum of the two output from WaveDeform). Fig. 3 (right) shows a sub
discriminator threshold pulse (0.17PE).

How to extract Pulses

We fist run the PFFilt files through extract_i3.py, which simply removes all frame from
these files (/data/exp/IceCube/'+year+'/filtered/PFFilt/'+folder + ‘/*.bz2') that do not pass the MinBias filter.

These files are then sent to harvest.py script. This script requires:
1. MinBias files. From extract_i3.py but only contains frames that pass the MinBias

filter. Example files:
inlocation + /SPE_harvesting/IC86.2017/i3/2017_10/PFFilt_MinBias_IC86.2017_Y2017_M10_D14_Run130125.i3.bz2

2. The correct GCD file for the PFFilt file:
/data/exp/IceCube/2017/filtered/level2/1014/Run00130125/Level2_IC86.2017_data_Run00130125_1014_68_344_GCD.i3.zst

3. The processing script harvest.py requires several options:
1. Infile - the name and location of the MinBias file
2. Outfile - the name and location of the output file
3. GCDfile - the name and location of the gcd file
4. Pdf - This is the desired location to save the waveform of the pulse. If not specified, the pulse will not be

plotted. Setting this option, say to “/data/user/saxani”ike the one shown in Fig. 3.
5. NFrames - The number of frames to process. Set to 0 to process the full file.
6. Skip_beacons - set to string “True” to skip the beacon pulses and only look at the non-beacon pulses.

Otherwise, it will run the BeaconLaunches first, then look through the non-BeaconLaunches.
7. Tolerance - this is a parameter passed to WaveDeform. It defines a metric of how good the SPE pulse fit

should be. The default value, and that used for processing normal IceCube data is 9. I set this to 6 in order for
WaveDeform to reconstruct smaller pulses.

8. Noise threshold. This is a parameter passed to WaveDeform. All ADC values below this will be set to zero.
Default value for IceCube data is 2.

9. Basis threshold. This is also a parameter passed to WaveDeform. It defines the minimum size of bin to
consider fitting. Default value for IceCube is 3.

I run setup-harvest.py, which generates the dagman used to submit all my jobs. In this
script, I define the IceCube season and identifier name — a string which defines essentially
the name of the output folder. The values for the Tolerance, Noise, and Basis Threshold are

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �12

added to the identifier. For example, for the year 2011, and an identifier NewWaveDeform,
the data from harvest.py is sent to this folder:

invocation + /SPE_harvesting/IC86.2011/923_NewWaveDeform

The data in this folder is all the pulses that pass the pulse selection, organized by
month, by DOM, in JSON files. It is also separated into pulses extracted from ATWD0 and
from calculated SLC pulses. The file should be pretty self-explanatory. The next step is to
merge all the files in a given IceCube season. This is done with the merge_harvest.py script.

Again, this can be set up using the setup-merge_harvest.py script. In this script, I
specify the identifier, or 923_NewWaveDeform (in the previous example). It then generates a
dagman that runs jobs to merge all the JSON files from the seasons selected in this script. The
merge_harvest.py script also histograms all the ATWD charges into 1000 bins from 0 to 5PE
(The SLC binning is more coarse, we use 200 bins from 0 to 5PE). The merged files are sent to,
for example:

inlocation + /SPE_harvesting/Final_charge_distributions/IC86.2011_923_NewWaveDeform.json

Suppose you want the histogram of the charge distribution for DOM (1,1) from
IC86.2011 from the WaveDeform with the settings 923, then open the file above with a JSON
reader like so:

import json

infile = inlocation + '/SPE_harvesting/Final_charge_distributions/IC86.2011_923_NewWaveDeform.json'
with open(infile) as data_file:
 data = json.load(data_file)

charge_dist = data[‘1,1']['MinBias']['hist']['ATWD']['binContents']
number_of_bins = data[‘1,1’]['MinBias']['hist']['ATWD']['nbins']
min_charge = data[‘1,1’][‘MinBias']['hist']['xmin']
max_charge = data[‘1,1’]['MinBias']['hist']['xmax']

You could also look at SLC rather than ATWD, or BeaconLaunch rather than MinBias,
for any in-ice DOM. There aren’t many BeaconLaunch pulses, since the BeaconLauch is a
forced time window, which means that a pulse will either be accidental or noise. Fig. 4 shows
the charge distribution for summing over all DOMs, over all seasons, for the MinBias and the
BeaconLaunches. These are subsequently divided into the set of data with WaveDeform set to
923 and 623. The 623 set is simply used to try and determine the Low charge region.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �13

Fig. 4 shows that BeaconLaunch data in red, and the MinBias in black. The
BeaconLaunch data was scaled by 28.4, which is the ratio of the MinBias lifetime to the
BeaconLaunch live time. The noise is determined by subtracting the shape of the MinBias
data by the BeaconLaunch data. We see when we modify WavDeform (Fig. 4 right), the
amount of noise increases (to a maximum of 1.7% of the data), but allows us to examine the
distribution down to approximately 0.10PE. We can verify the factor 28.4 by plotting the low
charge region for different settings on WaveDeform. After subtracting the background from
the MinBias data, we should see rough agreement between settings. This is shown in Fig. 5
left. If the scaling factor was too large, one would see something like Fig. 5 right.

Fig. 4. Left: The normal 923 settings for WaveDeform. Right: stetting WaveDeform to
623. We only use the BeaconLaunch data to describe the low-PE region. This region (sub
0.25PE) really only effects the DOM efficiency, since if you randomly sample from a
distribution with a large area below the discriminator, that photon will just be thrown away
(which is what the DOM efficiency is). It’s important to describe the data as accurately as
possible, and therefore we do the best job that we can, but in reality, the shape in the region
where there is no data is fully compensated for with the DOM efficiency.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �14

0.1 0.25 1 2
Charge [PE]

102

103

104

105

106

107

108

109

E
ve

nt
s

[b
in

�
1]

Nominal WaveDeform

MinBias Dataset ⌘ MNom

BeaconLaunch Dataset ⌘ BNom

BNom - MNom (BNom|1PE
/MNom|1PE

)

0.1 0.25 1 2
Charge [PE]

102

103

104

105

106

107

108

109

E
ve

nt
s

[b
in

�
1]

Modified WaveDeform

MinBias Dataset ⌘ MMod

BeaconLaunch Dataset ⌘ BMod

BMod - MMod (BMod|1PE
/ MMod|1PE

)

Fig. 5. Using three different settings for WaveDeform 923 in light blue, 723 in green, and
623 in dark blue. Left: scaling factor between MinBias and BeaconLaunch set to 28.4. Right:
scaling factor set to 100. You can see that with the improper scaling factor, the curves do not
agree.

Convolutional Fitting
As of now, we have the charge distributions for all seasons, ATWD, SLC, per DOM, for

two settings of WaveDeform (923 and 623). Now, we use the convolutional fitter to fit the
background subtracted data. This is done using the convolutional_fitter.py script located
here:

inlocation + /SPE_harvesting/scripts/jobs/convolutional_fitter.py

This file takes a few arguments.
1. Identifier - for example 923_NewWaveDeform.
2. Starting bin - this is the bin you wish to start fitting at. ATWD 923 I set to 30 (0.15PE), SLC 923 I set to 14.

For the 623 set, we can lower the starting bin to 20 (0.1PE).
3. year — this is the IceCube season. It selects the year to fit, as well used for the titles on the plots, as well as

the name of the outfile.
4. Pdf location — if this is set to a directory, the plot of every fit will be saved to that directory.
5. set_exp — if this is set to the string ‘True’ then it will use the default shape of the EXP1, ie. 6.9 amplitude

and 0.032 for the exponential decay. If set to False, you should be using the 623 set, and it will try to determine the
shape of the exp1.

6. DOM — if specified, a string like 1,1, it will only fit that single DOM.
7. String — if specified, it will only fit that string. Example, set to 1 to only fit string 1. When I submit jobs to

the cluster to fit, I fit one string per job.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �15

8. digitizer — You can specify either ATWD or SLC. This means that it will fit the ATWD or the SLC
distribution from the input file.

An example fit for DOM 1,1 with the year set to AVG (sum over 2011-2016 data), the
set_exp to True, the starting bin is 30, ATWD, is shown in Fig. 6. In this figure, you can see
that the exponential EXP1 is set to the default value of 6.9 and 0.027 decay width. The other
components of the fit: EXP2 and Gaus are shown in blue, along with the 2PE component,
determined by the convolutional fitter. The purple distribution shows the Full (all years, all
DOMs) BeaconLaunch dataset, scaled by 28.4, then scaled again by a factor of 30 such that it
is visible. The charge data from the pulse selection is shown in the black histogram, while the
full convolutional fit is shown in the black line. The fit values, are all shown in the description
on the side, along with the uncertainty. The large uncertainty in the EXP1 component is due
to the fact that we are fitting the 923 set, which can’t say much about the low-PE region. The
text in the plot also shows the number of entries, the validity (whether the fit succeeded), the
peak-to-valley ratio, the reduced chi2 of the distribution and fit, and the mean charge of the
fit.

Fig. 6. An example output of the convolutional fitter for the ATWD, DOM 1,1 of all the years
data summed together. The SPE Template is the red distribution. The semi-opaque region
around the peak is where we prioritize the fitter. This is accomplished by minimizing the
uncertainty in the data around the peak. The scipy fitting code has an option called sigma
which allows you to specify the uncertainty.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Charge [PE]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Validity: True
NEntries: 197368
PVR: 2.739
Reduced �2: 0.899
Mean charge: 0.687

Exp1 Amp: 6.900 ± 144.519
Exp1 Width: 0.027 ± 0.098
Exp2 Amp: 0.602 ± 0.378
Exp2 Width: 0.445 ± 0.022

Gaus Amp: 0.778 ± 0.477
Gaus Mean: 1.031 ± 0.011
Gaus Width: 0.280 ± 0.003

SPE Convolution Fit: IC86.AVG (1,1)

Convolution fit

SPE template w/ residual

2PE contribution

MinBias data

BeaconLaunch data (⇥100)

The output of the convolutional_fitter.py is a JSON file that contains all the fit information. I
perform the fitting on the cluster using the setup-convolutional_fitter.py script. Which will fit
each string, per job. Then I run the merge_convolution_fitter.py script located:

inlocation + /SPE_harvesting/scripts/jobs/merge-convolutional_fitter.py

In the merging file above, it goes through the strings, and merges all the JSON files
together. There’s often 1 string that might fail on the cluster. If you re-run it, it will succeed.
This merging script also populates the final JSON file with all the information related to each
DOM. Have a look at this example output file:

inlocation + /SPE_harvesting/SPE_fits/Fits_923_NewWaveDeform/IC86.2011_923_NewWaveDeform.json

In this file, you can find a ton of information, such as:
ATWDFitParams: an array of the components of the fit.
ATWDFitParams_err: the error of the fit values
ATWD_fit: The information related to the output of the convolutional fitter for the

ATWD.
Absorption: This is the Spice3.2 absorption value at the depth of the DOM.
AnodeSens: The sensitivity of the anode. As Chris Wendt, I’m not sure what the units

are.
BlueSens: DOM sensitivity to blue light?
CalDate: I retrieve the HV and Gain values of every DOM at one point per year to

compare. These are the dates of the measure HV and Gain settings.
CathSens: DOM cathode sensitivity?
DOMid: the id of the DOM
DeadDOM: if the DOM is labelled as dead in the GCD file, I set this to 1.
DeepCore: boolean if the DOM is part of DeepCore.
DeploymentDay: the MJD date that the DOM was deployed in-ice
DeploymentSeason: the month and year of the deployment.
Depth: The position of the DOM. Distance from top of the ice.
Gain: I record the gain once per year. The measure time is given in the CalDate.
GainAVG: simply the average of the Gain value above.
HQE: if the DOM is HQE, set to 1.
HV: I record the HV of the DOM once per year. The time is given in CalDate.
HV1e7: this is HV setting to get 1E7 given by Hamamatsu? or lab?
HVAvgInIce: The average of the HV values above.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �17

HVSlope: the slope of the HV values above.
MBid: the id of the main board.
MJD: The modified julian date of the deployment.
MeanCharge: the calculated mean charge of the ATWD fit.
NEntries: the number of entries in the ATWD fit.
NickName: the DOM nickname
OM: the optical module number.
Order: the DOM deployment order?
PMTSerial: the serial number of the PMT. We are missing some of these.
PVRInIce: This is my measurement of the PVR.
PVRLab: This is Hamamatsu’s measurement of the PVR.
QE: set to 0 if dead. Set to 1 if standard quantum efficiency, set to 2 if HQE.
RDE: This should be 1 for standard and 1.35 for HQE.
RelSens: relative sensitivity? Ask Chris.
SLC_Fit: the fit values from the SLC.
Scattering: the Spice3.2 scattering values at the depth of the DOM (not taking into

account position, just depth).
String: The string that the DOM is on.
TemperatureCalc: Temperature calculated from the depth fit.
TemperatureInIce: the measured onboard DOM temperature sensor.
Toroid: the version of the AC coupling used on the DOM. 1 for old, 2 for new. 0 for

dead.
Valid: is the fit valid? 1 for true.
Velocity: the velocity of the DOM.
VelocityGradient: the calculated velocity relative to the DOMs below and above it. So

0.01m/yr means that this DOM is moving 1cm per year relative to the DOM above and
below it.

X, Y, Z: the position of the DOM.

The residual can be calculated with the script:
inlocation + /SPE_harvesting/scripts/jobs/make_Residual.py

If you make dramatic changes to the fit, then the residual will likely change. The
residual is described as a scaling factor as a function of charge. The distribution is shown

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �18

below. In dataclasses, where the charge distribution functional form is defined, there is a long
array called yData and xData, it’s simply (1+ the curve below).

Making a GCD file with the SPE Templates
The JSON file that is output from the merge_convolutional_fitter.py script contains the values
of the parameters in Eq. 1. These values represent the SPE Templates. We now need to insert
them into the GCD file. There is a script to do this called inject_spe_templates.py.

inlocation + /SPE_harvesting/scripts/jobs/inject_SPE_templates.py

This file takes several arguments:
1. Identifier - the name of the set of convolutional fits.
2. description - This just appends a description to the GCD file output name
3. season —This is the IceCube season you want to make the GCD for. You will need to modify the script to

take in the correct GCD file for you. For MC, it finds the appropriate GCD file to input the SPE_Templates.
4. scale factor — set to 1 for not charge scaling. This scales the measured distribution by some factor. For

example, suppose you want a Pass2 GCD. DOM 1,1 had its charge scaled by 1.037. If we want to further scale this
number by 1%, we can put 0.99 in as a scaling factor.

The options above allow you to specify two things: the scaling factor (ie. how to stretch the
distribution), and the shape of the charge distribution (SPE Templates, or default TA0003).

This script creates a field in the domCal called combined_spe_charge_distribution. This holds
the fit values for the SPE template associated with that DOM. There is one caveat to this, it
was found that the HQE DOMs in IceCube have a measurable different shape than the
standard DOMs. This caused the average charge of their distributions to be 3.54% lower than

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �19

0.0 0.2 0.4 0.6 0.8 1.0
Charge [PE]

�10

�5

0

5

10

15

20

A
ve

ra
ge

R
es

id
ua

l
[%

]

the standard DOMs. In simulation, this would look like a 3.54% change in DOM efficiency
for the HQE DOMs. In order to take this into account, we scale the compensation factor by
3.54% (the actual value is calculated in this script).

This file also updates the noise in the GCD file according to the SPE templates. We then want
vuvuzela to use the values in the GCD file.

This GCD is now ready to be used for Simulation. If using it for data, make sure that you
have the correct initial GCD file. The name of the GCD specifies what it is. You want to use
GCD files that say “AVG” to indicate that they were fit using all the data. You also want to
watch out for “Pass1/Pass2/Pass3”. They indicate what the produced MC should be
compared agains.

Results from fits
The failed fits are almost entirely dead DOMs. I won’t describe each plot, although they

should hopefully be self-explanatory. If not, feel free to send me an email at saxani@mit.edu.
More information may be available in the paper, as well as in my upcoming thesis.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �20

mailto:saxani@mit.edu

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �21

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �22

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �23

The following plots show various extracted properties as a function of PMT id. The IDs
are separated into an identifier (like TA, MA, AA…) and number (1,2,3, …)

We can sort the groups of PMT identifiers by their number to look for correlations.
Assuming that the ID number is was sequentially assigned to the PMT during
manufacturing, observed changes in the following extracted quantities over the ID number
are likely due to manufacturing. First of, the location of the ID identifiers are:

The majority of the standard QE DOMs have a TA identifier. The MA corresponds
primarily to the HQE DOMs. The vertical lines in the plots below indicate DOMs which are
instrumented with the old toroids.

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �24

0 10 20 30 40 50 60 70 80
String

0

10

20

30

40

50

60

O
pt

ic
al

M
od

ul
e

NA
MA
SF
TA
AA
ZD
ZQ
ZT

P
M

T
Se

ri
al

T
ag

1000 2000 3000 4000 5000 6000

MA

SF

TA

AA

ZD

ZQ

ZT

0 100 200 300 400
PMT Serial Number

0.60

0.65

0.70

0.75

0.80

M
ea

n
C

ha
rg

e

1000 2000 3000 4000 5000 6000

MA

SF

TA

AA

ZD

ZQ

ZT

0 100 200 300 400
PMT Serial Number

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

P
V

R

SPE TEMPLATES TECHNOTE - SPENCER N. AXANI �25

1000 2000 3000 4000 5000 6000

MA

SF

TA

AA

ZD

ZQ

ZT

0 100 200 300 400
PMT Serial Number

0.1
0.2
0.3
0.4
0.5
0.6

G
au

sW
id

th

1000 2000 3000 4000 5000 6000

MA

SF

TA

AA

ZD

ZQ

ZT

0 100 200 300 400
PMT Serial Number

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

G
au

sM
ea

n

1000 2000 3000 4000 5000 6000

MA

SF

TA

AA

ZD

ZQ

ZT

0 100 200 300 400
PMT Serial Number

0.1
0.2
0.3
0.4
0.5
0.6
0.7

E
xp

2W
id

th

1000 2000 3000 4000 5000 6000

MA

SF

TA

AA

ZD

ZQ

ZT

0 100 200 300 400
PMT Serial Number

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

E
xp

2A
m

p

1000 2000 3000 4000 5000 6000

MA

SF

TA

AA

ZD

ZQ

ZT

0 100 200 300 400
PMT Serial Number

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

G
au

sA
m

p

	SPE Templates V2 Technote
	Extracting and fitting procedure
	Introduction
	How to use the SPE Templates
	Key words and overview of modifications
	Introduction
	Condensed instructions
	The not at all condensed instructions
	Extracting pulses
	Convolutional Fitting
	Making a GCD file with the SPE Templates
	Results from fits

