Technical progress - detector performance, calibration, R&D efforts

Albrecht Karle March 2019

The IceCube Neutrino Observatory IceTop (surface array): 81 stations

IceCube: 86 strings 5160 optical sensors over 1 km³ volume 17 m vertical spacing 125 m horizontal spacing

Highly stable operation. Since 2016: livetime > 99.5%

DeepCore (low energy threshold)

South Pole 10m Telescope

IceCube Laboratory (ICL)

1 Aut

MAPO

TOS - Drilling site (79 & 80 in 10/11)

IceCube Enhanced Hot Water Drill (EHWD)

Photo: Ben Tibbets ~2009

to a depth between 1500 and 2500m.

IC86-2018 Cumulative IceCube Detector Time Usage

PMT gain stability 2011 - 2016

No indication for any changes since 2016.

DOM gain appears stable!

(PMT gain of 1E7 is small.
Noise rates are small.
→ Very small integrated
current on anode.
→ No aging from that.

Time difference between

Understanding the ice

Measurement of South Pole ice transparency with the IceCube LED

calibration system,

Aartsen et al., (IceCube Coll.), NIMA55353 http://arxiv.org/abs/1301.5361

-500

20 -

40 -

Less scattering in direction of ice flow: \rightarrow up to ~10% /100m variation in amplitude

2. Azimuthal variation in of scattering

3. Ice layers are tilted – not planar

Systematic uncertainties: DOM and local ice

We plan to map the full surface sensitivity of every

Images taken with camera ("Swedish Camera") during refreeze process:

DOM and local ice

Hole ice visible on the right. Need to determine the effect for every single DOM.

Cable shadow

Cable diameter: 4.5cm

Azimuthal DOM response: Simulated effect on receiving DOM from flashers at close distance.

Built-in inclinometers vs DOM tilt fit

Indication of real tilt for 2 DOMs (out of 48)!

4 dozen DOMs have a built-in inclinometer, mounted on the mainboard, most of them have measured very small tilts, while 2 have tilts in excess of 20 degrees.

Example of DOM level calibration work: determined position of individual cables near DOM to few degree precision

azimuth to led7

string

Types of events and interactions

Charged-current v_{μ} (data)

Up-going (throughgoing) track

Factor of ~2 energy resolution ~ 0.5° angular resolution

0.3° above 100 TeV

Isolated energy deposition (cascade) with no track

15% deposited energy resolution **10-15° angular resolution (above 100 TeV)** Working on improving that.

Early

Neutral-current / v_e

Charged-current v_τ

(simulation)

"Double-bang"

(none observed yet: τ decay length is 50 m/ PeV)

> ID: above~ 100 TeV (two methods)

Bright DOMs

DOMs with $Q_{\text{bright}} > 10^* Q_{\text{avg}}$ are classified as "Bright"

PMT not necessarily saturated, but excluded because unmodeled systematic uncertainties start to dominate at high photon statistics

Observation of a 6 PeV neutrino

Slide courtesy: I. Taboada, Neutrino 2018

A neutrino event near Glashow resonance

Interesting event found in expanded search.

Charge: 200,000 photoelectrons

Energy resolution is critical

Figure from Tianlyu that shows difference of resolution with and without systematic errors.

Local effects: DOM orientation and cable position

Without local effects

Higher level performance parameters

Angular resolution for muon neutrinos

2019

Moon shadow

Angular resolution for muon neutrinos

Simulated cascade

Bright DOMs: Q > 10*Qavg DirectFit (Dima) reconstructing data events with direct photon simulation with ppc. PeV-cascade: (Sim: 3.2, Reco: Mie)

-> see Tianlu Yuan talk

Starting muon "Dr. Strangepork" contained vertex, Deposited energy: 7

Milestone 2013: Discovery of diffuse cosmic neutrino flux

Initially with 2 - 3 years of data

Contained vertex events

7 years of data

- R&D related to M&O and continued optimization of IceCube proper
 - Surface instrumentation
 - SpiceCore
- R&D geared towards the future: Upgrade and Gen2
 - Detector R&D, new optical modules

Science case

Snow attenuation mitigation:

- Measure the effect of snow on IceTop tank sensitivity, binned by energy, zenith, and radial distance from shower core.
- Recover the sensitivity to low-energy showers that are currently not detected by tanks buried under several feet of snow.

Veto efficiency improvement:

• By adding scintillators with a similar coverage as IceTop, the energy threshold at which the veto becomes efficient at a 10^4 to 10^5 rejection factor is estimated to be lower by a factor of two.

R&D for future detector upgrades:

- A new, scalable precision timing and high-speed communications scheme for IceCube M&O and possible future projects.
- Efficient trenching procedures for instrumentation installation.
- Mechanical solutions to raise scintillator panels above the snow during the period of array deployment.

D. Tosi - ICNO M&O mid-term review

Multimessenger astronomy in real time - flares Implementation of efficient realtime system online

Technical progress: TXS alert published 43 seconds after interaction.

IceCube

Anna Franckowiak

Funded.

7 strings in center of IceCube, densely instrumented

Science goals:

- v_{μ} disappearance
- v_{τ} appearance
- Precise calibration of IceCube optical properties and DOM response

A big step towards IceCube-Gen2

IceCube Upgrade (a step towards Gen2)

Slide on sensor development

IceCube-Gen2 The next Generation IceCube: from discovery to astronomy

Multi-component observatory:

- IceCube-Gen2 High-Energy Array
- Surface air shower detector
- Sub-surface radio detector

Surface Area: ~6.5km² (0.9) Instrumented depth: 1.26 km (1.0)

Instrumented Volume: 8 km³

Order of magnitude increase of contained event rate at high energies.

> Artist conception Here: 120 strings at 300 m spacing

summary slide on Gen 2 sensitivity

New event selections "below" HESE and throughgoing muons...

From High to Medium energy: Part 1 - MESE

From High to Medium energy:

