Towards an extragalactic supernova neutrino detector at the South Pole

Markus Voge¹*, Nora Linn Strotjohann¹, Sebastian Böser¹, Lukas Schulte¹, Marek Kowalski¹ ¹Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany * voge@physik.uni-bonn.de

Experimental Astroparticle Physics and Cosmology

Neutrinos from extragalactic core-collapse supernovae (SNe)

- With today's neutrino observatories, only Galactic SNe (~2-3 per century) visible¹
- Need to extend sensitivity to neighboring galaxies (5-10 Mpc) for a routine detection of \sim 1 SN per year in neutrinos (see Figure 1)
- Physics motivation:

Simulation

Setup

- Probing different two Cherenkov regions for array in South Pole ice:
 - diffuse ice (750 1050 m depth)
 - clear ice (2150 2450

Ice properties: ^{10,11}

Clear ice has low scattering, diffuse ice "captures" photons

lce	Depth	Absorption	Scattering	
type		Length	Length	

- Measure the core-collapse SN rate accurately
- Study the core-collapse mechanism
- Trigger early optical observations of SNe
- Probe for optically dark SNe (see below)
- Set limits on neutrino mass

Supernova models

Fig. 2: Positron spectrum from SN in 1 Mpc distance for 1 Mton effective mass

- Lawrence-Livermore model⁶ (LL): One of the few model calculations leading to an explosion
- **Thompson-Burrows-Pinto model⁷ (TBP)**: More recent than LL, but does not lead to an explosion.
- **Dark SNe⁸:** While the collapse of a fastrotating star with \gtrsim 25 M_{\odot} leads to a hypernova, a slow-rotating one might collapse to a black hole without emitting photons. These "dark" SNe or failed SNe could be detected with a SN v detector.

- m depth)
- 61 strings arranged in hexagonal pattern
- Assuming 300 optical modules on each string with eff. photosensitive area:
 - ~78 cm² in diffuse ice
- ~312 cm² in clear ice corresponding to 1.4 (5.5) high QE IceCube modules $(\sim 57 \text{ cm}^2)$
- Photon propagation:
 - diffuse ice: random walk
 - clear ice: Photonics ⁹
- Event trigger requirement:
 - 5 photon hits anywhere in the detector (no time window applied)
- SN trigger requirement:
- \geq 3 (10) v events within 10 s

diffuse	750- 1050 m	350 m	0.3 m
clear	2150- 2450 m	20-90 m	20-50 m

Fig. 3: Number of detected photons as function of neutrino vertex position in clear ice

Geometry optimization

Backgrounds

Fig. 4: Effective mass for positrons from LL spectrum as function of string spacing

Optimizing string spacing for maximal effective volume/mass Diffuse ice:

- Photon detection probability high due to large absorption length and short scattering length
 - \rightarrow over 10 Mton possible
- But photon scattering prohibits directional reconstructions
- Clear ice:
- Much lower eff. mass for the same module size (red curve)
- Scaling each module's photosensitive area up by factor 4 (i.e. ~312 cm² per module), we obtain similar performance as for the diffuse ice (green curve)

Results

Detector reach and expected number of triggered SN events

• SN detection probability computed for optimal eff. mass (~9 Mton for clear ice); Fig. 5 shows probability for Nv \geq 3 as

Backgrounds are challenging, require BG rate <4 mHz to get at most 1 fake SN event/year • Atmospheric **muons**¹²: Easily if thrrecognized Need oughgoing.

outer veto layers

(IceCube) against

stopping muons.

Fig. 6: Neutrino fluxes of BG and signal

lce type	μ passing rate	Dead time
clear ice	230 Hz	0.16%
diffuse ice	5000 Hz	14%

- Solar neutrinos¹³: Only v_{e} , cannot interact via inverse beta decay (IBD), thus dominantly elastic scattering on electrons (lower x-sec than IBD).¹⁴ High rate, possibility to discriminate via energy and direction (latter only in clear ice)
- Atmospheric neutrinos¹⁵: v_{e}/\bar{v}_{e} component small, v_{μ} contribute via invisible muons (under Cherenkov threshold) that decay to visible Michel electrons

• **Module noise**: Can be controlled during R&D. Assuming 500 Hz noise per module (IceCube DOMs ~300 Hz ¹⁶). Temporal and spatial coincidence of signal must be exploited for discrimination of noise.

function of SN distance for the three SN models

• Using Fig. 5 and Fig. 1, we estimate the number of SN detections, taking observed SNe as lower and predicted SNe as upper limit (see table below, backgrounds not considered)

Number of SN detections per year:

Model	$Nv \ge 3$	$Nv \ge 10$
LL	1.7 – 3.3	0.4 - 0.8
TBP	0.8 – 1.6	0.2 - 0.3
Dark SN*	1.6	0.2

* = assuming dark SNe occur at 10% of observed SN rate

Title image from files.myopera.com/Matta/albums/89316/Supernova.jpg 1. M. Ikeda, A. Takeda, Y. Fukuda, et al., ApJ 669: 519 (2007) 2. D. J. White, E. J. Daw, V. S. Dhillon, Classical and Quantum Gravity 28:085016 (2011) 3. E. Cappellaro, R. Evans, M. Turatto, A&A 351: 459 (1999) 4. W. Li, R. Chornock, J. Leaman, et al., MNRAS 412: 1473 (2010) 5. S. Horiuchi, J. F. Beacom, C. S. Kochanek, et al., ApJ 738: 154 (2011)

6. T. Totani, K. Sato, H. E. Dalhed, et al., ApJ 496: 216 (1998) 7. T. A. Thompson, A. Burrows, P. A. Pinto, ApJ 592: 434 (2003) 8. L. Yang, C. Lunardini, Phys. Rev. D 84: 063002 (2011) 9. J. Lundberg, P. Mioinovi, K. Woschnagg, et al., NIM A 581: 619 (2007) 10. M. Ackermann, et al., J. of Geoph. Res. 111: D13203 (2006) 11. R. A. Porrata, PhD dissertation, University of California (1997)

12. E. V. Bugaev, et al., Phys. Rev. D 58: 054001 (1998) 13. J. N. Bahcall, et al., Phys. Rev. C 54: 411 (1996) 14. W. Haxton, R. Robertson, Phys. Rev. C 59: 515 (1999) 15. T. Gaisser, T. Stanev, G. Barr, Phys. Rev. D 38: 85 (1988) 16. Abbasi, R., et al., A&A 535: A109 (2011) 17. M. Malek, M. Morii, S. Fukuda, et al., PRL 90: 061101 (2003)