IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University

for the IceCube collaboration

Neutrino2012 at Kyoto

June 8th 2012

Ultra-high Energy Neutrinos: *PeV and above*

- Energies above dominant atmospheric neutrinos
- Cosmic frontier PeV gamma-ray horizon limited to a few tens of kpc (our galaxy radius)
- Cosmogenic neutrino production is a 'guaranteed' v source

The highest energy neutrinos

cosmogenic neutrinos induced by the interactions of cosmic-ray and CMB photons Off-Source (<50Mpc) astrophysical neutrino production via

 $p \ge 100 \text{EeV}$ GZK v Yoshida et al. m=4 Zmax = 4 γ =2 GZK v Sigl et al. m=5, Zmax = 3, $\gamma = 2$ 10⁻⁴ GZK v Engel et al. $\Omega_{\lambda} = 0.0$ GZK v Engel et al. $\Omega_{\perp} = 0.7$ 10^{-5} GZK v Ahlers et al. m=4.4 Zmax = $2\gamma = 2.1$ $\mathbb{E}^2 \phi(\mathbf{E}) \ [\text{GeV cm}^{-2} \text{ sec}^{-1} \text{ sr}^{-1}]$ GZK v Ahlerset al. m=4.6 Zmax = 2 γ =2.5 GZK v Kotera FR2, Emax 316 EeV 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹ **10**⁻¹⁰ 10⁻¹¹ 10 6

log₁₀(Energy/GeV)

GZK (Greisen-Zatsepin-Kuzmin) mechanism

The main energy range: $E_v \sim 10^{8-10} \text{ GeV}$ $p\gamma_{27K} \rightarrow \pi^+ + X \rightarrow \mu^+ + \nu \rightarrow e^+ + \nu's$ **Carries important physics** Location of the cosmic-ray sources Cosmological evolution of the Various cosmic-ray sources GZK v Cosmic-ray spectra at sources models The highest energy of the cosmcrays Composition of the cosmic-rays Particle physics beyond the

Atmospheric neutrinos in PeV

- Conventional atmospheric neutrinos from decays of pion and kaons
- Prompt atmospheric neutrinos form decays of heavy flavor short lived mesons (charm, bottom)
- Prompt harder than conventional still steeper than astronomical spectra
- Transition around 3×10^5 GeV depending on the models

- No clear evidence of prompt atmospheric v observed so far
- <u>Conventional atmos. v</u> is considered to be background in this analysis
- <u>Prompt atmos. v</u> as a signal model

Physics of heavy flavor particle production

Data samples

Effective livetime of 672.7days

2010-2011 - 79 strings config. **May/31/2010-May/12/2011** Effective livetime 319.07days 2011-2012 – 86 strings config **May/13/2011-May14/2012** Effective livetime 353.67 days 9 strings (2006) 22 strings (2007) 40 strings (2008) 59 strings (2009) 79 strings (2010) 86 strings (2011)

IceCube has been in a stable operation for more than 5 years

Energy of incoming particle \propto Energy-losses in detector \propto number of photo electrons (NPE)

• Optimization based MC and MC verification based on 10% experimental 'burn' sample

See the details of 2010-2011 data analysis: Poster #12-3 (Keiichi Mase)

Two events passed the selection criteria

2 events / 672.7 days - background (atm. μ + conventional atm. ν) expectation 0.14 events preliminary p-value: 0.0094 (2.36 σ)

Run119316-Event36556705 Jan 3rd 2012 NPE 9.628x10⁴ Number of Optical Sensors 312 Run118545-Event63733662 August 9th 2012 NPE 6.9928x10⁴ Number of Optical Sensors 354

Event Brightness (NPE) Distributions 2010-2012

• Observed 2 high NPE events near the NPE threshold

• No indication

- that they are instrumental artifacts
- that they are cosmic-ray muon induced
- Possibility of the origin includes
 - \circ cosmogenic v
 - on-site v production from the cosmic-ray accelerators
 - $_\circ~$ atmospheric prompt ν
 - $_\circ~$ atmospheric conventional v

Neutrino Energy Distributions (2010-2012)

energy distributions of neutrinos reaching to the IceCube depth

- EM+hadronic (CC) or hadronic (NC) cascade energy ~ PeV
- Most likely to be PeV to 10 PeV neutrinos
- The highest energy neutrino events observed ever!

Expected Numbers of UHE Events

Preliminary	IceCube 2008-2009 Phys. Rev D83 092003 (2011) 333days	IceCube 2010-2012 per 672.7days		
Models		E ^{detector} < 10 ⁸ GeV and interaction in detector	All contributions	
Prompt atm. v (Enberg std.)^		0.3	0.4	
IC59 diffuse limit ^^ $E^2\phi = 1.4 \times 10^{-8} GeV cm^{-2} sr^{-1} sec^{-1}$		5.0	9.1	
Background (conv. atm. v + atm. μ)	0.11	0.01	0.14	
Experimental data	0	2	2	
GZK (Yoshida m=4)*	0.57	0.4	2.1	
GZK (Ahlers max) **	0.89	0.5	3.2	
GZK (Ahlers best fit) **	0.43	0.3	1.6	
GZK (Kotera, dip FRII) ***		1.7	4.1	
GZK (Kotera, dip SFR1)***		0.6	1.0	

*Yoshida et al The ApJ 479 547-559 (1997), **Ahlers et al, Astropart. Phys. 34 106-115 (2010, ***Kotera et al, ^R. Enberg, M.H. Reno, and I. Sarcevic, Phys. Rev. D 78, 043005 (2008), ^^ Talk G. Sullivan This conference

The Exposure and Effective Area

- Significantly improved
 from the previous
 IceCube results
- The world's best sensitivity!
- Will constrain (or detect) the neutrino
 fluxes down to midstrong cosmological
 evolution models

Summary

- Searched for neutrinos with PeV and greater energies in nearly full 2 years of the IceCube data
- Two candidate events observed
 - PeV to 10PeV energy cascade-channel neutrino events (CC/NC interactions within the detector)
 - The highest energy events observed ever!
- Likely to be beyond the conventional atmospheric neutrinos
- Hints for the PeV events origin from different energy-region / channels are also coming soon!
 - More cascade event sensitive analysis
 - Lower energy regions for the spectral transition
- Statistical confirmation foreseen with an independent sample
- We are into a very interesting era of neutrino astrophysics!

Backup

Initial level NPE and cos theta distributions

NPE and cos zenigh angle distributions comparisons with burn sample

UHE Neutrinos In the Earth...

- Generally neutrinos identified as "through the Earth" up-going events
- Earth is opaque for UHE neutrinos
- UHE neutrino-induced events are coming from above and near horizontal direction

 $\begin{array}{l} \text{UHE neutrino mean free path} \\ \lambda_n \sim 100 \ \text{km} << R_{\text{Earth}} \\ \sigma^{\text{cc}}{}_{n\text{N}} \sim 10^{-6 \sim -4} \ \text{mb} \end{array}$

Passing rates (stat. errors only)

Passing rates (per burn sample live time of 498.350 hours) table

	Experimental	Atm mu SIBYLL Fe	Coincident muon	atmospheric neutrinos	Atm mu SIBYLL H	Signal
Filter Online	3539908 (1.973Hz)					
Filter Offline (NPE > 1000, Nch > 50)	1.615 x10 ⁶	2.34+/-0.08 x10 ⁶	2.881+/-0.005 x10 ⁵	163.2+/-3.0	9.85+/-1.3 x10 ⁵	0.1528+/- 0.0006
(NPE > 1000, Nch > 300)	44458	8.37+/-0.49 x10 ⁴	9.48+/-0.03 x10 ³	0.648 +/- 0.032	2.16+/-0.34 x10 ⁴	0.1136+/- 0.0004
(NPE > 10^3.5, Nch > 300)	34411	6.85+/-0.40 x10 ⁴	7655.0+/-23.0	0.625+/-0.031	1.75+/-0.32 x10 ⁴	0.1133+/- 0.0004
(NPE > 10^4.0, Nch > 300)	3019	5.65 +/- 0.271 x10 ³	558.7+/-3.4	0.185+/-0.011	631.72+/-59.61	0.1102+/- 0.0004
(NPE > 10^4.5, Nch > 300)	134	253.4 +/- 13.9	9.53 +/- 0.20	0.0232 +/- 0.0013	27.7 +/- 2.2	0.1019+/- 0.0004
Final criteria	0.0	0.00059 +/- 0.00024	6.37e-07 +/- 4.50e-07	0.0028 +/- 0.0002	8.2e-05 +/- 5.7e-05	0.0645 +/- 0.0003

Neutrino energy estimation

A method of the cascade energy reconstruction

- Poisson likelihood for all pulses
- Analytic likelihood maximization for energy
- Numerical minimization (Gulliver) in x, y, z, time, zenith, azimuth

Surface Energy Distribution of Flavor Dependence

For the downward-going geometry difference due to different parent neutrino flavors on surface is small. For the upward-going geometry it is more relevant, still uncertainty extend not more than 1 energy decades.

In-situ energy scale calibration

Calibrated light source: Standard Candle

- in-situ calibrated N₂ pulsed laser
- Ight wavelength 337 nm
- at 100% intensity generates 4x10¹² photons per pulse emitted at 41°
- output adjustable between 0.5% ~ 100%

Near future improvement Background Veto with IceTop

Downward-going region is airshower induced

Do The Jan and Aug events have correlated hits in IceTop?

Jan Auffenberg May 26th 2012

Jan 3rd and Aug 9th IceTop hit pattern

Conclusions

- We saw 0 Hits and 1 Hit in the possible time window of ~8µs. This is a slide under- fluctuation compared with the measured background rate of (0.26/µs = 2.08/8µs).
- There is no evidence for an Air Shower in the two events.
- Veto efficiency is uncertain for prompt neutrino events

Veto Efficiency for different inclination

No cascades in un-vetoed Events:

http://wiki.icecube.wisc.edu/in dex.php/EHE_IT_Veto_Analysis _unblinding_request#Events_w e_don.27t_Veto