IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University

for the IceCube collaboration

30 507 30 <td

Neutrino2012 at Kyoto

June 8th 2012

Ultra-high Energy Neutrinos: PeV and above

- Energies above dominant atmospheric neutrinos
- Cosmic frontier PeV gamma-ray horizon limited to a few tens of kpc (our galaxy radius)
- Cosmogneic neutrino production is a 'guaranteed' v source

The highest energy neutrinos

cosmogenic neutrinos induced by the interactions of cosmic-ray and CMB photons Off-Source (<50Mpc) astrophysical neutrino production via GZK mechanism

Various

GZK v

models

The main energy range: $\mathbf{E}_{v} \sim \mathbf{10^{8-10} \ GeV}$ $p\gamma_{2.7K} \rightarrow \pi^{+} + X \rightarrow \mu^{+} + \nu \rightarrow e^{+} + \nu' s$

Carries important physics

- Location of the cosmic-ray sources
- Cosmological evolution of the cosmic-ray sources
- Cosmic-ray spectra at sources
- The highest energy of the cosmcrays
 - Composition of the cosmic-rays
- Particle physics beyond the energies accelerators can reach

Atmospheric neutrinos in PeV

- Conventional atmospheric neutrinos from decays of pion and kaons
- Prompt atmospheric neutrinos form decays of heavy flavor short lived mesons (charm, bottom)
- Prompt harder than conventional still steeper than astronomical spectra
- Transition around 3×10^5 GeV depending on the models

UHE Neutrinos In the Earth...

- Generally neutrinos identified as "through the Earth" up-going events
- Earth is opaque for UHE neutrinos
- UHE neutrino-induced events are coming from above and near horizontal direction

 $\begin{array}{l} \text{UHE neutrino mean free path} \\ l_n \thicksim 100 \ \text{km} << \text{R}_{\text{Earth}} \\ \text{s}^{\text{cc}}{}_{n\text{N}} \thicksim 10^{-6 \sim -4} \ \text{mb} \end{array}$

The IceCube Detector

Data samples

2010-2011 - 79 strings config. May/31/2010-May/12/2011 Effective livetime 319.07days 2011-2012 – 86 strings config May/13/2011-May14/2012 Effective livetime 353.67 days 9 strings (2006) 22 strings (2007) 40 strings (2008) 59 strings (2009) 79 strings (2010) 86 strings (2011)

IceCube has been in a stable operation for more than 5 years

Energy of incoming particle \propto Energy-losses in detector \propto number of photo electrons (NPE)

• Optimization based MC / MC verification based on 10% 'burned' experimental sample

See the details of 2010-2011 data analysis at Poster #xxxx (Keiichi Mase)

Two events passed the selection criteria

Event Brightness (NPE) Distributions 2010-2012

- Observed 2 high NPE events
- Near the NPE threshold
- Possibility of the origin includes
 - \circ cosmogenic v
 - on-site v production from the cosmic-ray accrelators
 - $_{\circ}~$ atmospheric prompt v
 - \circ atmospheric conventional v

Energy Distributions 2010-2012

Expected Numbers of UHE Events

	IceCube 2008-2009 Phys. Rev D83 092003 (2011) 333days	IceCube 2010-2012 672.7days	
Models Preliminary		E ^{detector} < 10 ⁸ GeV	All contributions
Atmos. prompt v (Enberg std.)^		0.2	0.2
E ² φ = 1 x 10 ⁻⁸ GeV cm ⁻² sr ⁻¹ sec ⁻¹		4.9	6.5
GZK (Yoshida m=4)*	0.57	0.4	2.1
GZK (Ahlers max) **	0.89	0.5	3.2
GZK (Ahlers best fit) **	0.43	0.3	1.6
GZK (Kotera, dip FRII) ***		1.7	4.1
GZK (Kotera, dip SFR1)***		0.6	1.0
Background (atm. v + atm. μ)	0.11	0.14	0.14
Experimental data	0	2	2

*Yoshida et al The ApJ 479 547-559 (1997), **Ahlers et al, Astropart. Phys. 34 106-115 (2010, ***Kotera et al, ^R. Enberg, M.H. Reno, and I. Sarcevic, Phys. Rev. D 78, 043005 (2008)

The Exposure and Effective Area

IceCube UHE Sensitivity 2010-2012

- Significantly improved from the previous IceCube results
- The world's best sensitivity!
- Will constrain (or detect) the neutrino fluxes down to mid-strong cosmological evolution models

Summary

- Searched for neutrinos with PeV and greater energies in nearly full 2 years of the IceCube data
- Two candidate events observed
 - PeV to 10PeV energy cascade-channel neutrino events (CC/NC interactions within the detector)
- Likely to be beyond the conventional atmospheric neutrinos
- Hints for the PeV events origin from different energy-region / channels are also coming soon!
 - More cascade event sensitive analysis
 - Lower energy regions for the spectral transition
- Statistical confirmation foreseen with an independent sample
- We are into very interesting era of neutrino astrophysics!

Backup

Background Veto with IceTop

Downward-going region is airshower induced muon background dominated

Surface Energy Distribution of Flavor Dependence

For the downward-going geometry difference due to different parent neutrino flavors on surface is small. For the upward-going geometry it is more relevant, still uncertainty extend not more than 1 energy decades.

Contributions from IR/O, CMB and neutron decay

Possible Scenarios Near Term Beyond Neutrino2012

• For the final upperlimit results in E > 10⁸GeV, threshold may be finalized using re-optimization / re-unblinding procedure