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A century after their discovery, the origin of cosmic rays remains one of the most enduring mysteries in

physics. They can have energies that exceed 1020 eV, a hundred million times as energetic as the most

powerful Earth-bound particle accelerators and must therefore be produced in the universe’s most violent

environments. Direct observation of their origins, however, has proven difficult due to deflection of charged

cosmic ray particles in galactic and intergalactic magnetic fields, obscuring their true origins. Astronomy

using electrically neutral particles, such as photons and neutrinos, does not, however, share this difficulty.

This work presents a search for neutrino emission from one of the primary candidates for the sources of the

highest-energy cosmic rays, Gamma-Ray Bursts, using the recently-completed IceCube neutrino telescope

located at the South Pole. The null result obtained from this search contradicts well-established predictions

for the neutrino flux from Gamma-Ray Bursts if they are the cosmic ray sources, forcing a reevaluation of

these theoretical models.

In the course of this work, a variety of new analysis techniques and reconstructions were developed. These

are described in sections 3.4.1, 4.3, 4.4, 5.1, and 5.3.

Francis Halzen
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Chapter 1

Introduction

The origin of cosmic rays is one of the most enduring mysteries of modern physics. Cosmic rays were

first discovered in 1912, with the balloon flights of Viktor Hess. Using an electroscope, he discovered that

the ionizing radiation observed at the surface increased with altitude, proving that it had an extraterrestrial

origin [1]. The last century of research has answered many questions about the properties and origins of this

radiation: the cosmic rays are now known to consist overwhelmingly of charged hadrons; the lowest energy

particles, at energies below 109 eV, are predominantly protons and have their origin in the outer layers of

the sun. The cosmic ray spectrum, however, extends to much higher energies than can be explained by the

sun alone (Fig. 1.1), and the origin of these particles remains a mystery. The very highest energy observed

particles have energies of more than 1020 eV, a hundred million times higher than can be produced in the

most powerful accelerators. Although these high energies imply the particles are accelerated in the most

energetic and violent astrophysical environments, their sources remain unknown.

Direct measurements of the origin of these particles are challenging. Since they are dominantly charged

particles, their paths are deflected by galactic and extragalactic magnetic fields, effectively scrambling their

arrival directions. Only at the very highest energies (> 1020 eV), where particle momentum is high and the

bending effect of magnetic fields low, is it possible to effectively determine particle origins, and even then

only if they are from close enough (. 100 Mpc) that deflections are minimized. The rate of such particles is

however low, limiting statistics and requiring enormous detectors (e.g. the Pierre Auger Observatory). Such

high energy protons also cannot travel far: interactions with the cosmic microwave background [2, 3] cause

them to lose energy in flight.

Indirect detection methods using neutral particles solve this problem, while introducing others. Gamma-

ray astronomy using space-borne (e.g. SWIFT, Fermi) and ground-based (e.g. HESS, MAGIC, Veritas,

Milagro) telescopes is a well-understood and mature technique with high efficiencies, but gamma-ray signa-

tures of cosmic ray acceleration are ambiguous and high-energy gamma rays are easily stopped by interactions



2

Energy (eV)

9
10

10
10 1110 1210

13
10 1410

15
10

16
10 1710

18
10

19
10

20
10

-1
 s

r 
G

e
V

 s
e
c
)

2
F

lu
x
 (

m

-28
10

-2510

-2210

-19
10

-1610

-1310

-10
10

-710

-410

-110

210

410

-sec)
2

(1 particle/m

Knee

-year)
2

(1 particle/m

Ankle

-year)
2

(1 particle/km

-century)
2

(1 particle/km

F
N

A
L
 T

evatro
n
 (2 T

eV
)

C
E
R

N
 L

H
C

 (14 T
eV

)

LEAP - satellite

Proton - satellite

Yakustk - ground array

Haverah Park - ground array

Akeno - ground array

AGASA - ground array

Fly’s Eye - air fluorescence

HiRes1 mono - air fluorescence

HiRes2 mono - air fluorescence

HiRes Stereo - air fluorescence

Auger - hybrid

Cosmic Ray Spectra of Various Experiments

Figure 1.1 Spectrum of cosmic rays observed in several experiments from 108 to 1021 eV. Particles above
the ankle are believed to be produced in extragalactic sources and are the main focus of this work. Figure
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with interstellar dust and background light. The clearest signature of hadronic acceleration is the production

of neutral pions in interactions between protons being accelerated and their surrounding environment, for

example:

p+ γ → p+ π0 → p+ γ + γ (1.1)

This can be detected in principle by observing the characteristic spectral features of the π0 → 2γ decay.

Distinguishing this from gamma-ray emission from inverse Compton scattering and synchrotron emission by

high energy electrons is difficult, however, complicating any attempt to identify an object as a cosmic ray

source. Moreover, if this process occurs in dense material, the high-energy gamma rays will interact before

escaping and cascade to lower energies, further obscuring the signal.

A more promising avenue is indirect detection using neutrinos. Like photons, they are electrically neutral

and so travel in straight lines. Unlike photons, they are produced predominantly in hadronic interactions,

making observation of high energy neutrinos a clear signature of acceleration of high-energy hadrons. Neu-

trinos would be produced in a similar manner to pionic gamma rays, for example:

p+ γ → n+ π+ → n+ µ+ + νµ (1.2)

Neutrinos introduce their own problems, however. Their low interaction rates, which help them escape

even from dense environments, make them extremely difficult to detect. Given the expected low fluxes of

these high-energy neutrinos, their detection requires enormous detectors, on the scale of cubic kilometers.

The IceCube detector [4] (Fig. 1.2), located at the geographic South Pole, was designed to address these

issues. Made of 5160 photomultipliers, it uses over 1 km3 of glacial ice as a detection medium, making it

sensitive to even relatively low fluxes.

Among the most promising targets for observation with IceCube are Gamma-Ray Bursts (Chap. 2).

These have long been proposed as an origin of the very highest energy cosmic rays [5, 6], and are themselves

something of a mystery. Shining for only a few seconds, they can have luminosities exceeding the combined

light output of all other sources in the universe and can be seen at extraordinary distances. The processes

that cause them are not known at present (though at least some GRBs are associated with supernovae

[7]) and the observation of neutrinos would go a great way toward enhancing our understanding. The

connection between cosmic rays and neutrinos from GRBs is also particularly direct (Sec. 2.3), making even

a null observation a potentially powerful statement on the GRB/cosmic-ray hypothesis. Further, the brief

duration of the burst significantly reduces background and makes analysis straightforward (Chap. 5).
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Chapter 2

GRBs

Gamma-ray bursts (GRBs), first discovered in the 1960s by arms control monitoring satellites [8], are

among the most energetic objects in the universe, with apparent gamma-ray emission in excess of 1050 erg

(approximately what the Sun will emit over its entire lifetime). The aggregate energy flux from these objects

is similar to the energy density in high energy cosmic rays, which has led to suggestions that the highest

energy cosmic rays may originate in GRBs [5, 6].

2.1 Observations

Gamma-ray bursts are extremely difficult objects to observe: high-energy gamma rays require space-borne

observatories and their short durations (seconds to minutes) mean multiwavelength observations require a

high degree of coordination and fast-moving telescopes, which has only recently been obtained. As an

example, one of the fundamental questions that requires multiwavelength data is the distance to a burst.

The first GRB redshift measurement was taken only in 1997 [9]; before this point inferences on the distance

to GRBs were based only on the isotropy of their distribution on the sky. Even now, due to the difficulty

of these observations and the nearly featureless spectra from many bursts, most GRBs continue to have

unmeasured redshifts (Fig. 2.1).

The measured durations of the gamma emission from GRBs appear to be bimodal (Fig. 2.2). The so-

called long GRBs typically have emission durations of around 30 seconds, and relatively soft spectra. Short

GRBs typically have emission lasting for only ∼ 1 second, with a harder spectrum and usually fewer spectral

features. These are thought to have different origins. At least some long bursts appear to be associated with

supernovae [7, 10], and short bursts have been proposed as resulting from mergers of compact objects (e.g.

two neutron stars, or a neutron star accreting onto a black hole) [11].

At the large distances inferred from the redshift distribution (Fig. 2.1), the inferred gamma-ray luminosity

(Eiso) is enormous: typically 1052 erg or higher (a few percent of a solar mass). Moreover, the energy required

for the burst may be even larger than this if, as in supernovae, a substantial amount of energy is emitted

by non-electromagnetic means. One way to reduce the required energy is to suggest that the GRB emission
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Figure 2.1 Redshifts of GRBs appearing in the IceCube GRB catalog in 2009-2010. A large majority are
unknown, due to the fast response requirements and the challenging spectra. Both problems are larger for

short GRBs.
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Figure 2.2 Distribution of burst lengths for GRBs in the BATSE catalog [12]. The two different
populations are believed to have different sources: short bursts from mergers of compact objects [11] and

long bursts from a process related to supernovae [7, 10].
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Figure 2.3 Photon flux from GRB091123 as a function of time in several energy bands, taken by
Fermi/GBM. An initial rise can be seen of 20 seconds duration, followed by later emission bursts.
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is collimated into a jet pointed at Earth [13] so that the observed high power density is not typical of the

burst as a whole. This jet is believed to be highly relativistic, with a relativistic beaming angle similar to its

width and a bulk Lorentz factor (Γ) between 100 and 1000 [14]. A highly relativistic outflow has significant

implications for the particle physics occurring inside it: a high boost factor substantially reduces the energy

budget for interactions within it compared to the energies of particles as observed at Earth (in an outflow

with Γ = 500, a proton with a lab frame energy of 500 GeV is at rest).

A potential complication arising from strongly beamed sources is computation of the total burst rate.

About 500 GRBs/year are beamed toward Earth [12], but the global rate is higher by a factor 4π/Ω, where Ω

is the solid angle subtended by the beam. For the purposes of determining the total energy budget in GRBs,

however, the beaming turns out not to matter. The actual burst luminosity E is related to the apparent

isotropic luminosity Eiso by the same factor:

E = (Ω/4π)Eiso (2.1)

The total GRB energy budget is then the product of the per-burst energy by the number of bursts N in

the universe in some unit of time:

Etot = NE

=
(
N⊕(4π/Ω)

)
((Ω/4π)Eiso)

= N⊕
((((

((((4π/Ω)(Ω/4π)Eiso

= N⊕Eiso

(2.2)

where N⊕ is the number of GRBs beamed at the Earth (500/year). The same argument applies to any

quantity (e.g. protons, neutrinos) so long as it is beamed together with the gamma-ray emission.

Many transient gamma-ray observatories belong to the Gamma-Ray Coordinates Network (GCN, [15]) op-

erated by NASA. GCN provides coordination among observatories conducting multi-wavelength observations

by sending fast messages indicating triggers by orbiting observatories both to other orbiting observatories

and to ground-based telescopes, including IceCube. Messages are divided into two classes: machine readable

notices, which provide very fast but potentially unreliable information and later prose circulars, which pro-

vide follow-ups from both the triggering instrument and other observers. These rapid messages both enable

quick follow-up and the establishment of catalogs for later use. For the analysis described here, the catalog

was built primarily from GCN circulars; GCN currently reports about 300 GRBs/year.

2.2 Cosmic Ray Acceleration

Cosmic rays are believed to be accelerated in the fireball as it expands under radiation pressure. The

usual model is that this occurs in internal shocks in the GRB by the Fermi acceleration [16] process. As the
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fireball expands, relativistic plasma shells with different velocities collide, potentially producing the rapid

variation observed in gamma emission (e.g. Fig. 2.3). As these shells collide, particles within the shock can

be accelerated by repeated collisions inside this compressive flow (first order Fermi acceleration, Fig. 2.4),

potentially reaching energies in excess of 1020 eV [5, 6] and sourcing the high-energy tail of the cosmic ray

spectrum.

Accelerating particles to these energies is difficult, however. The short duration of the burst (seconds to

minutes) and small size imply that the particles must be accelerated to energies exceeding 1018 eV extremely

quickly, within Γt (at maximum a few hours). By comparison, accelerating protons to 3 TeV in the LHC

takes almost half an hour [17]. This requires high magnetic fields (Fig. 2.5) to contain the particles during

acceleration as well as rapid collisions with associated high magnetic field turbulence. This picture, while

difficult to arrange, is not however inconsistent with observations. GRBs with time variability as rapid as

milliseconds have been observed [18], indicating very rapid collisions of plasma shells. Further, the high-

energy gamma emission is consistent with synchrotron radiation, indicating both the presence of high-energy

non-thermal electrons and strong magnetic fields. The power-law spectra observed are also characteristic of

electrons whose energy was gained in shock acceleration processes.

One complication of particular interest from the perspective of neutrino searches is that the magnetic fields

required to satisfy the Hillas condition (that the particles remain within the source during the acceleration)

also mean that any accelerated protons remain trapped within the burst as it rapidly cools [20]. Because

these particles are magnetically coupled to an adiabatically expanding system, they lose energy as the

fireball rapidly fades, making it very difficult for them to escape at high energies into the inter-stellar

medium (the ejection problem). It is possible to circumvent this, however, by arranging the conversion of

protons to neutrons, decoupling them from the burst magnetic field [20, 21]. This has strong implications

for the neutrino flux (Sec. 2.3), and is the scenario in which neutrino observations are best able to test the

GRB/cosmic ray hypothesis.

2.3 Neutrino Production

The first prediction of neutrino production in relation to cosmic ray acceleration in GRBs is due to

Waxman and Bahcall [22], and all of the predictions tested here are ultimately derived from that one. The

core observation is that the coexistance of very high-energy protons and the photons later observed as the

GRB inevitably results in the production of neutrinos, for example by the process p+ γ → ∆+ → π+ +n→

e+ + νµ + ν̄µ + νe + n. These high-energy neutrinos would be an unambiguous signature of the presence of

very high energy protons within the burst.

It is generally assumed that, based on the hard non-thermal spectrum, the photon spectrum observed at

Earth is representative of the spectrum within the burst. The energy of the protons is fixed by assuming
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Figure 2.4 Cartoon of first-order Fermi acceleration [16]. The faster-moving flow on the left is overtaking
the slower-moving one on the right, producing a shock at the collision point. Viewed from the frame of this
shock, this constitutes a compressive flow – gas appears to be moving in from both sides. A test particle

(red) in this region can therefore repeatedly gain energy from collisions with both sides. Reflection from the
comoving magnetic fields on either side of the shock transfers momentum to the test particle, like a tennis

ball hit back and forth by two (temporarily) inward moving rackets, continuously increasing its energy.
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Figure 2.5 Cosmic Ray acceleration sites need to have strong enough magnetic fields to keep particles
confined within the source. The required magnetic field (vertical axis) varies with the source size

(horizontal axis). Only objects above and to the right of the lines meet the requirements to accelerate
particles to the indicated energies. Plot from [19].
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that the protons present within the burst trace the cosmic ray spectrum (Waxman and Bahcall assume 100%

proton ejection efficiency). The only remaining ingredient in the energy scale of the problem is the bulk

Lorentz factor of the outflows in which the acceleration is assumed to occur. If this is very high, the energies

of the particles within the frame of the outflow may be much lower than would be indicated by terrestrial

observations, inhibiting particle interactions. For a fixed photon energy (observed at Earth), the proton

energy (at Earth) corresponding to the first ∆ resonance (1232) is:

Ep = γ2
m2

∆ −m2
p

4Eγ
(2.3)

For a 1 MeV photon and γ = 300, this corresponds to Ep = 1.5×1016 eV. For an average pion-production

inelasticity of 0.2 and energy split equally between the four final state leptons (e+, νµ, ν̄µ, νe), this implies a

neutrino energy of 1
20Ep, or 7×1014 eV. There is also an additional correction from the GRB redshift, which

changes both the energy of the neutrino at Earth and the in-burst energies corresponding to the observed

photon energies in much the same way as Γ: in the frame of the GRB outflow, photons and neutrinos have

higher energies by a factor of Γ than they appear at Earth. The neutrino energy corresponding to the first

∆ resonance (and so the minimum energy of the neutrino) is then:

Eν =
1

4
xp→π

γ2

(1 + z)2

m2
∆ −m2

p

4Eγ
≈ 8GeV × γ2

(1 + z)2

1MeV

Eγ
(2.4)

The characteristic shape of the Waxman-Bahcall spectrum (Fig. 2.6) is formed by integration of this

threshold over the photon spectrum in the burst. Below the threshold, the flux decreases steeply, and only

photons of increasingly high energy can participate. Above the threshold, the neutrino spectrum traces

the proton spectrum (usually assumed to be E−2), as nearly all photons can participate in the interaction.

An additional suppression occurs at high energies, where the lifetime of the intermediate pions and muons

becomes long enough that significant amounts of their energy are lost to synchrotron radiation before decay

to neutrinos.

The rate of this process is related to the product of the densities of the protons and photons within the

burst. The physical length scale is given by the observed variability timescales (tvar) of the gamma-ray light

curve (Fig. 2.3, note that these also scale into the burst frame with γ and z). The total luminosity of the

burst in neutrinos is then related to the following quantities [22]:

φν ∝ LγεpΓ−4t−1
var (2.5)

where Lγ is the burst luminosity and εp is the fraction of the burst luminosity in protons. The aggregate

neutrino flux from all GRBs can then also be calculated assuming some “typical” spectral parameters and
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Figure 2.6 Expected neutrino spectrum from GRBs during the IceCube-40 run according to the
Waxman-Bahcall [22] and Guetta et al. [23] models, which calculates spectra from individual bursts. The

flux predictions normalized to gamma-ray spectra [23, 24, 25] are shown in solid lines; the cosmic ray
normalized Waxman-Bahcall flux [22, 26] is also shown for reference (dashed lines). Thin lines are the

fluences for individual bursts, and thick lines are summed for all the bursts in the sample. The predicted
neutrino flux, when normalized to the gamma rays [23, 24], is proportional to the ratio of energy in protons
to that in electrons, which are presumed responsible for the gamma-ray emission (εp/εe, here the standard

10). The flux shown is slightly modified [24] from the original calculation [23]. Waxman-Bahcall [22]
predicts an aggregate flux from the total GRB population; the value here was obtained by scaling the

prediction by the global GRB rate (here 667 bursts/year [27]). The first break in the neutrino spectrum is
related to the break in the photon spectrum measured by the satellites, and the threshold for photopion

production (Eq. 2.4), while the second break corresponds to the onset of synchrotron losses of muons and
pions. Not all of the parameters used in the neutrino spectrum calculation are measurable from every

burst. In such cases, benchmark values [27] were used for the unmeasured parameters.
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setting
∑
Lγεp to the aggregate power in high-energy cosmic rays sourced in GRBs – this is the Waxman-

Bahcall flux.

2.4 Model Variants

There are two primary variants of this scenario. The first is the Waxman-Bahcall type, where the cosmic

rays are assumed to be present at all times within the burst, and to exit with 100% efficiency once the burst

is concluded. The second concerns itself with how the protons eventually escape the burst into the ISM.

The first class contains two major predictions: Waxman-Bahcall [22] and Guetta et al. [23]. The Waxman-

Bahcall prediction predicts a global aggregate flux of GRB neutrinos based on typical GRB parameters and a

total proton power approximately equal to the cosmic-ray density. Guetta et al. uses a very similar physical

picture to predict neutrino fluences from individual GRBs, based on the measured properties of the bursts

and a proton power set to a fixed fraction (1/fe) of the total burst luminosity. This fraction is usually picked

to make the Guetta et al. and Waxman-Bahcall fluxes approximately agree for typical burst luminosities;

this choice causes the burst proton power in both scenarios to approximately match the total power in high

energy cosmic rays. Since these predictions describe the same physics, they should asymptotically converge

to the same flux when averaged over many bursts. Strong variation in the properties of individual GRBs,

however, results in as much as a factor of 2 variation in the predicted neutrino flux even for samples as large

as several hundred bursts [23, 28].

Both of the models in the Waxman-Bahcall class suffer from large uncertainties. They depend critically

on parameters that are either generally not measured (e.g. Γ) or are ill-defined (tvar). Both entirely

neglect all neutrino production channels other than the ∆ resonance process (e.g. Kaon production and

multi-pion processes) as well as continued acceleration of the non-thermal pions and kaons, both of which

tend to increase the flux relative to the predictions. Finally, both use many approximations in place of

detailed numerical calculations. There have been some subsequent studies of the relationships between

the unmeasured parameters [29] and recent better treatments of the particle physics [30], but significant

theoretical work, especially in an integrated treatment of neutrino acceleration with cosmic ray acceleration

and escape, remains to be done.

The second class of models, first proposed by Rachen and Mészáros [20], provide a much more direct

connection between the neutrino and cosmic ray fluxes with many fewer ambiguities in the flux prediction.

These predictions [20, 21] are based on the observation that, as the fireball rapidly expands, it will adi-

abatically cool along with any high-energy protons inside. This results in any accelerated protons being

magnetically confined within the burst and unable to escape at high energies to form the highest energy

cosmic rays. To source the cosmic ray spectrum, the protons then need to somehow become decoupled from

the magnetic fields in the fireball, for example by becoming neutral particles.
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Conversion of protons to neutrons occurs via the same kinds of processes that produce neutrinos: in

particular, the predominant channel for conversion envisaged in these models is the same p + γ → π+ + n

process in Waxman-Bahcall. Since both the cosmic rays (the neutrons) and neutrinos (π+) are the products of

the same process, we need not worry about the rate of pγ interactions themselves for the purposes of relating

the neutrino and cosmic ray fluxes: every proton that enters the cosmic ray spectrum is accompanied by

exactly 3 neutrinos, each with (on average) 1/12 the energy of the neutron.

The only free parameter in the neutrino flux for neutron escape models is the shape of the spectrum of

escaping cosmic rays, which is set in large part by the jet bulk Lorentz factor Γ. In all the models discussed

here (including non-neutron models), the proton spectrum from GRBs is assumed to be a power law of which

the cosmic ray spectrum above the ankle is the tail. Neutrinos then come from protons with energies far

below 1018 eV (Eq. 2.3). In neutron-origin models, this threshold, set by Γ, then also sets the shape of the

proton spectrum, since protons escape the burst via the same process. This means, among other things, that

Γ is not freely variable within the context of neutron models: if set too high (& 3000), the proton flux from

GRBs will begin at too-high energies, above the ankle at 4× 1018 eV.
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Chapter 3

IceCube Detector

The IceCube detector is constructed of 5160 10-inch photomultipliers embedded in the polar icecap and

housed with their readout electronics in glass pressure spheres. These record Cerenkov light produced by

in-ice particles, allowing the reconstruction of particle directions, energies, and types. These optical modules

are located on 86 vertical strings, each containing 60 modules located between 1450 and 2450 meters depth.

On 80 of the strings, the modules are placed 17 meters apart and the strings are located, on average, 125

meters from one another. On the 6 strings comprising the low-energy Deep Core subdetector, the modules

are much more closely spaced (7 meters), and the strings much closer together. This instrumentation density

is optimized for detection of neutrinos at energies of & 100 GeV.

3.1 Detection Principle

Neutrinos can only be detected by their interactions with matter. There are typically two of these that

matter for neutrino detectors, where l is any type of lepton:

p/n+ νl → p/n+ νl

p/n+ ν̄l → p/n+ ν̄l

n+ νl → p+ l−

p+ ν̄l → n+ l+

(3.1)

The first part of Eq. 3.1 describes the neutral current interaction, which takes place by exchange of a Z

boson, and the second the charged current interaction, which involves the exchange of a W . These have very

different signatures in a detector. A neutral current neutrino interaction transfers energy and momentum

to the nucleon, but otherwise leaves it unchanged. At very low energies, this energy can be observed by

various calorimetric methods familiar from dark matter detectors. At higher energies, the energy deposition

will cause the ejection of a quark from the nucleus, triggering a charged particle shower. Charged current

interactions change nucleons and produce a charged lepton. Both of these can be detected. The change in

nucleon type will result in a chemical change of the material, and may result in a later radioactive decay.
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Large energy depositions can also produce a shower, as in the neutral-current case, and the charged lepton

can be detected by a variety of means.

IceCube detects particles observing photons emitted by the Cerenkov process, the light emitted by rela-

tivistic charged particles as they travel through a refractive medium (ice). The requirement for relativistic

charged particles means that IceCube is sensitive both to showers from all high-energy interactions and to

the charged leptons produced in charged-current interactions.

The sensitivity of the detector to particular interaction channels is, however, variable. Typical TeV-scale

showers are ≈ 10 meters long, which compares unfavorably to the instrumentation density (at best order

10 m between DOMs on the same string). Electrons and positrons produced in νe and ν̄e interactions also

shower very quickly, producing a similar detector signature (Fig. 3.1(b)). The light produced from such

events, on the scale of the detector instrumentation, is then nearly isotropic. This makes reconstruction

of the direction of the original neutrino very difficult and makes neutral-current and νe charged-current

interactions generally unsuitable for use in searching for astrophysical point sources.

The much better channel for this kind of study is detection of νµ charged-current interactions. Because

of their low rate of energy loss (Fig. 4.1), TeV-scale muons can travel for kilometers through ice (Fig. 3.2).

This produces a light track that can be easily reconstructed with high precision (Fig. 3.1(a), Sect. 4.1) and

the interaction is sufficiently forward that the muon and neutrino are nearly collinear (Fig. 3.3). In addition,

having muon ranges larger than the physical detector size allows detection of muons originating from outside

the detector volume and thereby increases the effective sensitive volume of IceCube.

3.2 Digital Optical Modules

The central element of the IceCube detector is the Digital Optical Module (DOM, Fig. 3.4). Each contains

a 10-inch Hamamatsu photomultiplier, as well as a power supply, readout electronics, and calibration devices,

and is housed in a glass pressure vessel in order to withstand the 300 atm. pressure in the deep ice (and up

to 650 during freeze-in).

The data acquisition electronics in the DOM (Fig. 3.5) provide sampled waveforms from the PMT using

two types of digitizers: the ATWD and the FADC [4]. The FADC is a commercial pipelined fADC unit

clocked at 20 MHz and sampling at both edges of the clock gate, proving a 40 MHz sampling rate. This

is relatively slow in comparison to the ns-scale PMT pulses and desired precision of the readout (the 25 ns

sampling interval corresponds to a 1.5 m uncertainty in position). The second digitizer type, the ATWD

(Analog Transient Waveform Digitizer), uses an analog capacitor storage bank, switched at 300 MHz, and a

much slower digitizer. When triggered, the ATWD can sample the waveform with a 3.3 ns sampling interval,

but, because of the slower ADC, cannot do this continuously. Once the 128-bin ATWD fills (422 ns), it

requires several microseconds to digitize and clear. This situation is ameliorated by the presence of a second
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(a) Muon neutrino event, ≈ 1 TeV (b) Shower event, ≈ 50 TeV

Figure 3.1 Muon neutrino and shower (either neutral current or νe charged current) events detected during
the 40-string IceCube run. The muon event makes a long track in the detector volume that allows its

direction of origin to be easily determined. The shower is much more isotropic, making directional
reconstruction difficult.
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Figure 3.2 Range of events in ice as a function of the energy of the primary neutrino. Above a few
hundred GeV, most muons have tracks longer than the size of the detector. Below ∼ 1 TeV, where the

muon energy loss rate is approximately independent of energy (Fig. 4.1), the path length is a linear
function of energy. Above this, where dE/dX ∝ E, the muon path length rises approximately

logarithmically with energy. Cascades (e.g. from neutral current and electron neutrino events) have lengths
that depend only weakly on energy, as both the density of particles in the shower and the loss rate of those

particles rises with energy. Taus deposit tracks, like muons, but have much shorter lifetimes and energy
loss rates than muons do. Figure from [31].
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Figure 3.3 Angle between the neutrino and produced muon, as a function of energy. As the interaction
becomes more and more forward at high energy, the angle between the incoming neutrino and produced
muon is reduced. Above about ∼ 1 TeV, the mean angle between the muon and the neutrino is generally

less than the IceCube angular resolution on the muon. The shown fit is a broken power-law:
∆Ψ = 0.85 deg ×

{
(Eν/TeV)−0.7, E < 33 TeV; 33−0.7 · (Eν/TeV)−0.9, E ≥ 33 TeV

}
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Figure 3.4 Digital Optical Module

ATWD chip, which is used in a ping-pong mode. Each ATWD chip contains three channels, each of which

read out the waveform with a different gain, providing a much higher dynamic range.

Each DOM triggers independently, based on its own state and the state of its neighbors, determined

by local coincidence signals that can be sent to neighboring DOMs on the same string. When the DOM

discriminator (Fig. 3.5) detects a pulse from the PMT, it will trigger and begin digitizing the PMT waveform

– the delay line before the digitizer allows it to read the triggering pulse as well – and send a local coincidence

signal to its neighbors. If one of the neighboring DOMs has also triggered within 1 µs, the full recorded

waveforms will be sent to the surface (Hard Local Coincidence, or HLC, mode). If not, 3 FADC samples (75

ns) corresponding to the highest amplitude part of the waveform will be sent instead (Soft Local Coincidence,

or SLC).

The DOMs also include calibration devices (the LED Flasher Board) that allows measurement of absolute

DOM sensitivities and the optical properties of the ice. Each DOM contains 12 LEDs, six pointed horizontally

and six slightly upward, all of which can be independently flashed and then measured by other DOMs in the

detector.

3.3 Data Acquisition and Triggering

Trigger records and readouts from each optical module are transmitted autonomously to the surface by

each DOM. There they are collected by the global trigger, which builds DAQ events from the stream of
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Name Trigger condition Used for

SMT8 More than 8 HLC launches within 5 µs Muons and Showers

Min Bias Random samples of data Calibration

String 5 hits from a set of 7 contiguous DOMs on one string Muons

Table 3.1 Triggers used during the IceCube-59 physics run. Events are extendable during trigger
conditions and are made of data from 10 µs before the beginning of the first trigger to 10 µs after. The

trigger conditions are designed to be fairly weak – actual event reconstruction and particle identification is
performed by later online filtering.

individual DOM launches. Because of the relatively low data rate in IceCube, the trigger conditions tend to

be simple (Table 3.1), with later event rate reduction performed in online and offline filtering.

3.4 Pulse extraction

For almost all particle reconstruction algorithms (Chapter 4), working directly with PMT waveforms

and digitizer traces is both complex and cumbersome. There are differences between the various digitizer

channels, which need to be cross-calibrated, problems correctly interpreting photon pileup, etc. A much

simpler approach is to run a first reconstruction that attempts to reconstruct the photon arrival times at

the photocathode, and make the results of this the input to the particle reconstructions.

There are several ways to do this, one developed in the course of this work (Section 3.4.1). The basic

assumption of all of them is that the photomultipliers, amplifiers, and ADCs are linear, which appears to be

true for most amplitudes of physics interest [32].

The simplest approach is simply to sum an entire PMT waveform to get a total charge and try to find the

first crossing time for some chosen small threshold. For widely separated photons, this can be generalized

by dividing the waveform into multiple over-threshold regions and reporting a crossing time, charge, and

time-over-threshold for each. This approach, however, suffers from a number of difficulties: it handles pile-

up extremely poorly (important for high energy events) and also cannot properly treat either the low-gain

ATWD channels or the ATWD → FADC switchover region. It also can miss substantial amounts of charge

for PMT pulses not fully contained within the readout. This frequently occurs for example in the 3-bin soft-

local-coincidence waveforms, where the readout is shorter than the pulse length after transmission through

the FADC amplifiers.

3.4.1 Wavedeform

A more advanced method to reconstruct waveforms is to treat this as an unfolding problem. For a fully

linear electronics chain, any given ADC readout will be a linear combination of shifted copies of the single
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Figure 3.6 Shaping functions for the highest-gain ATWD channel and the FADC. The amplifier chains in
front of the digitizers (ATWD and FADC, Fig. 3.5) apply a shaping function to any input pulse, here 2 ns

wide. To prevent missed charge in the digitizers (the ATWD samples at 300 MHz and the FADC at 40
MHz), these narrow input pulses are widened to extend across several samples. Because of the different

sampling rates, the FADC shaping is much wider. Differences in the amplifier chains in front of the three
ATWD channels also introduce minor differences between the shaping function for each, which are not

shown here.

photoelectron (SPE) response function, with a width and shape largely determined by the shaping functions

of the amplifiers (Fig. 3.6). Given a basis of these shifted SPE templates, the waveform (y) can be written

as the product of this basis matrix (B) and the effective charge deposition at the PMT photocathode at each

of a number of closely spaced time points (α):


B1(x1) B2(x1) · · · Bn(x1)

B1(x2) B2(x2) · · · Bn(x2)
...

. . .
...

B1(xm) B2(xm) · · · Bn(xm)




α1

α2

...

αn

 =


y1

y2

...

ym

 (3.2)

Inversion of this linear system then allows the reconstruction of the charge distribution at the PMT

photocathode (α), which is the quantity of interest in later reconstructions. This linear formulation very

naturally handles pileup and can be easily extended to handle the multiple waveforms measured by various

in-DOM digitizers by the addition of rows to the basis matrix B with the template functions for those

additional channels.

One standard difficulty with this sort of approach is the danger of overfitting and ringing (Fig. 3.7).

When the data are not representable as an exact combination of the basis functions (as is often the case

due, for example, to statistical fluctuations), an unconstrained linear least-squares fit will try to produce

the observed features by interference between basis functions, assigning alternate large negative and positive
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Figure 3.7 Illustration of ringing with unconstrained linear least-squares fits. Because the step function
(dotted line) is not representable by the basis functions being used (B-Splines in this case), the slope of the

fit has been steepened by assigning alternating large negative and positive values to the basis functions,
producing the ringing visible here. Not only is the ringing itself undesired, but negative coefficients are

unphysical when interpreted as photon counts or energies, as in pulse unfolding.

values to the basis functions. This can be beneficial when simply trying to describe the data, as in a Fourier

transform, but makes it impossible to interpret the basis function weights α as physical quantities, in this

case the charge deposited at the PMT photocathode.

In many cases, the solution to this problem lies in the use of regularization [33], which involves attaching

a penalty in the fit to rapid variation in the coefficients. This usually takes the form of penalizing large values

of the second derivative of the fit functions, thereby preferring straight lines to the oscillating functions seen

as a result of ringing. In the more general case, the regularization takes the form of a Bayesian prior [33,

Rejoinder], and will penalize deviations away from any fixed functional form.

Such an approach, however, is not suitable for application to waveform unfolding, as the underlying

process is stochastic. Rapid variation of the fit coefficients is expected – corresponding to the arrival of

individual photons at the photocathode – and there is no expected fixed functional form. Therefore, any

kind of penalty would distort and bias the result.

An alternate approach is to restrict ringing by stipulating that all the coefficients α must be non-negative.

Without the possibility of negative coefficients, it is also impossible to use large positive coefficients to produce

unrepresentable features by interference. This entirely prevents both the ringing problem and the problem

of unphysical negative numbers of photoelectrons. The class of linear algorithms that provide this feature

are called Non-Negative Least Squares (NNLS), with the most common being the Lawson-Hanson algorithm

[34], which is used in Wavedeform. The algorithm is described in more detail in Sec. A.4.1.

A related problem to ringing is the stopping condition of the fit. Even without ringing, small statistical

fluctuations can always be better described using a linear combination of many basis functions (overfitting).

The desired stopping condition, then, is one that provides a good fit with maximum sparsity. While sparsity
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Figure 3.8 Examples of waveform unfolding for both simple and complex waveforms using Wavedeform.
The lines marked Refolded are predictions of what the various digitizers would read given the reconstructed

PMT hits. For a perfect reconstruction, and with no noise in the data, these lines would exactly match.
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maximizing NNLS algorithms are NP hard [35], a useful approximation is to exploit the structure of the

Lawson-Hanson NNLS algorithm. At each stage of its outer loop, NNLS adds exactly one basis function to

a set allowed to be non-zero. This basis function is chosen as one where the gradient of the residual function

(the expected change in the fit error from freeing that coefficient) is maximal, and the algorithm ordinarily

terminates when it has exhausted the set of basis functions that would improve the fit by taking positive

values. By terminating this algorithm early, when freeing no single basis function would increase fit quality

by more than some threshold, only the principle components of the data can be extracted.

As can be seen in Fig. 3.8, the NNLS-based algorithm works well. For simple waveforms (Fig. 3.8(a)),

the fit to all active digitizers is good, and only a single basis function attains a positive value. For more

complex waveforms (Fig. 3.8(b)), pileup in the waveforms is handled well, as are inter-digitizer transitions.

The available timing resolution is very good, as well: at maximum fit quality, time resolution as high as

250 ps can be achieved, compared to the ATWD digitizer sampling time of 3.3 ns. Charge resolution is also

substantially improved compared to the previous waveform reconstruction algorithms (Fig. 3.9).

3.5 Optical Properties of the Ice

The ice in the south polar ice sheet used as the IceCube detection medium is extremely pure, with better

optical properties than any laboratory ice [36] and scattering and absorption lengths on order 100 meters

(Figs. 3.10, 3.11). This enables high-quality event reconstruction with IceCube’s relatively low density of

optical sensors.

The ice, however, presents challenges different from most physics experiments: as a naturally occurring

material, it doesn’t obey any manufacturing standards of purity or homogeneity. In particular, its properties

must be measured in situ. The ice model used in IceCube simulations and reconstructions has been derived

[36, 37] using the calibration LEDs present on the DOMs (Sec. 3.2) and analogous devices present in the

previous AMANDA detector, as well as detailed measurements from a dust-logging device used to measure

the optical properties of the hole walls during string deployment [38], and measurements from ice cores

elsewhere in the south polar ice sheet. These measurements have been extensively tested using muon data

in the detector, showing generally good agreement – but nonetheless leaving the modeling of the ice as the

largest systematic uncertainty for IceCube measurements.

The ice exhibits significant depth structure (Fig. 3.10). At relatively shallow depths (< 1.4 km), air

bubbles sharply reduce the scattering lengths. At greater depths, the high pressures cause dissolved gasses

to form calibrates [39], which have very similar refraction indices to ice and so do not form effective scattering

centers. At various depths, there are also dust layers. Very thin dust layers (∼ 1 mm) are deposited by

volcanic eruptions, but are thin enough that they do not significantly affect optical transport and are not

visible in Fig. 3.10 (only the dust logger can resolve these). The larger visible dust layers are believed to
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Figure 3.9 The charge distribution of DOM launches (mostly single photoelectrons) as measured in the
79-string IceCube detector using Wavedeform and using earlier reconstruction software (NFE). The width

of this distribution arises from stochasticity in the electron cascade process in the PMT as well as
uncertainties in the charge reconstruction. The DOMs trigger based on a voltage discriminator set to 0.2

PE. Correctly calibrated data should produce distributions that are always centered at 1 for both HLC and
SLC readout modes (Sect. 3.3). With the exception of reduced resolution for the SLC readouts, and an
increased likelihood of pileup in HLC readouts (the multi-photoelectron tail at the right side), SLC and

HLC distributions should also have the same shape.
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(b) Effective Scattering Length in South Pole Ice

Figure 3.10 Optical properties of the South Pole ice, as determined from AMANDA calibration
instruments (AHA, [36]) and IceCube flashers (SPICE Mie, [37]). At the top of the ice, bubbles increase

scattering, while at lower levels, high pressures compresses the bubbles into clathrates. Dust concentration
traces the prevailing winds and climate over the period of snow deposition in the glacier. Figure from [37].

be the result of climatic changes [38], in which reduced precipitation in the Antarctic combined with higher

atmospheric dust concentrations from desertification in South America increase the ratio of the deposition

rates of atmospheric dust to snow, thereby increasing the dust concentration for a wide band in the deep ice.

Because the absorption and scattering lengths are similar (Fig. 3.10), no analytic solutions for the light

amplitude or time distributions produced by particles in the detector exist. Monte Carlo, however, allows

the treatment of both of these and can include the inhomogeneity of the dust layers [40]. Details like the

structure of ice inside the holes (Fig. 3.11) and the details of effective simulation and reconstruction using

the ice modeling (Appendix A) are also now beginning to be understood, improving the performance of the

IceCube detector.
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Figure 3.11 Photograph taken by a camera inside a DOM pressure vessel during the 2010-2011 deployment
season, showing the clarity of the ice. The rings are spaced 1 meter apart. The green line is a calibration

laser. The structure in the bottom right is ice refreezing after deployment.
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Chapter 4

Reconstruction

The IceCube detector observes two things: the number and timing of photons arriving at photomultipliers

in the ice. The distribution of the detected photons in time and space allows the reconstruction of particle

directions. For contained events, IceCube is a calorimeter: the light emitted (and detected) by particles

within the ice is proportional to the energy of those particles.

For the majority of events, however, neither the particle vertex nor decay point are within the detector

(Fig. 3.2). This is one of the fundamental limits of IceCube reconstruction: non-observation of the neutrino

interaction vertex means that no reconstruction can be more accurate than the difference between neutrino

direction and observable muon direction, while observing only a segment of the muon track means that

a direct calorimetric measurement of the muon or neutrino energy is impossible. These restrictions are,

however, not as severe as they would seem. At the high energies we are concerned with, the neutrino

interaction is boosted forward, making the neutrino and muon nearly collinear (Fig. 3.3). The high energies

of the muons also imply that the muon energy loss rate dE/dx is proportional to the muon energy (Fig.

4.1), allowing a measurement of the mean energy loss rate to be used as a proxy for the muon energy.

4.1 Angular reconstruction

Angular reconstruction in IceCube is generally based on the arrival times of photons at the PMTs. Final

reconstruction results are based on a chain of reconstructions, each providing a refinement of the previous

one, starting with the simplest and fastest and moving to more complex. Typical angular resolution at the

end of the chain is around 1◦.

4.1.1 Linefit

The simplest first-guess algorithm is Linefit, which applies a simple linear regression to the times and

locations of the photons observed at the PMTs (pulses) – in effect fitting a plane wave of light passing through

the detector. This can be done analytically, and so is extremely fast, but neglects important information
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like the scattering of light in the ice and the emission pattern of light from the particle (i.e. the Cerenkov

cone). Nonetheless, it achieves a typical angular resolution of a few degrees.

4.1.2 Likelihood fits

The more complex fits use explicit maximum likelihood methods, taking into account the light emission

profile and the existence of scattering, if not always the details of the ice. As these use a numerical minimizer

and require the evaluation of special functions (in particular, the incomplete gamma function), these typically

take much longer computationally than Linefit, but deliver much better angular resolution (degree-scale).

The use of the numerical minimizer also means that the fit can be trapped by local minima or fail to converge

for other reasons.

The two primary implementations of likelihood fits are SPE (Single Photo-Electron) and MPE (Multi

Photo-Electron). Each of these, despite the name, use the arrival time of the first photon in a particular

PMT – which is likely to have undergone the least scattering – to estimate the track direction.

The likelihood that a photon arrives at time t at a particular optical module can be approximated by

the Pandel [42] parametrization of the gamma distribution:

L = 1
Γ(a)bax

a−1e−t/b

b = 1/
(
τ−1 + c/(nx0)

)
a = ||~x||/λ

(4.1)

where ||~x|| is the distance to the track, n is the index of refraction and τ , λ, and x0 are parameters used

to describe the average scattering of photons in the ice. This provides a reasonable (Fig. 4.2) approximation

of the light scattering distribution.

For SPE, Eq. 4.1 is used without modification using the time of the first photon at each DOM and taking

the product of this likelihood for every hit DOM in the detector. For events where more than one photon

has been collected, this is not strictly statistically correct: Eq. 4.1 describes the arrival time distribution

of a random photon, and choosing the first of N biases the result. However, the likelihood function being

evaluated is computationally simple and SPE provides in general better angular resolution than line fit.

The last stop in the chain for this analysis is MPE, which attempts to correct Eq. 4.1 for the statistical

problem described above. Instead of using a likelihood based on the arrival time of a random photon, it uses

the cumulative distribution function, which involves an incomplete gamma function, and the total charge in

each PMT, to compute the likelihood that the first of N photons arrived at a particular time. This is in

principle statistically correct – although it neglects variation of scattering and energy loss (Sec. 4.4) – and

MPE typically provides angular resolution on the degree or sub-degree scale.
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4.2 Energy reconstruction

IceCube is in many respects a calorimeter: the amount of detected light is proportional to the energy

deposited within the detector. Using tabulated descriptions of the expected light output in various parts

of the detector (Secs. 3.5, 4.3), the deposited energy can be reconstructed from the observed light. For

uncontained tracks, the energy deposition rate of the particles is proportional to energy (Fig. 4.1), which

can be used to estimate particle energies even in these cases [43].

For a particle depositing k photons in a PMT, we can estimate the particle energy deposition E by

comparing the observed number of photons to the expectation Λ for a particle with some reference energy

(usually 1 GeV). The detection of light follows a Poisson distribution, and so the likelihood L can be

maximized as follows:

L = λk

k! · e
−λ

λ→ EΛ

= (EΛ)k

k! · e−EΛ

lnL = k ln (EΛ)− EΛ− ln (k!)

(4.2)

Maximizing this with respect to energy, and adding the contributions from all DOMs:

0 = ∂ ln
∑
L

∂E =
∑

(kΛ/EΛ− Λ−(((((
(

∂/∂E ln (k!))

=
∑
k/E −

∑
Λ

∴ E =
∑
k/
∑

Λ

(4.3)

The generalization allowing additional contributions (e.g. PMT noise) is to replace the substitution

λ = EΛ by λ = EΛ + ν, where ν is the expected number of noise photons. This unfortunately prevents an

analytic solution as in Eq. 4.3. The last few lines then become:

0 =
∑

(kΛ/ (EΛ + ν)− Λ)∑
Λ =

∑
kΛ/ (EΛ + ν)

(4.4)

This does not have a closed form solution for E, as Λ no longer cancels in the first term and E can

therefore not be factored out. The first-order Taylor expansion is:

E =
∑

(k − ν) /
∑

Λ (4.5)

Typical energy resolution achieved by IceCube by this method is about 30% in the logarithm of the

energy for uncontained ∼ 100 TeV tracks [43], which is dominated by uncertainty in the neutrino interaction

vertex and so the amount of muon energy lost before entry into the detector.
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Figure 4.2 Comparison of the time residual (time compared to direct propagation) distributions for the
Pandel function (Eq. 4.1, dashed curves) to the detailed simulation in (black). While it describes the
general shape of the curve correctly, it typically gives incorrect results for both small and large times.

Where the scattering differs substantially from the uniform ice approximation (Fig. A.9), it can differ also
in the position of the peak. Figure courtesy of Mike Baker.

4.3 Photospline

While the Pandel function is a good approximation (Figs. 4.2, A.9), it is not perfect, especially when

taking into account the inhomogeneity of the ice (Sec. 3.5) and better descriptions of light propagation can

be expected to lead to better reconstructions. Because of the ice inhomogeneity, as well as the similarity

of the scattering and absorption lengths for optical photons in ice, it is not generally possible to write in

analytic form either the photon timing or amplitude distributions. They can, however, be evaluated by

Monte Carlo simulation and tabulated [40].

Direct use of these tabulated distributions presents difficulties, however, as the parameter space is very

large. Even exploiting the X-Y symmetry of the ice structure, the minimum coordinate system is the zenith

and Z position of the source particle (θ, z) and the relative spatial coordinates of the receiver (φ, r, ρ), as

well as the time t. To reach the intrinsic uncertainties in the detector (∼ 1 meter, ∼ 1 degree, ∼ 1 ns) with

the size of IceCube implies ∼ 4.5× 1017 table cells, which would occupy over a million terabytes of memory

in single precision. Clever binning (coarser further from the source where features are expected to be washed

out) can reduce this requirement dramatically, but only to a few terabytes before binning artifacts become

apparent (Fig. 4.3).

At several terabytes, however, the tables are still too big to fit into memory on almost all computers

(random access is required for reconstruction). Moreover, the large number of bins requires the propagation of
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enormous numbers of photons to provide adequate statistics. By fitting the tables with splines (Appendix A),

the size of the tables can be reduced drastically while providing improved table smoothness and interpolation.

4.4 Millipede

Energy deposition in IceCube by high-energy muons is extremely stochastic, with large variations in

the energy loss rate from catastrophic energy loss processes (bremsstrahlung, photonuclear interactions,

pair production, etc.). This both complicates energy estimation and the construction of PDFs for angular

reconstruction. In addition, not all particles of interest are through-going tracks: starting and stopping

muons, taus, and νe interactions all produce tracks with wide variation in energy loss (very concentrated,

zero for long stretches, etc.).

These problems can be solved by reconstruction of the detailed pattern of energy loss along the track. In

IceCube, this is more complicated than in the usual segmented calorimeter because there are no barriers to

light transport within the detector. As such, every PMT readout is a combination of light from everywhere

along the track emitted at many places within the ice.

The fact that this combination is a linear one, however, makes the problem tractable. We have already

considered energy reconstruction in the presence of multiple light sources in Sec. 4.2 when discussing the

inclusion of PMT noise. Eq. 4.4 can be generalized by replacing the substitution:

λ→ EΛ + ν (4.6)

with one where the expected photon count λ is the sum of photons from multiple sources (λi) and the

noise rate ν:

λ→
∑

EiΛi + ν (4.7)

where each Ei is the energy deposition at a particular place and Λi is the expected light yield in a

particular photomultiplier from light source i. The maximum likelihood equation 4.2 can then be rewritten

in terms of vector operations:

lnL = k ln
(
EiΛ

i
)
− EiΛi − ln (k!)

= k ln
(
~E · ~Λ

)
− ~E · ~Λ− ln (k!)∑

lnL =
∑
j kj ln

(
~E · ~Λj

)
−
∑
j
~E · ~Λj −

∑
j ln (kj !)

(4.8)

Like Eq. 4.4, this has no analytic maximum for ~E, but can be solved to first order (the approximately

Gaussian error regime, applicable at high energies):



39

kj = ~E · Λj + ν (4.9)

Introducing the matrix Λ for the predicted light yield at every point in the detector from every source

position at some reference energy, this can be rewritten in terms of a matrix multiplication:

~k − ~ν = Λ · ~E (4.10)

This can be inverted by standard linear algebraic techniques to find the best-fit ~E. We want, however,

to incorporate additional physical constraints. In particular, negative energies are unphysical and should

not be present in the solution even though a matrix inversion may often yield solutions with negative terms

(Fig. 3.7). The solution is to use a non-negative least squares algorithm (Sec. A.4.1), as in Wavedeform

(Sec. 3.4.1), which provides a high-quality fit to the data (Fig. 4.4) by use of a linear deposition hypothesis

with possible light sources every few meters along the track. Additional physical constraints (regularity of

direct Cerenkov light from the muon, preference for small energy losses, etc.) can be included by the use of

regularization (Sec. A.3.3). Timing can also be included by dividing the PMT readouts for bright events

into multiple time bins and interpreting ~k and Λ as referring to the light per time bin instead of per PMT

– the math remains the same in this case.

Since the expected light distribution is heavily influenced by non-uniformities in the energy-loss rate, the

best-fit energy loss distribution ~E can then be used to construct better PDFs for angular reconstruction.

Iteratively refitting for energy and computing the likelihood 4.8 in a numerical minimizer allows angular

reconstruction with knowledge of the ice structure and marginalizing over the energy loss distribution. In

initial tests (Table 4.1), this seems very promising, delivering angular resolution up to 10 times better than

Pandel-function based approaches at high energies. Further work is required to improve the robustness of

the minimizer to low-quality seed tracks.
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Reconstruction Median ∆Ψ (degrees) Convergence Rate Execution Time (s)

Line Fit 2.972 100% ∼ 0

MPE, linefit seed 11.35 (0.601) 60% 1.56

MPE, perturbed MC seed 0.758 (0.601) 50% 1.22

MPE, best 0.679 80% 2.78

Millipede 0.0511 100% 57.3

Table 4.1 Comparison of angular resolution (∆Ψ) and execution time for several reconstruction algorithms
for a sample of PeV energy neutrinos. Millipede provides a factor of 10 improved angular resolution

compared to the next-best reconstruction (MPE), at the price of much greater computational
requirements. Averages were taken only over fits that converged, and numbers in parentheses indicate
averages taken only over the subset of converged events where the fitter does not appear to have failed

despite reporting convergence. MPE best refers to the result with the best final likelihood of the two other
MPE fits. Minimization was performed with the Minuit2 SIMPLEX algorithm and the reconstructions,

unless otherwise noted, were seeded with a 2◦ shifted version of the true track.
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Chapter 5

Analysis

In principle, neutrino searches from Gamma-Ray Bursts (or any transient search) are straightforward: the

signal is neutrinos coming from the right place at the right time, and off-time intervals provide high-quality

sidebands that make background estimation trivial. In addition, the background rate from atmospheric

neutrinos is low enough (10−7 s−1 degree−2) that the analysis is nearly background-free. The definition of

the signal is, however, less clear-cut than it might appear, in particular with regard to the definition of “at

the right time”.

The analysis presented here uses data from two years of IceCube during construction (2008-2010). The

first year uses the first 40 strings of IceCube and looks only for Northern hemisphere bursts (using the Earth

to exclude cosmic rays). The second, using the 59-string data, expands this search to include high-energy

neutrinos in the south hemisphere, visible above the cosmic rays. Both are optimized to look for generic

neutrino-GRB correlations rather than to test a particular model. Since the number of neutrinos from any

particular GRB is expected to be small (on order 0.01 events), all of the GRBs are stacked – data relative

to each burst are treated as a single sample, increasing the number of expected events to a few (Table 5.1).

Model Normalization Predicted ν

Ahlers et al. 2011 [21] Cosmic Rays (neutrons) 113

Rachen et al. 1998 [20] Cosmic Rays (neutrons) 84

Waxman 2003 [26] Cosmic Rays 27

Guetta et al. [23] γ spectrum 14

Table 5.1 Predicted event rates for various theoretical models in IC40+IC59. Rates are at the level used in
the analysis, and are computed for the expected values of various unknown quantities. Models normalized
to the γ spectrum use the measured γ fluence to estimate the total energy of the burst and assume some
fixed fraction of that is present in protons, whereas cosmic ray-normalized models assume that the entire

extragalactic cosmic ray spectrum has been sourced from 667 GRBs per year, of which the ones we catalog
are a representative sample.
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Figure 5.1 Schematic of the expanding time windows used in the analysis. For each value ∆t, events
within ±∆t of the burst (yellow region) are summed, and examined for an excess. Then the time window is

widened by an equal amount in both directions and the search repeated.

5.1 Time Windows: what does simultaneous mean?

Neutrinos from GRBs are expected to arrive more or less coincident with the gamma rays. However,

changes in the optical depth of the GRB fireball may result in the target gammas not reaching the Earth (e.g.

the neutrinos may be produced early in the fireball, when it is still optically thick), resulting in small shifts

between the neutrino and gamma time. It may also be possible to see neutrino emission from processes other

than the fireball pγ process, potentially yielding information about the GRB progenitor object. Maximum

model-independence, therefore, implies searching a range of possibilities for “coincidence”.

Since we are integrating the fluxes from many bursts, each potentially with different neutrino timing,

and with those time offsets scaled by variable (and unknown) redshifts, the simplest approach is to model

time offsets as a spread, rather than a shift, in emission time. This is incorporated into the analysis by

searching within a variable window ∆t around the burst time. This window is widened iteratively, and each

is checked for a signal excess (Fig. 5.1). For this analysis, the window was widened 1 second at a time up

to ± 1 day, where background becomes dominant. This is much longer than the typical length of the GRB

gamma emission (seconds to minutes) and also reaches the limits of what can reasonably be attributed to

the GRB fireball.

A standard problem with parameter-space scans of this type is the so-called Look Elsewhere Effect, which

can substantially reduce the significance of an excess due to the many opportunities to find one. Näıvely,

the 86400 time windows examined would constitute 86400 distinct trials, turning, for example, a 5σ excess
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Figure 5.2 Effects of increasing the size of the signal time window ∆t. The plot relates the P-values of an
excess interpreted for a single time window alone (X-axis) to the probability of having seen any bin with
such an excess anywhere in the data set (Y-axis). This has an asymptotically linear tail on the left, the

slope of which is the number of effective trials, and converges to one on the right. For small values of ∆t,
adjacent 1-second spaced intervals are nearly independent, resulting in a linear increase in the number of

effective trials. As the number of intervals increases, the number of effective trials becomes strongly
sublinear. For example, the number of effective trials for 1000 bins is only a factor of 10 larger than for 5.

into a 2σ one. In the context of small numbers of events, this would potentially be fatal. However, the

trials in question are not entirely distinct. As an example, the time window with ∆t = 10000 seconds shares

99.99% of its events with ∆t = 10001. As the time window expands further, the inter-trial correlation rapidly

increases, yielding a (relatively) low effective trials penalty (Fig. 5.2) of only a few hundred.

5.2 Backgrounds

The primary backgrounds for GRB searches in IceCube are products of cosmic ray air showers at the

Earth: muons from the showers in the Southern hemisphere and neutrinos from showers in the Northern

hemisphere. In their respective hemispheres, these backgrounds are irreducible, in the sense that their

detector signatures (a muon) are identical to the expected signal. They can be separated from GRB neutrinos

by the time and direction of their arrival (neither background should be correlated with GRBs) and to a

lesser extent by the energy, although this can inject some model-dependence since it involves assumptions

about the energy of neutrinos from GRBs. The rates of these backgrounds are very different: 2500 Hz of

cosmic ray muons in the south compared to 3 mHz of atmospheric neutrinos in the north.

Event selection in the north need not take particular effort to exclude the atmospheric neutrino back-

ground since the rate per unit solid angle is quite low. A much larger background is caused by downgoing

cosmic ray muons misreconstructed as upgoing. The rate of this is low (10−3), but large in comparison to
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both the atmospheric neutrino rate and the rate of the expected signal. Reconstruction failures have a vari-

ety of causes; the most common is pileup. The detector is large enough that multiple muons from unrelated

air showers can be present simultaneously and are contained within the same trigger (e.g. Fig 5.3). Most

IceCube reconstructions reconstruct only a single track and fitting such a coincident pair to a single track

will produce an essentially random direction (i.e. is upgoing half the time). While such events form the vast

majority (> 99.9%) of upgoing-reconstructed events, they have a fundamentally different signature than the

signal and so can be removed without injecting bias into the event selection.

5.3 Event Selection

The low backgrounds for GRB searches mean that the sensitivity is almost entirely dominated by high

signal acceptance, not by background rejection. Further, the total event sample (∼ 200 million events per

year) is small enough that cuts are not critical to make data processing tractable.

For a typical binned analysis, the counting result N and variance σ2 are both simply the number of

events after final cuts:

N = Ncuts

σ2 = Ncuts
(5.1)

This can be rewritten as a sum over all events, before cuts, in terms of the indicator function I(~xn),

which is 1 if the nth event passes the cuts and 0 otherwise:

N = Ncuts =
∑
n I(~xn)

σ2 = Ncuts =
∑
n I(~xn)2

(5.2)

The variance in N , σ2, can be rewritten in terms of the variance of the indicator function σ2
I :

σ2 = Ntotalσ
2
I +

(
∑
n I(~xn))

2

Ntotal
= Ntotalσ

2
I +

N2

Ntotal
(5.3)

For fixed N =
∑
n I(~xn) and Ntotal, it is therefore clear that the variation in the measurement result, σ,

can be reduced by minimizing the variance of the event classifier σ2
I . An indicator function (taking values

only at the extreme ends of its range) has maximum possible variance – replacement of the indicator function

by a real-valued weighting function with the same mean thereby reduces the measurement variance. This

allows measurements at final cut level to have effectively sub-Poissonian errors, relative to an analysis with

a smaller data sample due to hard cuts, improving the limit-setting ability and potential significance of the

measurement (Fig. 5.7).

The natural choice for the weighting function I(~xn) would be the probability that a particular event is

a signal. This has a number of advantageous properties. The range of probabilities is 0 − 1, fulfilling the
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Figure 5.3 Two muon from unrelated air showers in the same trigger window. The first moves down the
right side of the detector (red and yellow points) and the second down the left (green and blue). The

reconstruction (red line) is the best fit single muon track, which is upgoing, mimicking a neutrino. This
type of event is the primary background to northern hemisphere neutrino searches.
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criterion above. The sum
∑
n I(~xn) is the expectation value of the number of signal events, and can be

interpreted in a natural way. Finally, this approach is asymptotically convergent to maximum likelihood

methods [44], which are otherwise impracticable for very large datasets.

The determination of this probability presents some difficulties. Standard machine-learning techniques

tend to produce as output opaque classification parameters not easily mapped to probabilities and more

information is required than can be usefully provided manually. The simplest method to compute such

a probability is to histogram known samples of background- and signal-like events in a few interesting

parameters and divide those histograms to form an odds ratio, which can be mapped onto a probability

using Bayes’s Theorem (where λ is the a priori odds that an event is a neutrino and S(~xn) and B(~xn) are

the densities of the signal and background histograms, respectively, for an event’s parameters:

O = S(~xn)
B(~xn)

Psig = λO
1+λO

(5.4)

While the variables in question could conceivably be the output of a machine classifier, acceptable per-

formance was obtained using raw event parameters. Since using these avoids the introduction of the extra

indirection of machine classifiers, they were used instead.

One of the difficulties in the computation of this quantity is the potential for large fluctuations in the

odds ratio O due to low or absent statistics in the appropriate histogram cell. This problem can be alleviated

as in Section 4.3, by fitting a multi-dimensional spline surface to the input histograms (Fig. 5.4, Appendix

A).

The weighting function described here depends primarily on reconstruction-quality parameters – the

number of hit PMTs near the track (NDirC), the number of hit PMTs over all (NChan), and the final

likelihood of the angular reconstruction (RLogL). For a purely northern-hemisphere analysis like the IC40

one, the cosmic-ray background is entirely misreconstructed events, so reconstruction quality is strongly

related to whether a particular muon was neutrino induced. Energy-related terms were avoided to avoid bias

to a particular energy spectrum and are unnecessary in the face of the very small atmospheric background.

For the 59-string portion of the analysis, which included both hemispheres, zenith angle was added as well to

allow for the zenith-dependent cosmic ray background. These perform well in separating neutrino simulation

from background events (Figs. 5.5, 5.6).

To incorporate the angular separation from the GRB, an additional term was added to the weighting

function turning it into the overlapping probability density that an event is a neutrino and coincides in

space with a GRB. The uncertainties of both are asymptotically two-dimensional Gaussians [45], and so the

overlap integral of those distributions is:
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Figure 5.5 Overview of the overall performance of event selection used in the IC40 analysis. Distributions
of the weighting function Psig are shown for simulated neutrinos (red) and for detector data (black), which

are overwhelmingly misreconstructed cosmic rays. The mean weight for simulation is much higher. The
data shown are for a full day and should be contaminated with several tens of atmospheric neutrinos; these

are the few high-weight data events visible in the right panel. The two panels differ in the scale of the
X-axis.



49

Figure 5.6 Overview of the performance of the IC59 event selection on a sample of simulated neutrino
events. In the northern hemisphere, where reconstruction quality is sufficient to identify neutrino

candidates, the selection is nearly energy-independent. Above the horizon, only high-energy events can be
distinguished from cosmic rays. The X-axis is in units of radians, which 0 being straight down-going and π

straight up-going. The Y-axis is in units of GeV, and refers to the neutrino energy.
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I(~xn, ψn) = Psig(~xn) 1
2π(σ2

GRB+σ2
i )

exp
(
− |~ψGRB−~ψi|2

2(σ2
GRB+σ2

i )

)
~ψGRB = GRB coordinates

~ψi = Reconstructed coordinates of neutrino candidate i

σGRB = Position uncertainty of GRB

σi = Position uncertainty of neutrino candidate i

(5.5)

5.4 Performance

This approach provides substantially larger signal acceptance than previous techniques (Fig. 5.7), while

maintaining high sensitivity (limits comparable to or better than other searches). In addition to the model-

independence afforded by the variable time windows, these higher event rates allow an increased chance of

detection. Use of weighting instead of straight cuts typically improves effective areas by ∼ 30%, with a

∼ 10% increase in sensitivity (many of the extra events are low quality, so the sensitivity increase is smaller

than the acceptance one).

For the 59-string portion of the analysis, neutrinos and GRBs from the southern hemisphere were included

in the search. Typically, IceCube’s greatest sensitivity is to neutrinos from the northern hemisphere. The

bulk of the Earth can be used as a cosmic-ray muon shield, attenuating the muon flux to zero. Any

observed upgoing muon can then only be result of a neutrino interaction. In the southern hemisphere,

however, neutrinos are mixed in with a large (2500 Hz at detector depth) flux of muons produced in cosmic

ray showers. This makes identification of neutrino events challenging. For the purposes of a search for

correlations with GRBs, however, this constraint is much less severe. The constraint of spatial and time

correlation reduces the background substantially (∼ 0.1 s−1 deg−1). Additionally, because neutrinos from

GRBs are believed to be at high energies, above most of the cosmic ray muons, particle energy can be used

to discriminate between possible neutrino candidates and muons produced in air showers (Fig. 5.6).

The southern hemisphere also provides somewhat higher effective areas than the northern one at the high

energies where GRB neutrinos are expected (Fig. 5.8). At very high energies (& 300 TeV), the neutrino-

nucleon cross section becomes high enough that neutrino absorption in the Earth causes significant decreases

in the neutrino flux arriving from the northern hemisphere. The comparatively small detector overburden

in the southern hemisphere then allows higher efficiency detection of very high energy neutrino fluxes.

The largest systematic uncertainty in this search is from uncertainties in the neutrino-nucleon cross

sections (Fig. 5.9) at high energies since the energy range being probed here is out of the range of laboratory

measurement. The extrapolations from lower energies that we use (CTEQ 5 [47]) are believed to be accurate

to better than 10%, but, as the physics in this energy is essentially unknown, it is possible that deviations

from the CTEQ 5 cross sections are much larger than this value.
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Figure 5.7 Effective area of the IceCube neutrino observatory using the event selections of the
model-dependent [24, 46] and model-independent (this work) analyses, averaging over the 40- and 59-string
detector configurations and zenith angles according to the distribution of bursts in the catalog (Appendix
B). The effective area of the model-independent event selection is in general somewhat larger, due to using
a weight scheme instead of hard cuts. The model-independent average effective area includes the southern

hemisphere for the 59-string portion of the analysis. Data files for this figure can be found in the
supplemental information of [46].
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Figure 5.8 Effective area of the IceCube neutrino observatory in its 59-string configuration to fluxes of
muon neutrinos from the northern and southern hemispheres, using the event selection from the

model-independent analysis. At low energies, the ability to use the Earth to filter out neutrinos from
cosmic ray air showers reduces backgrounds and improves the sensitivity of the detector to neutrinos from
the northern sky. As the neutrino energy increases, so does the neutrino-nucleon cross-section (Fig. 5.9),
increasing the neutrino interaction probability and the chances of a detection in IceCube. At very high

energies, backgrounds from cosmic-ray muons are substantially reduced and the neutrino-nucleon
cross-section becomes large enough that northern neutrinos will be absorbed in the Earth before reaching
the detector, making the southern hemisphere the region of highest sensitivity for Eν & 1 PeV. Note that
the effective area is not a direct estimate of the sensitivity, due to variable backgrounds as a function of

zenith angle and energy. In general, backgrounds are highest in the southern hemisphere and at low
energies. Data files for this figure can be found in the supplemental information of [46].
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The effect of systematic uncertainties from detector effects is minimal. Ample sidebands from off-source

and off-time regions remove any dependence on Monte Carlo from background estimation. Since the imme-

diate quantity of interest in a GRB neutrino search is simply the number of events present, rather than a

spectrum, systematic effects influencing the presented result would have to cause such events either not to

trigger the detector or to be incorrectly reconstructed. As the energy range at which GRB neutrinos are

expected (& 100 TeV) is far above the detector threshold (a few hundred GeV), changes in, for example, the

PMT quantum efficiency have only minimal effects on the trigger efficiency. The low background also implies

that the tolerance for systematic pointing uncertainties is very large. In aggregate, detector systematics are

responsible for only 2-5% systematic uncertainties in IceCube sensitivity to these types of fluxes.
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Chapter 6

Results

During the 59-string data taking period (May 21, 2009 - May 31, 2010), 190 GRBs were observed and

reported via the GRB Coordinates Network [15], with 105 in the northern sky (Sec. B.2). Most of these were

reported by Fermi GBM, with additional contributions from Swift-BAT and Fermi-LAT. Of those GRBs, 9

were not included in our catalog due to detector downtime associated with construction and calibration. Two

additional GRBs were included from test runs before the start of the official 59-string run. 117 northern-sky

GRBs (Sec. B.1) were included from the 40-string period (April 5, 2008 - May 20, 2009) to compute the

final combined result. GRB positions were taken from the satellite with the smallest reported error, which

is typically smaller than the IceCube resolution (0.6◦ for Eν & 100 TeV). The GRB gamma-emission start

(Tstart) and stop (Tstop) times were taken by finding the earliest and latest time reported for gamma

emission.

After unblinding, two candidate events were observed at low significance, one 30 seconds after GRB

091026A (Event 1, zenith angle 2.03◦) and another 14 hours before GRB 091230A (Event 2, zenith angle

36.24◦). The first was shortly after the main emission ended; the second was far outside the expected time

window. Subsequent examination showed they had both triggered several tanks in the IceTop surface air

shower array, and are thus very likely muons from cosmic ray air showers (Fig. 6.2). During the 40-string

run, several candidate events were observed (Fig. 6.1), but these were of low significance and consistent

with the expected atmospheric neutrino background. In Fig. 6.3 are shown limits from this analysis on the

normalization of E−2 muon neutrino fluxes at Earth as a function of the size of the time window |∆t|, the

difference between the neutrino arrival time and the first reported satellite trigger time. As a cross-check

on both results, the limit from this analysis on the average individual burst spectra [23, 24] during the time

window corresponding to the median duration of the bursts in the sample (28 seconds) was 0.24 times the

predicted flux, within 10% of the model-dependent analysis conducted at the University of Maryland [46].

Assuming that the GRBs in our catalog are a representative sample of a total of 667 per year [27], we can

scale the emission from our catalog to the emission of all GRBs. The resulting limits can then be compared

to the expected neutrino rates from models that assume that GRBs are the main sources of ultra high energy
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Figure 6.1 The two most significant events in the final IC40 data sample. The first occurred 2249 seconds
before GRB 090417B, 1.95 degrees off-source, with a localization uncertainty of 1.61 degrees and an
estimated energy of 1.3 TeV. The second occurred 3594 seconds before GRB 090219, 6.11 degrees

off-source, with a localization uncertainty of 6.12 degrees and an estimated energy of 3.3 TeV. Both are
much lower energy than would be expected for neutrinos from a GRB, and come substantially further in
time from the burst than predicted by most models. Both are most likely atmospheric neutrinos, and are

consistent with the expected background (P-value of ∼ 0.4).

Figure 6.2 The two most significant events in the final IC59 data sample. The first occurred 30 seconds
after GRB091026A, 4.5 degrees off-source, with a localization uncertainty of 10.5 degrees, with an

estimated energy of 35 TeV. The second occurred 14 hours before GRB091230A, 0.2 degrees off-source,
localized to 0.2 degrees, with an estimated energy of 109 TeV. The first is very clearly a cosmic ray instead

of a neutrino, as it triggered the IceTop surface array. The second has one triggered IceTop tank at the
correct time, strongly indicating that it is part of an air shower. It also occurs a long time from the GRB,

where backgrounds are higher, and so has low significance. This type of event and the lowering of the
IceTop energy threshold beginning with IceCube-79 will likely result in an integrated IceTop veto in future

analyses. Both events are consistent with cosmic ray backgrounds (P-value of 0.21).
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neutrino production at the ∆ resonance from proton interaction with a 1 MeV photon field at a redshift of
1 [23, Eq. A7]. Vertical axes are related to the accelerated proton flux by the model-dependent constant of
proportionality fπ. For models assuming a neutron-decay origin of cosmic rays (Rachen and Ahlers) fπ is

independent of Γ; for others (Waxman-Bahcall) fπ ∝ Γ−4. Error bars on model predictions are
approximate and were taken either from the original papers, where included [21], or from the best-available

source in the literature [29] otherwise. The errors are due to uncertainties in fπ and in fits to the
cosmic-ray spectrum. Waxman-Bahcall [22] and Rachen et al. [20] were calculated using a cosmic ray

density of 1.5− 3× 1044 erg Mpc−3 yr−1, with 3× 1044 the central value [26].
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cosmic rays [22, 20, 21], with sampling biases of the same order as model uncertainties in the flux predictions

[29, 28]. Limits from the model-independent analysis on fluxes of this type are shown in Fig. 6.4. The muon

flux in IceCube is dominated by neutrinos with energies around the first break (εb). As such, the upper

break, due to synchrotron losses of π+, has been neglected in Fig. 6.4, as its presence or absence does not

contribute significantly to the muon flux and thus does not have a significant effect on the presented limits.

These limits exclude all tested models [23, 22, 20, 21] with their standard parameters and uncertainties

on those parameters (Fig. 6.4). The models are different formulations of the same fireball phenomenology,

producing neutrinos at proton-photon (pγ) interactions in internal shocks. The remaining parameter spaces

available to each therefore have similar characteristics: either a low density of high-energy protons, below

that required to explain the cosmic rays, or a low efficiency of neutrino production.

In the fireball scenario, protons are accelerated stochastically in collisions of internal shocks in the ex-

panding GRB. The neutrino flux is proportional to the rate of pγ interactions, and so to the proton content of

the burst by a model-dependent factor. Assuming a model-dependent proton ejection efficiency, the proton

content can in turn be related to the measured flux of high-energy cosmic rays if GRBs are the cosmic ray

sources. Limits on the neutrino flux for extragalactic cosmic ray normalized models are shown in Fig. 6.4;

each model prediction has been normalized to a value consistent with the observed ultra high-energy cosmic

ray flux.

An alternative is to reduce the neutrino production efficiency. For some models (Waxman-Bahcall-type,

Sec. 2.4), the uncertainties in the neutrino efficiency are large. Recent papers [28, 30] have indicated that

accounting for detailed microphysics in pγ interactions may change the flux prediction by a factor of a few.

This is still overwhelmed by the astrophysical uncertainties in these models and it is not clear at this point

where the predictions will end up. The applicability of these models to the question of cosmic ray acceleration

is also doubtful in the first place, since they do not treat the problems of proton acceleration or ejection;

they appear to be best suited only for determination of the proton content of the outflow, with its unknown

internal environment, rather than connections to the cosmic ray spectrum.

Another possibility, which applies to all models, is to increase the bulk Lorentz factor Γ of the outflows.

Increasing Γ increases the proton energy threshold for pion production in the observer frame, thereby reducing

the neutrino flux due to the lower proton density at higher energies. Astrophysical lower limits on Γ are

established by pair production arguments [23], but the upper limit is less clear. Although it is possible that

Γ may take values of up to 1000 in some unusual bursts, the average value is likely lower (usually assumed

to be around 300 [23, 24]) and the non-thermal gamma-ray spectra from the bursts set a weak constraint

that Γ . 2000 [18]. For all considered models, with uniform fixed proton content, very high average values

of Γ are required to be compatible with our limits (Fig. 6.4).
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These results are strongest in the case of models where cosmic rays escape from the GRB fireball as

neutrons [20, 21], which are also the ones that directly treat the problem of cosmic ray production in GRBs.

In these models, the neutrons and neutrinos are created in the same pγ interactions, directly relating the

cosmic ray and neutrino fluxes and removing many uncertainties in the flux calculation. In these scenarios,

Γ also sets the threshold energy for production of cosmic rays. The requirement that the extragalactic

cosmic rays be produced in GRBs therefore does set a strong upper limit on Γ: increasing it beyond ∼ 3000

causes the proton flux from GRBs to disagree with the measured cosmic ray flux above 4× 1018 eV, where

extragalactic cosmic rays are believed to be dominant. Limits on Γ in neutron-origin models from this

analysis (& 2000, Fig. 6.4) are very close to this point, and as a result all such models in which GRBs are

responsible for the entire extragalactic cosmic-ray flux are now largely ruled out (Fig. 6.5).

Although the precise constraints are model dependent, the general conclusion is the same for all the

versions of fireball phenomenology we have considered here: either the proton density in gamma ray burst

fireballs is substantially below the level required to explain the highest energy cosmic rays or the physics in

gamma ray burst shocks is significantly different from that included in current models. In either case, our

current theories of cosmic ray and neutrino production in gamma ray bursts will have to be revisited.
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[1] V. F. Hess. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten.
Physikalische Zeitschrift, 13:1084–1901, 1912.

[2] Kenneth Greisen. End to the cosmic ray spectrum? Phys. Rev. Lett., 16:748–750, 1966. doi:10.1103/
PhysRevLett.16.748.

[3] G. T. Zatsepin and V. A. Kuzmin. Upper limit of the spectrum of cosmic rays. JETP Lett., 4:78–80,
1966.

[4] R. Abbasi et al. The IceCube data acquisition system: Signal capture, digitization, and timestamping.
Nuclear Instruments and Methods in Physics Research A, 601:294–316, April 2009. arXiv:0810.4930,
doi:10.1016/j.nima.2009.01.001.

[5] E. Waxman. Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett.,
75:386–389, July 1995. doi:10.1103/PhysRevLett.75.386.

[6] M. Vietri. The Acceleration of Ultra–High-Energy Cosmic Rays in Gamma-Ray Bursts. Astrophysical
Journal, 453:883, November 1995. arXiv:astro-ph/9506081, doi:10.1086/176448.

[7] T. J. Galama, P. M. Vreeswijk, J. van Paradijs, C. Kouveliotou, T. Augusteijn, H. Böhnhardt, J. P.
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[20] J. P. Rachen and P. Mészáros. Cosmic rays and neutrinos from gamma-ray bursts. In C. A. Meegan,
R. D. Preece, & T. M. Koshut, editor, Gamma-Ray Bursts, 4th Hunstville Symposium, volume 428 of
American Institute of Physics Conference Series, pages 776–780, May 1998. arXiv:astro-ph/9811266,
doi:10.1063/1.55402.

[21] M. Ahlers, M. C. Gonzalez-Garcia, and F. Halzen. GRBs on probation: Testing the UHE CR paradigm
with IceCube. Astroparticle Physics, 35:87–94, September 2011. arXiv:1103.3421, doi:10.1016/j.
astropartphys.2011.05.008.

[22] E. Waxman and J. Bahcall. High energy neutrinos from cosmological gamma-ray burst fireballs. Phys.
Rev. Lett., 78:2292–2295, March 1997. doi:10.1103/PhysRevLett.78.2292.
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APPENDIX
Photospline

Nathan Whitehorn, Jakob van Santen

A.1 Introduction

Understanding the response of a detector to a physics process is the single most important aspect of

analysis. For Icecube, this understanding involves first the energy loss processes of a particle in the ice, then

the propagation of light to the photomultipliers, the response of the photomultipliers to light, and finally

the behavior of the data acquisition. As Icecube operates using heterogeneous naturally occurring material

in an energy range beyond the reach of accelerator experiments, both the propagation of particles and light

in the detector are unlikely to conform to specification. Here we discuss technical aspects of Photospline, a

set of software for representing our understanding of light propagation in the ice in an efficient, accurate,

and numerically stable way.

We want to know the answers to two questions about light propagation: given a physics event in the

detector, how many photons arrive at each photomultiplier, and when do they arrive there? Because the ice

is heterogeneous and because the scattering and absorption lengths for photons in the detector are similar,

there are no simple analytic answers to these questions. Far away from a light source, in the purely diffusive

regime, the number of photons is approximately exponential with distance, and it is possible to neglect

structure in the ice and reasonably approximate the time arrival distribution as a gamma distribution [42].

However, with the high timing resolution and heterogeneous ice of Icecube, these approaches do not deliver

sufficient accuracy either for simulation or reconstruction.

Instead, we take recourse to Monte Carlo simulation of photon propagation. As of this writing, there

are two approaches to this. The first is exemplified by the software PPC [49], which directly propagates

photons through the detector for each physics event. This approach has a time complexity of O(n), which

is proportional to the energy deposited in the detector. The alternative approach is currently employed by

the software package Photonics [40], which pre-computes and tabulates the results of many types of light-

producing events. Simulating physics events with Photonics then just involves a table lookup and generation

of a Poisson random number, and so is O(1). Except for very small events, a table-based simulation is
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then much faster than direct propagation1. This is especially important for reconstruction, where photon

densities must be computed for each hypothesis considered and the actual Poisson mean is required, not

just a sample from the distribution, which would require several orders of magnitude more propagation runs,

making direct propagation impracticable.

The problem with a table-based approach, however, is that the tables can potentially be enormous and

therefore difficult to work with, and that tabulation can introduce numerical artifacts. These numerical

artifacts arise from averaging over a table cell during binning, from inaccurate interpolation between cells,

and from statistical fluctuations as the bins are filled. Any attempt to reduce the size of the tables exacerbates

the binning artifacts, and vice versa.

The technique described here is an attempt to remove ourselves from this trap. Photospline provides a

post-processing technique on very large fine-binned photon tables that produces a much smaller, compressed

format relatively insensitive to fluctuations in the original tables. The photon probabilities are represented

as a multi-dimensional spline surface, which provides smooth and accurate interpolation while maintaining

the speed of the table-based approach. For reconstruction, we also add to the essential Poisson mean of

photons the ability to quickly and analytically compute derivatives and integrals of the distributions, which

improves the speed and accuracy of maximization of likelihoods incorporating the tabulated photon counts.

The following describes the mathematical operations involved in fitting histograms of simulated photons

as well as providing a simple user’s guide to the software and a description of operations on the stored spline

tables used in simulation and reconstruction.

A.2 B-spline surfaces

An ideal interpolation function for the photonics tables would have several properties: it would be smooth,

fast to evaluate, possible to fit deterministically in a small amount of time, extend easily to large numbers of

dimensions, and have parameters that are easy to store, while minimizing introduction of bias and artifact

into the fit tables. B-splines fit this description almost perfectly: a spline of order n has n − 1 continuous

derivatives, the functions can be evaluated quickly, and fitting them to a table is a linear problem, so it can

be done quickly with standard techniques.

A.2.1 B-splines

The Basis Spline (B-spline) is a smooth function commonly used in interpolation problems. The simplest

such function is the unit box, which is one from ~k0 to ~k1 and 0 otherwise. This is called a B-spline of order

0 :

1For very small events, the large constant involved in table lookup means than direct propagation can be faster.
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(c) Order-2 B-splines

Figure A.1 B-spline functions

B0(x) =

 1 : ~k0 ≤ x < ~k1

0 : otherwise
(A.1)

Higher orders of spline are formed by iterative self-convolution (Figure A.1), and gradually converge to

a Gaussian as the order is increased. In general, the basis spline of order n is defined by a knot vector (~k)

of n+ 2 points. In the region spanned by this vector, the function is non-zero, and is identically zero at all

other points. This can be stably evaluated for orders greater than 0 by a recursive function known as the

DeBoor algorithm[50, Page 131, Eq. 5]:

Bin(x) =
(x− ~ki)Bin−1(x)

~ki+n − ~ki
+

(~ki+n+1 − x)Bi+1
n−1(x)

~ki+n+1 − ~ki+1

(A.2)

It is often desirable to calculate not just the value of a specific B-spline Bin(x), but the values of all n+ 1

non-zero B-splines at x. Applying Equation (A.2) directly is not the most efficient way to go about this,

since the recurrence relations for neighboring splines involve many of the same terms, most of which will be

recalculated unnecessarily. The calculation can be done much more efficiently by starting from the single

nonzero 0th order B-spline at x and building up until one obtains the nth order splines as illustrated in

Figure A.2 [50, Page 132, Subprogram BSPLVB]. For order 2 splines, this approach is already ∼ 4 times

faster than näıve application of Equation (A.2).

A.2.2 Spline Approximation

To create a smooth approximating function in one dimension, we take a linear combination of B-spline

functions defined on a common knot vector ~k, such that the nth B-spline of order m, Bnm, is defined on the

subset of ~k from ~kn to ~kn+m+1.
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0 Bn−1
i−n+2(x) Bn−1

i−n+3(x) . . Bn−1
i−1 (x) Bn−1

i (x) 0

. . . . . .

0 B2
i−2(x) B2

i−1(x) B2
i (x) 0

0 B1
i−1(x) B1

i (x) 0

0 B0
i (x) 0

Figure A.2 A visualization of a “bottom-up” version of the DeBoor recurrence relation for the nonzero nth
order B-splines for x ∈ [ki, ki+1). Each row of the table can be generated from the one below it by

application of (A.2). All the B-splines that do not appear in the table are identically equal to zero on
[ki, ki+1), and so do not need to appear in the calculation.

Functions defined in this way have several attractive properties for us. Because they are linear combi-

nations of smooth functions, they are likewise smooth, the amount of information required to represent the

function is small, and they can be fit to data using standard linear techniques such as Singular Value, QR,

or Cholesky decomposition. In addition, because all but m+ 1 of the basis functions are identically zero at

any particular point (a property called local support), to evaluate the approximation function we need only

evaluate the DeBoor algorithm m+ 1 times. This vastly improves computation time for lookups compared

to functional representations like Fourier decompositions or polynomial interpolation without this property.

A.2.3 Tensor Product Surfaces

We can extend this approach easily into multiple dimensions by adopting the concept of the tensor

product spline. Instead of a knot vector, the tensor product basis functions are defined on a rectangular

n-dimensional knot grid k formed by taking the tensor product of n one-dimensional knot vectors. Each

basis function is then a product of one-dimensional B-splines (Figure A.3, which are then taken in linear

combination as in the one-dimensional case:

B(~x) = α ·B = α ·
(
Bi1(~x1)⊗Bj2(~x2)⊗ . . .

)
(A.3)

Because most components of the basis tensor B are zero, as in the one-dimensional case, we recover the

same local support property, albeit with more contributing basis functions due to the increased dimensionality

of the problem.
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Figure A.3 A 2-dimensional tensor product spline constructed from two one dimensional basis splines
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A.3 Determining B-spline coefficients

A.3.1 Ordinary Least Squares

In one dimension, fitting a spline function to data points is a simple linear procedure. The basic idea is

to note that the value of the function at each data point is a linear combination of the values of each basis

function at that point. In general, for a set of n basis functions, and n data points (the exactly determined

case), we can write down a set of linear equations the solutions to which are the coefficients of an interpolating

spline function:

α1B1(x1) + α2B2(x1) + α3B3(x1) + · · ·+ αnBn(x1) = y1

α1B1(x2) + α2B2(x2) + α3B3(x2) + · · ·+ αnBn(x2) = y2

...

α1B1(xm) + α2B2(xm) + α3B3(xm) + · · ·+ αnBn(xm) = ym

(A.4)

This system of linear equations can then be written in matrix form:


B1(x1) B2(x1) · · · Bn(x1)

B1(x2) B2(x2) · · · Bn(x2)
...

. . .
...

B1(xm) B2(xm) · · · Bn(xm)




α1

α2

...

αm

 =


y1

y2

...

ym

 (A.5)

where Bij = Bi(xj) is the so-called model matrix. In this form, the problem can be quickly solved by a

variety of standard matrix factorization tools.

But what if the problem is not exactly determined? If, for example, there are more data points than

coefficients, it is possible that no solution exists to Equation A.5. This is in fact the situation when using

this procedure to compress data, as with the photon tables. In this case, what we would like is a way to

compute the best approximation to an exact solution under the circumstances.

It is possible to construct a new problem the exact solution to which forms the global least-squares

solution to the original overdetermined problem – as well as the maximum-likelihood solution under the

assumption of normally distributed errors. We do this by formulating the normal equations. These are

constructed by noticing that multiple data points are affected by changes in a single basis function. Thus,

we can use a linear combination of data points as a proxy for their combined effect. In more mathematical

language, we use the transpose of the model matrix Bij to project the data points into the space of the

coefficients. Instead of the exact linear equation

Bα = y (A.6)
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we multiply from the left by the transpose of the model matrix Bᵀ to obtain the normal equation:

BᵀBα = Bᵀy (A.7)

The solution of this equation is then the vector α such that ||Bα − y|| is minimized. This can be seen

clearly by writing the gradient of the least squares residual of Bα− y:

~∇α||Bα− y|| = ∇α (Bα− y)
2

= ∇α ((Bα− y)
ᵀ

(Bα− y))

= ∇α ((αᵀBᵀ − yᵀ) (Bα− y))

= ∇α (αᵀBᵀBα− αᵀBᵀy − yᵀBα) +���
�∇αyᵀy

= 2BᵀBα−Bᵀy − (yᵀB)
ᵀ

= 2BᵀBα− 2Bᵀy

= 2 (BᵀBα−Bᵀy)

∴ BᵀBα−Bᵀy = 0 ⇔ min ||Bα− y||

(A.8)

From this, α can easily be obtained using the same procedures we used to solve Equation A.6, after

adding suggestive parentheses:

(BᵀB)α = (Bᵀy) (A.9)

In particular, if B has full column rank (that is, the columns are linearly independent, as is the case with

a B-spline basis), then BᵀB is symmetric and positive-definite (that is, all of its eigenvalues are positive).

We can factorize such matrices into a product of a lower-triangular matrix L and its transpose using the

Cholesky decomposition:

BᵀB = LLᵀ (A.10)

The triangular form is useful, as we use it to solve linear equations of the form BᵀBα = Bᵀy by direct

substitution. First, we re-group the terms

BᵀBα = LLᵀα = L(Lᵀα) = Bᵀy (A.11)

before solving for the value of Lᵀα by forward substitution from the lower-triangular matrix L:

L(Lᵀα) = Lz = Bᵀy (A.12)

Given this intermediate solution, we can solve for α by backward substitution from the upper-triangular

matrix Lᵀ:
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Lᵀα = z (A.13)

A.3.2 Weighted Least Squares

It may be the case that some of the data points being fit are less important than others – for instance,

they may have larger errors – and so we would like the fit curve to care less about fitting these points exactly

if it can do better elsewhere at their expense. We incorporate this condition into the least-squares formalism

(Equation A.9) by incorporating a weight term.

In ordinary least squares, we minimize ||BA − y||, which is to say the sum
∑
i (f(xi)− yi)2

, where

f(x) =
∑
j AjBj(x). The weight condition is then incorporated by instead minimizing

∑
i

Wi (f(xi)− yi)2
(A.14)

Terms with Wi = 0 then do not contribute to the fit, while terms with large Wi dominate the objective

function (A.14) and will be fit very well, if necessary at the expense of the rest of the data set. If the weights

Wi are chosen to be 1/σ, where σ is the measured variance of the data points, then minimizing the objective

function (A.14) becomes a minimization of χ2:

χ2 =
∑
i

(f(xi)− yi)2

σ
(A.15)

We can integrate this into the linear-algebraic formulation of least-squares (Equation A.9) by defining a

diagonal weight matrix Wii.
2 This matrix is then incorporated into the normal equations (Equation A.9):

(BᵀWB)α = (BᵀWy) (A.16)

We can see that it does in fact minimize the objective function (A.14) by rearranging it slightly and

applying the logic of (A.8):

Bᵀ (W (Bα− y)) = 0 (A.17)

A.3.3 Penalized Least Squares

If there is some statistical jitter in the data points to be fit, we may want the fit curve to have some intrinsic

rigidity and follow the general trend instead of following the fluctuations. The way this is accomplished is

called regularization.

2This approach can be expanded to handle cross-correlations by extending Wii with off-diagonal terms. In the case of
normally-distributed errors, χ2 is minimized by defining Wij = σ−1

ij , where σij is the variance-covariance matrix.
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For fitting photonics tables, we employ a standard technique called Tikonoff regularization, in which a

penalty is attached to large values of the second derivative. A very noisy fit will be continuously changing

curvature, whereas a smooth one will have a relatively constant curvature, and so the second derivative will

in general be small. Thus the smooth fit will be preferred by the fitter.

This is accomplished in the context of least squares fitting by adding a term to the normal equations.

Instead of solving Equation A.9, we solve the penalized normal equation:

(BᵀB + λP ᵀP )α = (Bᵀy) (A.18)

The solution to this equation now minimizes ||(Bα−y)||+λ||Pα||. λ is then the strength of the regulariza-

tion (called the smoothing parameter in the Photospline code). For λ = 0 we recover the unpenalized normal

equations (A.9). For λ → ∞, the regularization term dominates, and we end up with a curve of the shape

specified by the regularization term, which is a form of Bayesian prior (for order-2 Tikonoff regularization,

this will be a straight line).

A.3.3.1 Penalized Splines

For the specific case of regularized fits of B-splines, we employ the P-spline (penalized spline) technique

[33]. To employ the regularization technique outlined above, we must write a matrix P such that it will

transform the vector of B-spline coefficients A into a vector whose terms are related to the second derivatives

of the spline function.

B-splines have a property that makes this simple. The j-th derivative of a spline function can be written

as a new spline function of order k − j using the B-spline derivative recurrence relation [50, Page 139, Eq.

12]:

Dj

(∑
i

αiBi,k

)
=
∑
i

αj+1
i Bi,k−j (A.19)

where

αj+1
r =

 αr , j = 0
αj

r,k−α
j
r−1,k

(tr+k−j−tr)/(k−j) , j > 0
(A.20)

We can now rewrite Equation A.20 in matrix form to acquire our penalty matrix, which will transform

the vector α into αj+1. Since this is recursive, it is difficult to write explicitly in the general case, but some

examples are provided for the case of equispaced knots, 1 unit apart:
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Order 0 :


1 0 0

0 1 0

0 0 1



Order 1 :


−1 1 0 0

0 −1 1 0

0 0 −1 1



Order 2 :


1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1



(A.21)

A.3.3.2 Penalized Least Squares in Multiple Dimensions

In principle, the extension of least squares fitting to multiple dimensions is easy. As before, we have a

set of (n-dimensional) basis functions B, to be fit at a set of n-dimensional positions to a measured set of

data y. With some smoothness constraint on each dimension, we then want to minimize

||Bα− y||+ λ1||P1α||+ λ2||P2α||+ · · ·+ λn||Pnα|| (A.22)

In analogy to Equation A.18, we can write down the corresponding system of linear equations:

(
BᵀB +

n∑
i

λiP
ᵀ
i Pi

)
α = Bᵀy (A.23)

The difficulty here arises in that B can be enormous in the multi-dimensional case. For 25 knots on each

of 4 axes, and a table with 200 million cells (typical numbers for photon tables), B will have dimensions

390625 by 200 million and require 568 TB of RAM just to store, which, as of 2010, is substantially larger

than the memory capacity of any computer on Earth.

We get around this problem by noticing two important facts. The first is that B is quite sparse. Because

of the local support property of B-splines, most of the basis functions have no support at most of the data

points. As such, we can eliminate all of the zeroes from the matrix using sparse-matrix routines. This

reduces memory consumption in the above problem by a factor of 100.

The second thing is that B is not present in isolation in Equation A.23, but instead only occurs as the

combination BᵀB. Whereas B has dimensions of the number of basis functions by the number of data points,

BᵀB is a square matrix of side length the number of basis functions. For the example problem above, being

able to work directly with BᵀB instead of B would reduce memory consumption by another factor of 500.
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This also means, critically, that neither the memory requirements nor the CPU requirements of this fitting

algorithm would depend on the number of data points, but instead only on the number of basis functions.

The algorithm that allows us to do this is called the Generalized Linear Array Model (GLAM) technique

[51], and exploits the fact that our basis functions are tensor product splines and that our data are located

on a grid (though this requirement can be relaxed by weighting non-observed points required to maintain

the grid structure with weights of 0). The algorithm itself is complicated, and more clearly illustrated by

source code than equations. As such, readers interested in the details of this algorithm are referred to the

Python GLAM code included in Photospline as well as to the original paper [51].

A.3.4 Table Stacking and Pseudointerpolation

Each run of the photon simulation we are fitting we produce light distributions for a single source

configuration. For a table-based simulation, many source configurations are simulated and the distributions

for an arbitrary source produced from interpolation between the tables for similar sources. For spline tables,

we wish to be able to do this as well. The first solution to come to mind, to do a global fit, is impracticable.

In addition, because there is no bin averaging between sources, smoothing (and thus least-squares fitting) is

unnecessary, and we can stick to interpolation algorithms.

What we do then is to “stack” the individual three- or four-dimensional fit tables (r, θ, φ, [t]) for each

simulated source into a single five- or six-dimensional table (r, θ, φ, [t], θsrc, zsrc), still of tensor product

splines. The normalization of the spline basis functions is such that we can simply stack the fit coefficients

of each sub-table while creating a knot vector such that the original values of the sub-tables form control

points for the interpolating splines in the extra dimensions.

Given a knot vector ~k, the maxima of the B-splines defined on that vector can be found by solving

Equation A.20. Given equally spaced splines, these also are the centers of each basis function and can be

found at:

~Bmaxn = ~k − n− 1

2
(A.24)

By inverting Equation A.24, we can acquire a formula for a knot vector given a vector of centers ~x:

~~k = ~x+
n− 1

2
(A.25)

We must also add points to the knot vector, since a spline function of order n made of m basis functions

(and so m coefficients) must be defined by m+ n+ 1 knots. Thus we need n+ 1 extra knots, of which the

first n are placed at linearly extrapolated positions before the positions from Equation A.25, and one placed

at a linearly extrapolated position after the last element.
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Iterative application of Equation A.25 with stacking of coefficients will then produce a new tensor product

spline surface with the sub-table locations as control points. It is worth noting that this surface does not

exactly interpolate the original tables, as B-splines do not interpolate their control points. Instead, it forms

a curve that maximally fills the convex hull of the set of control points (Figure A.4). In general, this is

an excellent approximation to interpolation, but sharp extrema will be systematically underestimated by a

small amount.

A.4 Enforcing shape constraints

While the B-spline surface determined by the least-squares condition is by definition the closest fit to the

data, it does not necessarily share some desirable properties with the data. In particular, when the data can’t

be exactly represented as a B-spline surface, the fit surface may “ring,” that is, make erratic sweeps around

the data (see Figure A.5). This can cause the fit surface to become negative in a region where the data are

strictly positive or non-monotonic where the data are strictly monotonic. The latter case is critical for our

application, where we fit for the cumulative photon arrival time distribution, which must by definition be

strictly monotonic. It is possible, however, to express the monotonicity constraint along a single dimension

(time) without stepping too far away from the elegant simplicity of the least-squares problem.

We have implemented the method suggested by [52], in which we transform one axis of the tensor-product

B-spline basis to a cumulative T-spline (“Trapezoidal” spline, see Figure A.6(b)) basis in which each basis

function is the sum of the B-spline basis functions following it . Unlike the B-splines from which they are

derived, the T-spline basis function have highly non-local support; e.g. the first T-spline basis function

has support over the entire knot field. This makes evaluating the spline surface arduous; in the extreme

case of a point in the support of the last T-spline basis function, evaluating the spline surface involves all

the preceding coefficients. Luckily, we can use the T-spline basis for fitting only, transforming the T-spline

coefficients into the corresponding B-spline coefficients before storing them.

The T-spline basis, however, makes it particularly easy to enforce monotonicity in one dimension. In this

basis, the spline surface is monotonic if all the T-spline coefficients are positive. Determining the best set of T-

spline coefficients is now a least squares problem with a simple constraint; instead of a simple least-squares

problem, we have a constrained optimization problem, the so-called non-negative least squares problem.

While not quite as simple as the unconstrained problem, there exist algorithms to solve the constrained

problem as a series of unconstrained problems in a finite number of steps. We have implemented two of

these algorithms, the Portugal/Judice/Vincente (PJV) block-pivoting algorithm [53] and Adlers BLOCK3

[54], using sparse matrix operations.
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Figure A.4 Pseudointerpolation of a set of points sampled from sin(x) using the same algorithm as for
table stacking. Since B-splines do not interpolate their control points, but instead maximally fill the convex
hull formed by those points, the interpolation algorithm will fall slightly short of extrema, while generally

maintaining accuracy.
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A.4.1 Solving the non-negative least squares problem

Given A ∈ RM×N and b ∈ RN , x ∈ RM is the solution to the non-negative least squares problem:

min
x
||Ax− b||22 : x ≥ 0 (A.26)

The Karush-Kuhn-Tucker optimality conditions lead to the following linear complementarity problem

[53]:

y = ATAx−AT b : y ≥ 0, x ≥ 0, xT y = 0 (A.27)

An active set approach is commonly used to find the solution to (A.27). The set of coefficients x is

partitioned into an free set F and a constrained set G3. The coefficients in the free set are the solution to the

unconstrained least squares problem in the subspace of the free set, while those in the constrained set are

clamped to zero. The problem then reduces to quickly and efficiently finding the partition of the coefficients

that satisfies (A.27). The solution can be found iteratively, but unlike the minimization of a general function,

it is possible to construct algorithms that are provably finite.

A.4.2 Algorithm NNLS

The first of these algorithms is NNLS by Lawson and Hanson [34], which we will sketch here to illustrate

the general features of non-negative least squares solvers. The algorithm consists of two nested loops, an

outer loop that updates and tests y for optimality, and an inner loop that finds a strictly positive x. At

the beginning of the algorithm, x ≡ 0 and y = −AT b. In each iteration of the outer loop, one finds the

most negative entry in y. If all the entries in y are positive, then the KKT conditions are satisfied and

the algorithm terminates. If not, the index of the most negative entry is freed from the constrained set,

whereupon the algorithm enters the inner loop. In the inner loop, one solves for the unconstrained least

squares problem in the subspace of the new free set, yielding a trial solution xt at the global minimum in

the subspace. If all the entries in xt are positive, it is accepted as a new solution and used to update y in

the next iteration of the outer loop.

If any elements of xt are negative, however, it is not necessarily a better solution to the constrained

problem than the current solution x. Simply projecting the global minimum into the feasible space 4,

however, could result in increasing the magnitude of the residual (see Figure 5.3 in [54]), which could cause

the algorithm to cycle. To avoid this, one scales the descent vector connecting x and xt such that exactly

one coefficient becomes 0:

3The constrained set is somewhat counterintuitively called the active (for actively constrained) set, while the free set is called
the passive set.

4By “projecting,” we simply mean setting any negative coefficients in xt to zero.
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max
α

: x+ α(xt − x) ≥ 0, α ∈ [0, 1] (A.28)

Since the residual norm ||Axt − b||2 is the global minimum and α ∈ [0, 1], ||A(x + α(xt − x)) − b||2 ≤

||Ax− b||2, the inner loop either decreases the residual norm or reduces the dimensionality of F , and is thus

finite. Similarly, the outer loop either increases the dimensionality of F or terminates, and thus the entire

algorithm is finite.

A.4.3 Block-pivoting algorithms for sparse problems

NNLS is a single-pivoting algorithm, that is, it changes the free set by exactly one element every time

it solves the unconstrained problem. The computational effort needed to find the constrained solution

can be reduced significantly by employing block pivoting methods, that is, freeing or constraining multiple

coefficients between solves [53]. We implemented both the PJV block-pivoting algorithm [53] and Adlers’

BLOCK3 [54] using the CHOLMOD sparse matrix package [55]. While very fast in some cases, the PJV

algorithm occasionally exhibits cyclic behavior. The reasons why this happens are illustrative; we will briefly

sketch the PJV algorithm before describing BLOCK3, which avoids this pathology.

A.4.3.1 Algorithm PJV

The structure of PJV is slightly different from that of NNLS. It is initialized with x ≡ 0 and y = −AT b

just like NNLS, but has only a single loop. At the beginning of the loop, one recalculates y based on the

current free set, then searches for negative entries in x and y. These infeasible coefficients are freed if they

are in y or constrained if they are in x. One then solves the unconstrained problem in the subspace of the free

space before returning to the beginning of the loop. If all of the coefficients are feasible, the KKT conditions

are satisfied and the algorithm terminates.

Usually the number of infeasible coefficients is reduced in every iteration, but this does not necessarily

happen in every case. This makes it necessary to introduce a fallback mechanism: in each iteration, one

records the number of infeasible coefficients if it is smaller than the number of infeasibles from the previous

iteration. If the number of infeasibles hasn’t been reduced in the last n iterations, one reverts to a single-

pivoting strategy, freeing or constraining the last infeasible coefficient, until the number of infeasibles has

been reduced to below the previous minimum.

While PJV can be quite fast when it manages to reduce the number of infeasibles in every iteration,

unavoidable numerical errors can cause coefficients that are nearly zero to jump between the free and con-

strained sets in a cyclic fashion. When this happens, even the fallback procedure can cycle. In addition the

properties of the intermediate solutions are poorly defined. Since the algorithm always jumps directly to the
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subspace minimum orthogonally projected into the feasible space, it does not necessarily monotonically re-

duce the magnitude of the residual. If one simply terminates the algorithm after a certain maximum number

of iterations, one may still obtain an unacceptably poor solution. For this reason, we chose to also investigate

BLOCK3, which shares the monotonicity properties of NNLS while using a more efficient pivoting strategy.

A.4.3.2 Algorithm BLOCK3

BLOCK3 [54] is mostly a block-switching variant of NNLS, so its structure is quite similar5. In the outer

loop, one frees all infeasible coefficients in y; the algorithm terminates if they are all positive. In the inner

loop, one finds a trial solution to the unconstrained problem. If the trial solution is entirely positive, one

returns to the outer loop.

If some coefficients are negative, though, one has to scale the descent vector to find an acceptable solution.

Instead of choosing the smallest α as in NNLS, one attempts to violate as many constraints as possible while

still reducing the residual. To do this, one constructs a list of α corresponding to each negative coefficient

in the trial solution compares the resulting residual norm to the residual norm for the current solution in

descending order until an α is found that reduces the residual norm. Since the residual norm is given by

||Ax− b||2 = xTATAx− 2xTAT b+ bT b = xT (ATAx− 2AT b) + k (A.29)

where k is an additive constant, the complexity of the calculation is dominated by an O(nnz) sparse

matrix-vector multiplication, which is cheap compared to a full factorization of ATA. In cases where α = 1

reduces the residual norm, the calculation is practically free. Once a feasible x has been found, one returns

to the outer loop.

Since the inner loop of BLOCK3 either reduces the dimensionality of the free set or reduces the residual

norm, it is finite and incapable of cyclic behavior. Just like NNLS, BLOCK3 reduces the residual norm

monotonically, and thus produces better and better intermediate solutions. This makes it possible to termi-

nate the algorithm if it has not converged after a fixed number of iterations and still obtain an acceptable

solution.

A.5 Fitting procedure and storage format

While the methods discussed above have been implemented for some special cases, we have written what

we believe to be the first completely general implementation. Our software can fit an n-dimensional grid

of data to a tensor-product B-spline surface of arbitrary order in each dimension. In addition, we can add

5Instead of starting with x ≡ 0, however, we initialize the solver loop with the solution to the unconstrained problem. While
computing the solution in the full coefficient space is more expensive than in the subspace of a typical free set, starting with a
solution that is similar to the expected final solution reduces the number of iterations significantly [54].
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a regularization term to the normal equations composed of an arbitrary linear combination of penalties,

where each term penalizes changes in the kth derivative of the spline surface along a certain dimension. If

monotonicity is required along a single dimension, we can reformulate the problem such that monotonicity

is expressed by a linear constraint on the spline coefficients. In this section, we will give an overview of the

fitting procedure.

The user interface for our fitting software is a set of Python functions and classes that can be used

to write scripts to fit a specific kind of data6. Some of these functions are in pure Python, while others

are implemented in C. All of the computationally-intensive components exist in two forms: a reference

implementation in Python, and a heavily-optimized implementation in C. The reference implementations

are intended to be readable rather than fast, and are the easiest way to understand the what the algorithms

are actually doing. The C implementations, on the other hand, are intended for production and make heavy

use of multi-threaded operations on sparse matrices. Since they expose the same API, however, the Python

implementation can be used to check the C implementation for correctness, which can be extraordinarily

useful.

Since the interface is in Python, the data can be loaded and manipulated in arbitrarily complex ways

before being passed to the fitter. Each fitting script must provide the following parameters, which completely

specify the fitting problem:

• An n-dimensional array Z, giving the grid of data points.

• An n-dimensional array W , giving the weight to assign to each data point.

• A list of vectors {~x} giving the positions of the data points along each of the n axes.

• A list of vectors {~k} giving the positions of the B-spline knots along each of the n axes.

• The order of spline to use in each dimension.

• The smoothing parameter λ to use in each dimension.

• The order of penalty to use in each dimension.

• Optionally, the dimension in which monotonicity should be enforced.

The fitter uses {~x} and {~k} to calculate a tensor-product B-spline basis for the problem and formulate

the penalized normal equations (Equation (A.23)) using the method of [51]. In the non-monotonic case,

6For example, different choices of knots are appropriate for Photonics tables in cylindrical and spherical coordinates.
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the normal equations can be solved directly via the Cholesky decomposition, returning the best-fit set of

B-spline coefficients.

When monotonicity is to be enforced, however, a few modifications are needed. First, the B-spline basis

along the monotonic axis is converted to a T-spline basis, and the normal equations are formulated with a

hybrid T-/B-spline tensor-product basis. These normal equations are then passed to a non-negative least-

squares solver. As of 2010, there were no efficient and robust implementations of non-negative least squares

that operated directly on sparse normal equations, so we implemented our own sparse versions of PJV and

BLOCK3 for this purpose7. Once the solver has converged, the coefficients are converted back to coefficients

on a tensor-product B-spline basis.

The results of the fit are returned to Python in a data structure that specifies all the information needed

to evaluate the spline surface:

• The knot vectors in each dimension.

• The order of spline in each dimension.

• The coefficient array.

• Auxiliary information, such as the coordinate system used in the table.

This information is then written to disk. Since the coefficient array is essentially an n-dimensional image,

we store it in a FITS image file [56]. This format can be read and written from Python using PyFITS8 or

from C using cfitsio [58]. Within the FITS file, the coefficient array is stored in the primary Header-Data

Unit (HDU), while each of the knot vectors is stored in an auxiliary HDU.

A.6 Photospline fitting guide

After having tested several different schemes for fitting Photonics tables, we have settled on the general

strategy of the fitting the total amplitude and normalized timing distributions separately. Because of the

enormous dynamic range present in the tabulated values (O(1020) in the total amplitudes alone), it is

much easier to fit the logarithm of the amplitude in each bin rather than the amplitude itself. Each three-

dimensional amplitude table is fit in log space with order-2 splines. The cumulative timing distributions, on

the other hand, are constrained between 0 and 1. These we fit in linear space, enforcing monotonicity along

the time axis. We use order-2 splines in the spatial dimensions and order-3 splines along the time axis in

order to have smooth time derivatives for sampling (see Section A.7). In typical usage the amplitude fit is

7Due to occasional cyclic behavior in PJV, we use BLOCK3 exclusively.
8PyFITS [57] is a product of the Space Telescope Science Institute, which is operated by AURA for NASA.
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very fast, finishing in a few seconds, while the timing fit may take anywhere from tens of minutes to several

hours, depending on the number of knots used.

We have implemented support for these sorts of tables in PhotonicsService. Sampling from the

cumulative timing distribution is discussed in Section A.7, querying amplitude information for reconstruction

purposes in Section A.8. In the remainder of the section, we will describe the fitting scripts distributed with

Photospline and the API of the fitting code.

A.6.1 Scripts

Photospline is distributed [59] with a few scripts for fitting spline surfaces to Photonics tables and

viewing the results of the fit. The fitting scripts implement schemes of knot placement, weighting, and penalty

terms that we have found useful in producing accurate fits with a necessary minimum of computation time

and memory footprint. The scripts can be found under photospline/private/fitter.

A.6.1.1 glam-photonics.py

This script is intended for fitting EM shower tables in cylindrical geometry9. The knots are space

logarithmically in ρ and t in order to be able to represent rapid variations at small distances and early

times while wasting few resources representing the diffusive region far from the source and at large delay

times. In l, one-third of the knots are space quadratically from −lmax to 0, while the remainder are space

logarithmically from 0 to lmax. This helps to better represent rapid variations in amplitudes and timing

distributions in the region directly in front of the source, where photons may arrive with relatively little

scattering. The knots in φ are spaced uniformly.

A.6.1.2 glam-photonics-spherical.py

This script is similar to glam-photonics.py, except that it is intended for use with tables in spherical

geometry10. The knots are spaced quadratically in r and logarithmically in t, while the knots in φ and cos θ

are spaced uniformly.

9In this geometry the table is binned in cylinder radius ρ ∈ [0, ρmax], azimuth φ ∈ [0, 180], axial displacement
l ∈ [−lmax,+lmax], and delay time t ∈ [0, tmax]. l gives the displacement from the light source projected along the direc-

tion the light source is pointing and ρ the displacement projected into a plane perpendicular to ~l. φ is measured in degrees
with respect to a vector perpendicular l, but pointing towards positive z in the IceCube coordinate system. The delay time is
the difference between the actual photon arrival time and the direct propagation time

rng

c
10In this geometry the table is binned in distance from the source r ∈ [0, rmax], azimuth φ ∈ [0, 180], cosine of polar angle

cos θ ∈ [−1, 1], and delay time t ∈ [0, tmax]. φ and t have the same definition as in cylindrical geometry; θ is the opening
angle between ~r and the direction the source is pointing. This coordinate system is more natural for point-like light sources, as
amplitudes and timing distributions tend to vary more smoothly with respect to r and cos θ than ρ or l.
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Figure A.8 shows the resource consumption of glam-photonics-spherical.py running over a large set of

spherically-binned EM shower tables. The timing fit (which dominates the run-time) was done with 15

“core” knots in r, 6 in φ, 15 in cos θ, and 25 in t.

A.6.1.3 stack-photonics.py

Each Photonics table represents the light yield from a source at a particular depth in the ice, originating

from a particular zenith angle; the spline surfaces fit to these tables represent the same information. In

order to create a spline surface that represents the light yield from a source with an arbitrary orientation

anywhere in the ice, we have to “stack” neighboring spline surfaces and interpolate between them. This

script implements such a stacking procedure.

As a concrete example, consider stacking spline tables representing different source depths {z}11. First,

an extra dimension is added to the coefficient array of each spline table and the coefficient arrays are stacked

along the last dimension. Then, a knot vector is constructed for z such that each of the splines is centered on

the depth corresponding to one of the individual fit tables. The resulting spline surface blends together the

coefficients corresponding to different source depths using the values of the B-splines along z as weights12.

Since it averages over neighboring depths13, the interpolating spline in z has a tendency to smooth out sharp

variations with respect to z in amplitudes and timing distributions, even if those sharp variations are the

best fit to the corresponding Photonics table.

A.6.1.4 glam-photoverify.py

This script iterates over 1- or 2-dimensional slices of a Photonics table, plotting the tabulated values

and the results of a spline fit. This can be useful for quickly checking the quality of a fit. It requires gnuplot

and PyGnuplot.

A.6.2 Python API

The fitting API is contained entirely in a Python module called glam, which is implemented in Python

with Numpy (dense) matrix operations. The corresponding C version, spglam, uses sparse matrix operations

and is many orders of magnitude faster, but exposes the same API.

11The same procedure applies to stacking tables at the same depth, but with a different orientation. If given tables from
multiple depths and orientations, stack-photonics.py will first stack the tables in zenith angle, then in depth

12This is similar to the way splines are commonly used in computer-aided design; in computer-graphics parlance, the coeffi-
cients for each depth are the “control points” of the spline in z.

13Note that this trick implicitly relies on all of the splines in z having the same normalization, and thus only works with
equispaced depths.
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A.6.2.1 glam.fit

Fit data to a tensor-product B-spline surface.

Signature:

fit(z, w, coords, knots, order, smooth, periods=None, penalties={2:None},

monodim=None)

Parameters:

• z: An n-dimensional Numpy array containing the data points to be fit.

• w: An array of weights for each data point. This must have the same shape as z. If you don’t want to

weight data points differently, use uniform weights, e.g. numpy.ones(z.shape).

• coords: A list of arrays, each giving the positions of the data points along the corresponding dimension.

• knots: A list of arrays, each giving the positions of the knots in the corresponding dimension.

• order: A list of integers, each giving the order of B-spline to use in the corresponding dimension.

• smooth: The global smoothing parameter λ. This will be used only if no dimension-specific smoothing

parameters are specified in penalties.

• periods: A list of floats, each giving the periodicity of the corresponding dimension. If the periodicity

is nonzero, glam.fit will construct a periodic B-spline basis in that dimension where the ends are

identical by construction. This functionality is only implemented in glam; spglam will silently ignore

the periodicity of the basis.

• penalties: A dictionary giving the penalty term to apply along each dimension. Each key-value pair

specifies an order of penalty and the coefficient of that penalty order in each dimension. For example,

to apply second-order penalties in the first three dimensions and a third-order penalty in the fourth

(all with λ = 1), you would pass {2:[1,1,1,0], 3:[0,0,0,1]}. If the coefficient list is None (as it is

by default), the λ specified by smooth will be used for all dimensions.

• monodim: If set to a non-negative integer, the spline surface will be forced to be monotonic along the

corresponding dimension. Note that this involves solving a non-negative least squares problem, and is

thus significantly slower than an unconstrained fit.
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A.6.2.2 glam.grideval

Evaluate a spline surface on a coordinate grid.

Signature:

grideval(table, coords, bases=None)

Parameters:

• table: A SplineTable instance (as produced by glam.fit or read from disk with

splinefitstable.read) containing the coefficients and knot vectors of the spline to be evaluated.

• coords: A list of vectors, each giving the positions in the corresponding dimension at which to evaluate

the spline surface. For example, evaluating a three-dimensional spline at

[[0,1], [1,2], [3,4,5]] will yield a 2× 2× 3 grid of evaluates.

• bases: A list of pre-calculated spline bases in each dimension (i.e. with each element being the matrix

in Equation (A.5)) with which to evaluate the spline. This can be used to evaluate the derivative of

the spline surface along a given dimension by replacing the basis of kth-order B-splines with a basis of

the derivatives of kth-order B-splines along the given dimension. This option is not offered in spglam.

A.7 Sampling from a B-spline surface

For use in simulation, we need to have an ability to sample photons from functions defined by B-splines

in order to sample random photon arrival times. The simplest way to sample from a general distribution is

to note that, since by definition first x% of the distribution are found in the region where the cumulative

distribution function (CDF) has a value of x%, the distribution’s cumulative distribution function (CDF) is

a mapping from the domain of the distribution to a uniform distribution on (0, 1). As such, evaluating the

inverse of the CDF at a point drawn uniformly from (0, 1) will give a random variate in the domain of the

distribution.

For spline-based functions, this is very difficult. The inverse of the function depends on all the basis

functions, making evaluation taxing, and is also difficult to compute. A more promising avenue lies in

alternative numerical techniques.

For Photospline, we employ an independence-chain Metropolis-Hastings sampler [60]. This is a Markov

Chain-based algorithm that uses numerical values of the probability density function in conjunction with

an approximation called the proposal distribution to sample from the spline-based target distribution. Over

infinite time, the algorithm will return samples from the target distribution, but the efficiency of the algorithm
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and bias in the first samples are both improved as the proposal distribution becomes closer and closer to the

true distribution.

The Metropolis-Hastings algorithm works using the acceptance/rejection method. A point x
′

is sampled

from the proposal distribution Q, along with a number α drawn from a uniform distribution on (0, 1). If the

condition

α < min

{
P (x′)Q(x)

P (x)Q(x′)
, 1

}
(A.30)

is satisfied (where x is the previous accepted point, and P the numerical probability density from which

we wish to sample), then the sample is accepted and added to list of sampled points. Otherwise, it is rejected,

and we repeat the algorithm as often as necessary to accept the next sampled point. For the case where the

proposal distribution is the same as the target distribution (P ≡ Q), this reduces to α ∈ (0, 1) < 1, which

is always true, so all samples are accepted, and the efficiency of the algorithm is 1. When P and Q overlap

very little, the likelihood ratio in Equation A.30 will be small, and most samples will be rejected, making

the algorithm very inefficient (the number of sampled values is much less than the number of iterations of

the algorithm).

As the tables are stored as cumulative distribution functions, and not probability density functions, we

must recover the PDF in order to apply the Metropolis-Hastings algorithm. Using the DeBoor recursion

relation (Equation A.2) and the multiplication rule, we can easily construct a new set of basis functions that

are the derivatives of B-splines:

Bi
′

n (x) =
(x− ~ki)Bi

′

n−1(x) +Bin−1(x)

~ki+n − ~ki
+

(~ki+n+1 − x)Bi+1′

n−1 (x)−Bi+1
n−1(x)

~ki+n+1 − ~ki+1

(A.31)

We can unpack one of these recursions in order to write the derivatives as simple linear combinations of

two lower-order B-splines:

Bi
′

n (x) =
n

~ki+n − ~ki
Bin−1(x)− n

~ki+n+1 − ~ki+1

Bi+1
n−1(x) (A.32)

Because differentiation and addition commute, we can simply interchange these differential spline basis

functions on the axis of interest with the original ones, while keeping all the other axes and the coefficient

table unchanged.

Because we have quite an accurate approximation to the photon time arrival PDF in the Pandel distribu-

tion [42], we employ a version of the Pandel function as the proposal distribution, with the variance slightly

widened to improve sampling accuracy in the tails. This provides a quite high accuracy sampling algorithm

(Figure A.9) with an 80% acceptance rate and an autocorrelated burn-in period of 0.3 steps.
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A.8 Reconstruction with splines

The problem of reconstruction is one of statistical inference. We detect Cerenkov photons at various

positions and times in the ice, and wish to extract from this measurement the characteristics of the underlying

event (say, the direction of a muon or the energy of an EM shower). The Photonics tables (and their spline

parameterizations) provide an approximation to the mean light yield at a given source-receiver orientation

and delay time. We can add a model of the statistical fluctuations around the mean to construct a model of

the detector response to a given event. For example, we may assume that photons propagate independently

through the ice, and that the actual light yield is Poisson-distributed around the mean. For a given event

we can invert this formulation to obtain a “likelihood” function that describes the probability with which a

given set of event parameters produces the observed data. We can then numerically maximize this function14

with respect to the event parameters to obtain the most likely event hypothesis.

The pitfalls of this approach are twofold. First, the likelihood function has a characteristic width around

its maximum that determines the range of hypotheses compatible with the data, that is, the degree to which

the proposed model and the data together constrain the solution to the inference problem. As one adds

more constraints (data), this range becomes narrower, which is principle a good thing, as the reconstruction

becomes more accurate. However, each new constraint is an extra term in the likelihood function that must

be evaluated in each step of the minimizer, slowing the entire process down considerably. Thus, one must

carefully choose data to go into the likelihood that are likely to provide the strongest constraints with a

necessary minimum of computational effort. Second, if one only has access to the value of the likelihood

function and not its functional form, the minimizer may have to spend a significant amount of time in

each step probing around the parameter space to numerically estimate the local gradient. If the likelihood

function has sudden jumps due to interpolation artifacts in the tabulated light yield, these can also confuse

a numerical minimizer.

Our spline surfaces have some attractive features that may ameliorate these problems. First, since we

fit the cumulative delay-time distribution P (t) rather than the differential dP/dt, it is possible to bin the

pulses extracted from a recorded waveform with arbitrary finesse and still have an accurate estimate of the

mean charge expected in each bin (the charge quantile λi):

qi =
∑
j

qj : ti ≤ tj < ti+1 (A.33)

λi =

∫ ti+1

ti

dP

dt
dt = P (ti+1)− P (ti) (A.34)

14Equivalently, multiply by −1 and minimize.
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This makes it possible to tune the resolution and computational cost of the reconstruction to a desired

level. In addition, the minimization may be run in multiple iterations, refining the binning (and making the

peaks and valleys of the likelihood function sharper) between each iteration. This is equivalent to simulated

annealing (see [60, Section 6]), and may be useful for avoiding local minima.

Second, if the ith dimension of the B-spline basis is constructed from splines of order k, then it has

k − 1 continuous derivatives along that dimension. These can be obtaining analytically by replacing the

basis of B-splines along the given axis with a basis of B-spline derivatives, which can be obtained by the

DeBoor algorithm (Equation (A.32)). This makes it possible to obtain the local gradient of the light yield

exactly in a fixed number of operations. Since evaluating each element of the gradient involves multiplying

the same coefficient matrix into a different B-spline basis, the entire gradient can be evaluated at relatively

little computational cost by reformulating each scalar-scalar coefficient/basis-element multiplication in the

B-spline surface evaluation as a scalar-vector multiplication15. In addition, the derivatives of the B-splines

can be evaluated at almost no additional cost by pausing the bottom-up calculation of the B-spline values

(see Figure A.2) at order n− 1 and forming the B-spline derivatives (A.32) before proceeding to order n.

To convert the gradient of the B-spline surface to a gradient in the likelihood function, we can apply the

Chain Rule. For example, to convert from a gradient in spherical Photonics coordinates to a gradient in

detector coordinates, we apply the following transformation:



∂λ
∂xs
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(A.35)

This functionality is implemented in PhotonicsService for both total amplitudes and time-delay quantiles.

A.8.1 Analytic convolution of spline surfaces

While scattering processes account for the vast majority of the time-delay distribution in detected pho-

tons, it can be important to account for detector effects as well when reconstructing events. In particular,

the photon arrival time extracted from the waveform recorded by an IceCube DOM is not actually the true

photon arrival time, but rather the arrival time of a current pulse at the PMT anode, corrected for the av-

erage time it takes the pulse to propagate through the dynode stages. There is some variance in this transit

15Most modern CPUs are equipped with vector units, and can perform scalar/scalar and scalar/4-element-vector multiplica-
tions at nearly the same speed.
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time, though, leading to “PMT jitter” or “transit-time spread.” Also, while EM and hadronic showers are

approximately point-like on the scale of the inter-string spacing in IceCube, they do have some spatial extent.

Both of these effects can be approximately accounted for by convolving the photon delay-time distribution

with a Gaussian. If we want to reconstruct with a convoluted spline-fit delay-time distribution, we have

three options:

• Apply the convolution to the Photonics tables before fitting, doubling the already considerable com-

putational effort required.

• Numerically convolve the time-delay PDF evaluated from the spline every time it is requested, slowing

down every spline evaluation.

• Analytically convolve the spline surface with a Gaussian, deriving the coefficients without fitting.

Luckily, it is possible to approximate the third option.

On a uniform knot field, a B-spline basis function of order n is proportional to the n-fold self-convolution

of a uniform distribution over two adjacent knots. By the central limit theorem, the nth order uniform

B-spline becomes proportional to a normal distribution as n → ∞. B-splines of relatively low order can be

used to approximate Gaussian convolution kernels, albeit with limited support. Furthermore, it is possible

to analytically convolve a spline surface with a B-spline kernel and expand the result in a new B-spline basis

. These are useful properties, as they allow one to apply a pseudo-Gaussian convolution to a B-spline surface

merely be manipulating its coefficients.

The procedure for analytically convolving splines is described in [61] in a slightly different form than

we require for our application and using terminology not necessarily familiar to anyone outside the field of

computer graphics. We will review our adaptation of it here for the sake of clarity. We will use Bi,q to

denote the ith B-spline of degree (order +1) q, normalized such that they form a partition of unity:

∑
i

Bi,q(x) = 1 (A.36)

These are the usual B-spline basis functions, defined on an arbitrary field of simple knots {ti}. Mj,k will

denote the jth B-spline of degree k, but with each normalized to unity:

∫ +∞

−∞
Mj,k(x)dx = 1 (A.37)

These splines, defined on knots {τj}, will be used as convolution kernels.

The convolution of Bi,q and Mj,k can be written16 in terms of dummy variables x and y as

16This is a variation on, Equation (13) of [61].
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(Bi,q ? Mj,k)(z) = (ti+q − ti)
q!(k − 1)!

(q + k − 1)!
[ti, . . . , ti+q]x[tj , . . . , tj+k]y(x+ y − z)k+q−1

+ (A.38)

where [ti, ti+1, . . . , ti+k]x is the divided-difference operator with respect to x and (·−z)n+ is the truncated

power function

(a− b)n+ =

(a− b)n b < a

0 b ≥ a
(A.39)

Furthermore, Bi,q ?Mj,k is a B-spline surface of degree k + q on the combined knot field {ti, . . . , ti+q} ]

{τj , . . . , τj+k}17. Given this fact and the ability to evaluate (Bi,q ? Mj,k)(z) for arbitrary z, we can expand

the convolution in its B-spline coefficients.

A B-spline surface of degree k + 1 defined on a knot field {ρ} is a linear combination of the B-splines on

{ρ}:

f(x) =
∑
i

aiBi,k+1,ρ (A.40)

The coefficients of the B-spline expansion are given by

ai = B(f(ξi))(ρi+1, . . . , ρi+k) (A.41)

where ξi ∈ [ρi, ρi+k+1) and B is the multilinear blossom of f [62]. The multilinear blossom is a function

that is linear in each of its k arguments and is identical to f when evaluated on its diagonal, that is, when

all its arguments are identical. The blossom of Bi,q ? Mj,k is given by

B((Bi,q ? Mj,k)(z))(ρi+1, . . . , ρi+k+q−1) = (ti+q − ti)
q!(k − 1)!

(q + k − 1)!
[ti, . . . , ti+q]x[tj , . . . , tj+k]y

×Θ(x+ y − z)
i+k+q−1∏
l=i+1

(x+ y − ρl) (A.42)

where Θ is the Heaviside step function. By (A.41), the coefficients al of the B-spline expansion of degree

k + q on the knot field ρ are given in terms of the coefficients of the un-convolved spline surface bi by

al =
∑
i,j

biB((Bi,q ? Mj,k)(xl))(ρl+1, . . . , ρl+k+q−1) : xl ∈ [ρl, ρl+k+q) (A.43)

17The combined knot field is formed by q + 1 copies of {τj , . . . , τj+k}, each centered on an element of {ti, . . . , ti+q}. For
example, {0, 1, 2} ] {−0.1, 0, 0.1} = {−0.1, 0, 0.1, 0.9, 1, 1.1, 1.9, 2, 2.1}. For a proof that Bi,q ? Mj,k is contained in the spline
space of degree k + q, see Theorem 8 of [61].
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The blossom of the convolution can be used to construct a matrix that transforms the coefficients on

the original knot field to coefficients on the convolved knot field. This is particularly useful for tensor-

product spline surfaces: then, the convolution can be carried out along a given dimension by calculating the

transformation matrix once and then applying it to each slice of the coefficient grid along that dimension.
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Figure A.5 An example of the “ringing” that can occur as an artifact of least-squares fitting with
B-splines. The sharp transitions are unrepresentable in the B-spline basis, so the spline surface must

fluctuate around the data in order to minimize the residual. This can cause the spline surface to become
negative where the data are strictly positive and non-monotonic where the data are strictly monotonic.
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Figure A.6 B- and T-spline bases of various orders.
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Figure A.7 Number of iterations and complete Cholesky factorizations needed for the BLOCK3 algorithm
to converge when fitting the tables described in Section A.6.1.2.
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(d) Memory usage sampled every 30 seconds over

400 hours of fitting. The peak at 20 GB represents

the memory needed for the initial factorization of

the full ATA, while the broader, lower-memory peak

represents the memory needed for the factorization

of only the unconstrained parts of ATA.

Figure A.8 Resource consumption with two fitting jobs running in parallel on a 16-core, 2.3 GHz AMD
Opteron system with 64 GB of memory.
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Figure A.9 Sampled photon time delays from a fit EM cascade, showing the proposal distribution
(widened Pandel) and the spline-tabulated probability density function.
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Figure A.10 An example of spline convolution. Here, an order-1 spline surface on a non-uniform knot field
is convolved with an order-1 spline, resulting in an order-3 spline surface.
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APPENDIX
Burst Catalogs

B.1 IceCube 40

Name Time (UTC) Tstart Tstop RA (◦) Declination (◦) Position Uncertainty

GRB080408 18:12:48 0.00 20.00 114.66496 33.30414 0.50”

GRB080409 01:22:57 -12.52 10.98 84.32975 5.08484 2.00”

GRB080426 13:23:22 1.04 3.24 26.49890 69.46823 1.80”

GRB080430A 19:53:02 -0.23 21.37 165.31108 51.68567 0.50”

GRB080503 12:26:13 0.62 221.02 286.61956 68.79381 0.25”

GRB080506A 17:46:21 26.02 189.02 329.42433 38.98503 0.50”

GRB080507 07:45:00 0.00 49.03 233.68079 56.43563 0.70”

GRB080513 05:14:32 -21.14 11.11 163.28300 28.19500 10.98’

GRB080514B 09:55:56 0.00 13.17 322.84463 0.70789 0.60”

GRB080515 06:01:13 -1.79 24.81 3.16343 32.57894 3.80”

GRB080517 21:22:51 0.08 69.28 102.24189 50.73496 1.80”

GRB080524 04:13:00 -2.00 8.00 268.44900 80.14300 2.50’

GRB080603A 11:18:11 0.00 180.00 279.40875 62.74407 0.30”

GRB080603B 19:38:13 0.18 75.62 176.53160 68.06111 0.30”

GRB080604 07:27:01 -27.15 67.35 236.96540 20.55780 0.50”

GRB080605 23:47:57 -4.65 30.85 262.12522 4.01555 0.50”

GRB080607 06:07:27 -5.90 154.70 194.94665 15.91965 0.50”

GRB080613A 09:35:21 0.00 30.00 213.27092 5.17319 0.50”

GRB080625 12:28:31 -5.00 80.00 298.40440 56.27790 0.50”

GRB080701A 10:13:37 -2.07 25.23 45.83882 75.47479 1.70”

GRB080702A 11:50:43 0.68 1.18 313.05081 72.31271 1.90”

GRB080707 08:27:53 -1.12 27.28 32.61833 33.10950 1.10”

GRB080710 07:13:10 -96.11 44.09 8.27363 19.50130 0.50”

GRB080726 01:26:10 0.00 12.00 20.39800 13.91300 5.00’



102

Name Time (UTC) Tstart Tstop RA (◦) Declination (◦) Position Uncertainty

GRB080727B 08:13:24 0.75 10.35 276.85851 1.16272 1.90”

GRB080727C 23:07:35 -2.91 116.69 32.63485 64.13754 1.50”

GRB080810 13:10:12 -20.92 111.68 356.79275 0.31981 0.60”

GRB080816A 12:04:18 -1.00 69.00 156.20000 42.60000 2.00◦

GRB080818B 22:40:49 -1.30 10.00 98.10000 7.40000 7.30◦

GRB080822B 21:02:52 0.96 64.96 63.56000 25.76000 3.60’

GRB080830 08:50:16 -3.00 28.00 160.10000 30.80000 2.50◦

GRB080903 01:12:23 -10.20 68.30 86.79206 51.26433 1.60”

GRB080916B 14:44:47 -2.98 36.02 163.66512 69.06545 5.10”

GRB080920 06:25:48 -6.00 79.00 121.60000 8.90000 5.40◦

GRB080925 18:35:55 -8.15 21.85 96.10000 18.20000 1.20◦

GRB080927 11:30:32 -1.30 20.20 61.30000 27.40000 4.60◦

GRB081003A 13:46:12 -12.00 18.00 262.39082 16.57103 3.90”

GRB081003B 20:48:08 0.00 30.00 285.02560 16.69140 1.50’

GRB081003C 15:27:17 -4.00 51.00 259.10000 35.40000 6.90◦

GRB081009 03:20:58 -0.10 49.30 250.50000 18.40000 1.00◦

GRB081011 00:28:50 -0.44 9.46 220.34428 33.54364 0.50”

GRB081022 14:23:48 -8.50 208.10 226.58400 12.40900 1.40’

GRB081024A 05:53:08 -0.84 1.16 27.87380 61.33140 1.90”

GRB081024B 21:22:41 -0.47 0.03 322.90000 21.20400 9.60’

GRB081025 08:22:02 61.75 90.10 245.36626 60.47428 6.70”

GRB081028A 00:25:00 30.09 442.29 121.89480 2.30830 1.50”

GRB081102A 17:44:39 -19.68 63.32 331.17240 52.99420 1.50”

GRB081102B 08:45:00 0.28 1.31 225.30000 22.00000 8.60◦

GRB081105B 14:43:51 0.22 0.27 215.80000 38.70000 11.40◦

GRB081107 07:42:01 -0.09 1.77 51.00000 17.10000 3.50◦

GRB081110 14:25:43 0.03 20.03 111.70000 21.40000 1.80◦

GRB081119 04:25:27 -0.44 0.06 346.50000 30.00000 15.20◦

GRB081122A 12:28:12 -0.79 26.21 339.10000 40.00000 1.00◦

GRB081126 21:34:10 -21.12 46.18 323.51496 48.71064 0.50”

GRB081127 07:05:08 -30.30 9.70 332.06420 6.85050 1.70”

GRB081128 17:18:44 -68.30 63.40 20.80410 38.12710 1.80”

GRB081203A 13:57:11 -68.33 405.67 233.03158 63.52081 0.50”
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Name Time (UTC) Tstart Tstop RA (◦) Declination (◦) Position Uncertainty

GRB081203B 13:52:02 -33.05 50.40 228.79863 44.42859 0.50”

GRB081204B 12:24:26 -0.29 -0.10 150.80000 30.50000 10.20◦

GRB081206A 06:35:53 -6.12 15.38 120.10000 32.80000 6.40◦

GRB081207 16:18:47 9.14 66.54 112.40000 70.50000 1.20◦

GRB081209 23:31:56 0.28 0.72 45.30000 63.50000 4.90◦

GRB081211B 06:15:02 0.00 102.00 168.26460 53.83000 2.00”

GRB081215A 18:48:37 -1.94 13.42 125.60000 54.00000 1.00◦

GRB081216 12:44:00 -0.14 0.82 129.20000 7.60000 4.40◦

GRB081217 23:34:49 0.01 18.44 116.80000 26.80000 2.00◦

GRB081223 10:03:57 0.07 0.58 112.50000 33.20000 3.80◦

GRB081224 21:17:55 0.01 20.01 201.70000 75.10000 1.00◦

GRB081226C 03:44:52 -3.19 11.11 193.00000 26.80000 2.40◦

GRB081228 01:17:40 0.65 3.65 39.46160 30.85260 2.90”

GRB081229 04:29:02 -0.23 0.09 172.60000 56.90000 8.80◦

GRB090102 02:55:45 -13.04 20.24 128.24390 33.11421 1.10”

GRB090107A 04:48:04 0.50 13.20 302.40900 4.74400 2.40’

GRB090107B 16:20:36 -2.00 27.27 284.81750 59.59510 1.80”

GRB090108A 00:29:02 0.20 1.10 260.80000 46.00000 3.80◦

GRB090109 07:58:30 -3.31 0.79 129.60000 51.80000 9.80◦

GRB090111 23:58:21 -2.20 26.30 251.67557 0.07728 1.70”

GRB090112B 17:30:15 0.00 11.00 192.30000 25.40000 1.70◦

GRB090113 18:40:39 -0.73 10.17 32.05678 33.42857 1.70”

GRB090118 13:54:02 66.00 85.00 49.82760 18.41480 7.10”

GRB090126A 02:01:15 0.00 60.00 3.65770 81.37330 2.20”

GRB090126B 05:26:22 -4.38 5.86 189.20000 34.10000 3.60◦

GRB090131 02:09:21 -1.81 49.19 352.30000 21.20000 1.00◦

GRB090206 14:52:42 0.11 0.68 156.20000 8.80000 8.70◦

GRB090207 18:39:10 -1.21 16.20 252.70000 34.90000 3.80◦

GRB090219 01:46:18 -0.03 0.61 26.50000 59.20000 5.20◦

GRB090222 04:17:09 -2.11 15.30 118.60000 45.00000 4.30◦

GRB090227B 18:31:01 0.29 0.81 11.80000 32.20000 1.80◦

GRB090228B 23:25:01 -1.39 5.78 357.60000 36.70000 3.30◦

GRB090301A 06:55:55 -16.86 72.34 338.14200 26.63900 1.00’
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Name Time (UTC) Tstart Tstop RA (◦) Declination (◦) Position Uncertainty

GRB090301B 07:33:37 -0.56 4.56 352.80000 9.50000 5.00◦

GRB090305B 01:14:35 0.22 3.22 135.00000 74.30000 5.40◦

GRB090306C 05:52:05 -3.75 6.49 137.00000 57.00000 4.10◦

GRB090313 09:06:27 -20.88 67.02 198.40088 8.09700 0.50”

GRB090320B 19:13:46 -7.30 52.10 183.40000 49.80000 9.50◦

GRB090323 00:02:42 -1.37 154.15 190.70954 17.05322 0.50”

GRB090328B 17:07:04 0.81 1.07 155.70000 33.40000 7.90◦

GRB090401A 00:00:59 -9.03 160.37 350.92000 29.76200 1.00’

GRB090404 15:56:30 -34.76 95.04 239.23986 35.51615 1.80”

GRB090408B 19:46:38 5.36 10.99 43.98000 26.61000 29.39’

GRB090409 06:54:01 0.44 5.54 302.10000 1.10000 9.60◦

GRB090410 16:57:52 -58.61 151.39 334.95600 15.41900 1.80’

GRB090411B 23:47:44 -7.00 21.78 38.50000 5.10000 2.40◦

GRB090417B 15:20:03 279.03 617.43 209.69310 47.01700 5.00”

GRB090418A 11:07:40 -8.28 61.32 269.31321 33.40585 0.50”

GRB090418B 08:59:02 20.17 145.00 225.91000 17.22400 1.91’

GRB090424 14:12:09 -0.78 103.53 189.52128 16.83753 0.74”

GRB090425 09:03:30 -0.03 80.64 118.60000 68.10000 2.10◦

GRB090426 12:48:47 0.21 1.51 189.07531 32.98600 0.75”

GRB090428A 10:34:38 -0.05 2.50 210.10000 39.50000 4.20◦

GRB090428B 13:15:11 -9.14 15.36 0.80000 11.50000 3.90◦

GRB090429B 05:30:03 -4.14 2.76 210.66688 32.17064 0.50”

GRB090429C 12:43:25 -1.30 11.70 260.00000 54.30000 4.80◦

GRB090429D 18:03:57 -12.74 1.60 124.40000 7.90000 5.00◦

GRB090511 16:25:16 -4.73 4.47 161.90000 51.30000 7.00◦

GRB090518 01:54:44 -2.13 7.56 119.95404 0.75921 1.60”

GRB090519 21:08:56 -11.98 60.82 142.27917 0.18031 0.50”

B.2 IceCube 59

Name Time (UTC) RA (◦) Declination (◦) Position Uncertainty (◦) Tstart Tstop

GRB090520A 01:37:16 11.6 -8 0.05 0 10

GRB090520B 19:57:53 332 43.2 12 -0.384 0.256
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Name Time (UTC) RA (◦) Declination (◦) Position Uncertainty (◦) Tstart Tstop

GRB090520C 20:23:19 111.2 -19.7 1.2 -0.512 3.968

GRB090520D 21:01:37 131.3 -18 4.3 -5.12 13.3

GRB090522A 08:15:49 277.7 19.6 4.9 -2 20

GRB090524A 08:17:56 329.5 -67.4 1.3 0.003 71.681

GRB090528A 04:09:01 134.9 -35.8 3.4 -4 29.696

GRB090528B 12:22:31 312.2 32.7 1 -2.048 57.345

GRB090529A 14:12:35 212.5 24.5 0.0005 -49 39.3

GRB090529B 07:26:22 231.2 32.2 7.2 -1.792 5.376

GRB090529C 13:32:00 162.7 47.3 1.5 -0.002 10.048

GRB090530A 03:18:18 179.4 26.6 0.0004 -12.2 51.8

GRB090530B 18:14:24 73.2 13.8 1 -1 219

GRB090531A 01:45:17 178.7 7.8 0.0183 -12.6 29.4

GRB090531B 18:35:56 252.1 -36 0.035 -0.23 67

GRB090602A 13:32:22 248.9 -65 3.4 -1 9

GRB090606A 11:18:08 146.9 -70.5 5.6 -5.1 12.3

GRB090607A 05:30:17 191.2 44.1 0.0317 0.1 2.5

GRB090608A 01:15:26 100.2 -37.4 4.5 -18.4 20.5

GRB090610A 15:33:25 84.2 35.4 5.2 -3.1 3.2

GRB090610B 17:21:31 276 -42.1 9.5 -6.2 161.8

GRB090610C 21:12:07 70.4 30.3 8.2 -4.1 8.2

GRB090612A 14:50:50 81.1 17.8 2.2 -1.024 5.12

GRB090616A 03:45:42 103.1 -3.7 10.4 -0.128 0.512

GRB090617A 04:59:58 78.9 15.7 4.2 -0.032 1

GRB090618A 08:28:26 294 78.4 0.0005 -4.4 213.6

GRB090620A 09:36:23 237.4 61.2 1 -0.003 16.64

GRB090621A 04:26:34 11 61.9 0.0004 -6.1 45.06

GRB090621B 22:07:25 313.5 69 0.0283 -0.028 0.148

GRB090621C 10:00:52 257.5 -28.5 3.3 -3.072 28.672

GRB090621D 10:43:45 12.3 -22.6 4.9 -1.024 20.48

GRB090623A 02:34:17 309 -43.2 2 -1.92 48

GRB090625A 05:37:00 20.3 -6.4 3.1 -6.144 12.288

GRB090625B 13:26:22 2.3 -65.8 0.0283 -2.048 6.144

GRB090626A 04:32:08 169.3 -36.1 1 -0.256 69.377
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Name Time (UTC) RA (◦) Declination (◦) Position Uncertainty (◦) Tstart Tstop

GRB090628A 21:20:12 237.1 -16 0.0005 -25 4

GRB090630A 07:27:21 146.6 -46.6 5.8 -1.024 4.096

GRB090701A 05:23:55 114.7 -42.1 4.2 -10 2

GRB090702A 10:40:37 175.9 11.5 0.0417 0 10

GRB090703A 07:54:02 0.8 9.7 5.3 -2.6 6.7

GRB090704A 05:47:48 208.2 22.8 0.0283 0 70

GRB090705A 05:11:31 318.5 62.6 0.05 0 10

GRB090706A 06:47:40 205.1 -47.1 3 -34.8 7.2

GRB090708A 03:38:18 154.6 26.6 0.0283 -1.3 17.7

GRB090709A 07:38:34 289.9 60.7 0.0004 -10 110

GRB090709B 15:07:41 93.5 64.1 0.03 -2 35.9

GRB090711A 20:23:22 139.6 -64.7 1 -20.992 82.433

GRB090712A 03:51:00 70.1 22.5 0.0267 -22.528 49.153

GRB090713A 00:29:28 284.8 -3.3 2.4 -4.1 55.3

GRB090715A 17:25:36 152.1 10 0.04 -0.1 67.8

GRB090715B 21:03:19 251.3 44.8 0.0004 -11.6 82.176

GRB090717A 00:49:32 86.8 -64.2 1 2.8 60

GRB090717B 02:40:31 247 23 3.9 -0.256 0.128

GRB090718A 17:16:42 242.5 -6.6 7.4 0 10

GRB090718B 18:17:42 274.1 -36.4 1.2 0 34

GRB090719A 01:31:26 341.3 -67.9 1 0 16.6

GRB090720A 06:38:08 203.7 -10.3 0.05 -1.856 5.312

GRB090720B 17:02:56 203 -54.8 2.9 0 20.1

GRB090726A 22:42:27 248.7 72.9 0.0004 -34.7 47.3

GRB090727A 22:42:18 316 64.9 0.0004 -1.3 318.9

GRB090728A 14:45:45 29.7 41.6 0.0005 -5 63.2

GRB090802A 05:39:03 51 37.9 4.9 -0.016 0.056

GRB090802B 15:58:23 267 -71.8 10.7 0 10

GRB090807A 15:00:27 273.7 10.3 0.0005 -9.5 151.5

GRB090807B 19:57:59 326.9 7.2 2.6 -0.64 1.408

GRB090809A 17:31:14 328.7 -0.1 0.0002 -1 6.4

GRB090809B 23:28:14 95.3 0.1 1.2 0 14.3

GRB090812A 06:02:08 353.2 -10.6 0.0005 -30 40
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Name Time (UTC) RA (◦) Declination (◦) Position Uncertainty (◦) Tstart Tstop

GRB090813A 04:10:42 225.8 88.6 0.0005 -0.8 8.96

GRB090814A 00:52:19 239.6 25.6 0.0005 -16.4 73.6

GRB090814B 01:21:33 64.7 60.6 0.0483 0 50

GRB090814C 08:49:41 332.5 58.9 5.5 -0.064 0.192

GRB090815A 07:12:12 41.7 -2 7.6 -5.12 24.576

GRB090815B 10:30:41 21.4 53.4 5.7 -7.168 23.552

GRB090817A 00:51:26 64 44.1 0.0003 0 41

GRB090820A 00:38:16 87.7 27 1 28 60

GRB090820B 12:13:16 318.3 -18.6 9.6 -0.128 12.16

GRB090823A 16:11:10 128.7 60.6 0.0752 0 14.848

GRB090826A 01:37:31 140.6 -0.1 9.7 -4.096 9.216

GRB090827A 19:06:27 18.4 -50.9 0.0467 0 8.848

GRB090828A 02:22:48 124.4 -26.1 1.2 0 103

GRB090829A 16:07:38 329.2 -34.2 1 -40 92

GRB090829B 16:50:40 355 -9.4 3.2 -1.5 31.2

GRB090831A 07:36:36 145.1 51 1.9 0 49.408

GRB090831B 18:01:14 3.6 28 0.05 0 10

GRB090831C 21:30:25 108.3 -25.1 0.0005 0.6 4.9

GRB090902A 09:38:05 291 53.1 3.8 -0.256 0.896

GRB090902B 11:05:08 264.9 27.3 0.0006 -0.5 24.5

GRB090904A 01:01:06 100.9 50.2 0.0006 29.3 186.3

GRB090904B 01:24:13 264.2 -25.2 0.0005 -2.5 65.5

GRB090910A 19:29:48 296.2 72.3 1 -7.2 44

GRB090912A 15:50:29 188 61.5 0.0005 -15.9 160.1

GRB090915A 15:35:36 238 15.5 0.05 -3 5

GRB090916A 07:00:44 126.6 25.9 0.045 0 68.5

GRB090922A 12:56:42 17.1 74.3 1 0.003 10.24

GRB090925A 09:20:33 333.2 14.3 4.5 -1 20

GRB090926A 04:20:26 354.5 -64.2 1 -0.5 34.5

GRB090926B 21:55:28 46.3 -39 0.0167 -21.6 48.6

GRB090927A 10:07:17 344 -71 0.0006 -0.256 2.4

GRB090929A 04:33:03 56.5 -6 0.05 -1 8.448

GRB090929B 10:09:25 117.7 -0.7 0.0005 -2 371
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Name Time (UTC) RA (◦) Declination (◦) Position Uncertainty (◦) Tstart Tstop

GRB091003A 04:35:45 251.1 37.2 1 -0.384 26.88

GRB091010A 02:43:09 298.7 -22.5 0.05 -0.128 8.448

GRB091018A 20:48:19 32.2 -57.5 0.0005 -0.3 7.7

GRB091020A 21:36:43 175.7 51 0.0001 -7.7 38.3

GRB091024A 08:55:58 339.2 56.9 0.0167 -15.2 135.8

GRB091026A 13:11:30 276.6 -86.1 0.0005 -1 47.9

GRB091029A 03:53:22 60.2 4 0.0002 -1.8 60.2

GRB091030A 19:52:26 41.7 21.5 1.2 -1.7 40

GRB091031A 12:00:28 70.6 -59.1 1 -0.003 41.216

GRB091102A 14:34:38 72.6 -72.5 0.02 -0.5 7.5

GRB091104A 08:49:22 208.8 47.4 0.0004 -1.5 120.5

GRB091109A 04:57:43 309.3 0 0.0002 -0.8 51.5

GRB091109B 21:49:03 112.7 -54.1 0.0008 0 1

GRB091111A 15:21:59 137.8 -45.9 0.0417 0 10

GRB091112A 17:41:15 257.8 -36.7 0.025 -0.512 24.064

GRB091117A 17:44:29 30.9 -16.9 0.0433 -2.5 3.2

GRB091120A 04:34:40 224.8 -24.8 1.32 -3 57.6

GRB091123A 07:08:37 297.1 -29.2 2.4 -5 650

GRB091126A 07:59:24 83.3 -19.3 5.4 -0.256 0.5

GRB091126B 09:19:48 47.4 31.5 14.3 -0.016 0.016

GRB091127A 23:25:45 36.6 2.4 0.0002 -0.4 9.984

GRB091128A 06:50:34 127.7 1.7 1.4 -24.832 71.425

GRB091130A 16:08:10 161.9 11.6 0.05 0 10

GRB091130B 17:59:04 203.1 34.1 0.0004 -4.7 127.4

GRB091202A 23:10:12 138.8 62.5 0.0417 0 50

GRB091208A 08:46:03 0.3 65.7 0.0183 -0.3 32.8

GRB091208B 09:49:57 29.4 16.9 0.0005 -0.128 22.3

GRB091221A 20:52:57 55.8 23.2 0.0005 -2 41.1

GRB091230A 06:27:30 132.9 -53.9 0.0417 0 120

GRB100103A 17:42:46 112.4 -34.5 0.0267 0 41.216

GRB100111A 04:12:49 247 15.6 0.0004 -2.7 8.7

GRB100113A 17:29:24 19.9 -25.2 2.3 -8 96

GRB100115A 11:15:19 3.4 -0.8 0.0011 0 10
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Name Time (UTC) RA (◦) Declination (◦) Position Uncertainty (◦) Tstart Tstop

GRB100116A 21:31:00 301.5 16.2 1 0 23.296

GRB100117A 21:06:19 11.3 -1.6 0.0283 0 0.3

GRB100119A 18:25:06 299.3 -53.1 0.0217 -15.8 37.5

GRB100122A 14:47:37 79.2 -2.7 1.3 -2.688 25.984

GRB100130B 18:38:35 77.6 20.4 1.41 -14 89

GRB100131A 17:30:57 120.4 16.5 1.2 -0.5 5.5

GRB100203A 18:31:07 96.2 4.8 0.0333 0 10

GRB100205A 04:18:43 141.4 31.7 0.0005 -12.6 25.6

GRB100205B 11:45:38 133.9 -23 8.2 -1.024 7.168

GRB100206A 13:30:05 47.2 13.2 0.0009 -0.008 0.124

GRB100212A 14:07:29 356.4 49.5 0.0006 -0.51 134

GRB100213A 22:27:48 349.4 43.4 0.0006 -0.7 2.2

GRB100213B 22:58:34 124.3 43.4 0.001 -12.7 35.3

GRB100216A 10:07:00 154.3 35.5 0.11 0 10

GRB100218A 04:38:45 206.6 -11.9 2.2 -4.1 28.67

GRB100219A 15:15:46 154.2 -12.6 0.0004 19 45

GRB100223A 02:38:09 104.1 2.8 3.6 -0.01 0.22

GRB100224A 15:20:10 83.5 -8 0.05 0 10

GRB100224B 02:40:55 269.6 -17.1 1.6 -7.2 71.7

GRB100225A 02:45:31 312.5 -54.9 2.4 -3.8 13.6

GRB100302A 19:53:06 195.5 74.6 0.0005 47.6 67.3

GRB100305A 09:05:38 168.4 42.4 0.0005 -9.2 70.3

GRB100316A 02:23:00 252 71.8 0.0008 -1.2 6.7

GRB100316B 08:01:36 163.5 -45.5 0.0001 -0.4 4

GRB100316C 08:57:59 32.3 -68 0.0005 -3 7

GRB100316D 12:44:50 107.6 -56.3 0.05 0 10

GRB100319A 18:34:50 278.4 -8.5 0.05 0 10

GRB100322A 01:05:09 23.3 -10.2 1.2 -1 42

GRB100322B 07:06:18 76.5 42.7 0.0667 0 10

GRB100324A 00:21:27 98.6 -9.7 0.0417 0 10

GRB100324B 04:07:32 39.672 19.287 0.05796 0 13.824

GRB100325A 06:36:08 332.3 -28.6 1.5 -1.664 7.552

GRB100331B 21:08:38 303 -11.1 0.1 0 10
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Name Time (UTC) RA (◦) Declination (◦) Position Uncertainty (◦) Tstart Tstop

GRB100401A 07:07:32 290.8 -8.3 0.0333 -1.9 3.2

GRB100413A 17:33:28 266.2 15.8 0.0005 -2 227.4

GRB100413B 08:42:41 356.8 51.3 0.05 0 10

GRB100414A 02:20:21 192.1 8.7 0.0006 -1.5 28.9

GRB100418A 21:10:08 256.4 11.5 0.0002 -1.1 7.8

GRB100420A 05:22:42 296.1 55.8 0.0006 -30 70

GRB100423A 00:34:57 136.5 21.5 0.0167 -1 99.1

GRB100423B 05:51:25 119.7 5.8 1.5 -2 23.6

GRB100424A 16:32:42 209.4 1.5 0.0005 22.3 148.5

GRB100425A 02:50:45 299.2 -26.4 0.0004 -2.1 39.4

GRB100427A 08:32:08 89.2 -3.5 0.0417 -4.1 11.3

GRB100503A 13:18:03 147.5 4 1.5 -4 89

GRB100504A 19:20:55 255.6 -35.6 0.0007 -6.1 102.2

GRB100508A 09:20:42 76.2 -20.7 0.0005 -8 59

GRB100510A 19:27:06 355.1 -18.9 5 -11 54

GRB100511A 00:49:56 109.3 -4.7 1 -7.4 52

GRB100513A 02:07:08 169.6 3.6 0.0005 -64.1 44.6

GRB100514A 18:53:58 328.8 29.2 0.0005 0.3 30.8

GRB100518A 11:33:35 304.8 -24.6 0.0267 0 30

GRB100522A 03:45:52 7 9.4 0.0004 -0.003 8.848

GRB100526A 16:26:10 230.8 25.6 0.0005 -33.2 80

GRB100526B 19:00:38 0.8 -37.9 0.05 -28.4 35.6

GRB100528A 01:48:01 311.1 27.8 0.0833 0 24.576
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