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Status and recent results of the South Pole Acoustic Test Setup

THE ICECUBE COLLABORATION1

1See special section in these proceedings

Abstract: The feasibility and design of an acoustic neutrino detection array in the South Pole ice depend on the acoustic
properties of the ice. The South Pole Acoustic Test Setup (SPATS) was built to evaluate the acoustic characteristics of
the ice in the 10 to 100 kHz frequency range. SPATS has been operating successfully since January 2007 and has been
able to measure or constrain all parameters. Recent results including the absolute noise measurement of the South Pole
ice, the SPATS sensor calibration, and the frequency dependence of attenuation length are presented.

Corresponding authors: Yasser Abdou(yasser@inwfsun1.ugent.be)
Department of Physics and Astronomy, Gent University, B-9000 Gent, Belgium

Keywords: Acoustic neutrino detection, Acoustic ice properties, SPATS

1 Introduction

The detection of ultra-high energy neutrinos of extraterres-
trial origin is a big challenge because of their low flux and
small interaction cross-sections. To detect the cosmogenic
or Greisen-Zatsepin-Kuzmin (GZK), neutrinos of energy
1017−20 eV produced by ultra-high-energy cosmic rays in-
teracting with the cosmic microwave background radiation,
a detector with effective volume in the order of100 km3

is needed. Such a large volume is necessary since the es-
timated rate of GZK neutrino induced showers is on the
order of0.1 km−3yr−1 [1, 2].

The interactions of high enegy neutrinos in ice produce op-
tical [3], radio [4], and acoustic radiation [5], each of which
therefore provides a possible method of detecting the neu-
trinos. Both radio and acoustic signals have attenuation
lengths that are larger than in the optical signals [6].

While the optical method is well understood and calibrated
with atmospheric neutrinos, the density of instrumenta-
tion required makes it prohibitively expensive to scale to
a 100 km3 detector size. The acoustic and radio methods,
on the other hand, can in principle be used to instrument a
large volume sparsely and achieve good sensitivity per cost
in this energy range [8].

South Pole ice as a medium is predicted to be especially
well suited for acoustic detection of extremely high-energy
neutrinos [7]. To test the theoretical estimates, the South
Pole Acoustic Test Setup (SPATS) was deployed at the
South Pole. The main purpose of SPATS is to measure
the acoustic attenuation length, sound speed profile, noise

floor, and transient noise sources in situ at the South Pole.
Measurement of these parameters will allow us to obtain a
realistic sensitivity estimate for a possible future acoustic
neutrino telescope in the Antarctic ice.

2 SPATS Array

The South Pole Acoustic Test Setup consists of four verti-
cal strings that were deployed in the upper 500 meters of
selected IceCube holes to form a trapezoidal array, with
inter-string distances from 125 to 543 m [9]. Each string
has 7 acoustic stages, each stage is comprised of a sen-
sor and a transmitter. The transmitter module consists of a
steel pressure vessel that houses a high-voltage pulse gen-
erator board and a temperature or pressure sensor. Trig-
gered HV pulses are sent to the transmitter, a ring-shaped
piezo-ceramic element that is cast in epoxy for electrical
insulation and positioned 13 cm below the steel housing.
The motivation of using ring-shaped piezo-ceramics is to
obtain an azimuthally isotropic emission. The actual emis-
sion directivity of such an element was measured in the az-
imuthal and polar directions [10]. The sensor module has
three channels, each120◦ apart in azimuth, to ensure good
angular coverage.

A retrievable pinger was also deployed in 13 water-filled
IceCube holes: 6 holes were pinged in December 2007-
January 2008 and 7 more holes were pinged using an im-
proved pinger design; 4 in December 2008-January 2009
and 3 in December 2009-January 2010. In 2009/2010,
the pinger was modified to emit lower bandwidth pulses at

1
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Figure 1:Sound speed for both pressure and shear waves, at ul-
trasonic frequencies, versus depth in the South Pole ice. A previ-
ous measurement, made by Weihaupt, at seismic (Hz) frequencies
is shown for comparison [11].

three well defined frequencies (30, 45, and 60 kHz) and de-
ployed in three boreholes going down to 1000 m depth. The
measured data is used to study the frequency dependence
of the attenuation length, as well as the speed of sound on
inclined paths.

3 Results

3.1 Sound speed

The speed of both pressure waves and shear waves are mea-
sured in the dense ice between 80 m and 500 m as a func-
tion of depth using the SPATS pinger setup [11], and were
found to be3878± 12 m/s and1975.8± 8.0 m/s, respec-
tively. The resulting vertical sound speed gradient for both
pressure and shear waves is consistent with no refraction
between 200 and 500 m depth as shown in Fig. 1. These
results have encouraging implications for neutrino astron-
omy: the negligible refraction of acoustic waves deeper
than 200 m indicates that neutrino direction and energy re-
construction, as well as separation from background events,
could be done easily and accurately.

3.2 Properties of noise floor

The energy threshold for the detection of acoustic sig-
nals from ultra-high energy neutrino interactions depends
strongly on the absolute noise level in the target material.
SPATS has monitored the noise in Antarctic ice at the geo-
graphic South Pole for more than two years down to 500 m
depth. The noise is very stable and Gaussian distributed as
shown in Fig. 2 [12]. The resulting noise level for all op-
erative SPATS channels is presented in ref. [12]. The con-
tribution from electronic self-noise that has been measured
in the laboratory prior to deployment is found to be 7 mPa.
Subtracting this contribution quadratically from the mea-
sured mean noise level leads to an estimated mean noise
level in South Polar ice of 20 mPa above 200 m and 14 mPa

Figure 2:An example for the South Pole noise floor recorded by
one of the SPATS sensors.

below 200 m integrated over the frequency range relevant
for acoustic neutrino detection of 10 to 50 kHz. The ori-
gin and significance of the decrease in the noise level with
depth remains unclear. One possible qualitative explana-
tion for the observed depth dependence is a contribution of
noise generated on the surface. Due to the gradient in the
sound speed with depth [11], all noise from the surface will
be refracted back towards the surface, thus shielding deeper
regions from surface noise.

3.3 Transient noise events

Using a threshold trigger mode for the active SPATS chan-
nels and offline coincidence window of 200 ms, corre-
sponding to a pressure wave with the longest distance
across the SPATS array of approximately 775 m, the ver-
tex of transient events producing triggers on all four strings
is reconstructed using an idealized global positioning sys-
tem algorithm [12]. The horizontal positions of all recon-
structed vertices are shown in Fig. 3. SPATS registered
acoustic pulse-like events in the IceCube detector volume
and its vicinity. All sources of transient noise are well
localized in space and have been identified as being man
made; IceCube boreholes re-freezing after the deployment
of the optical module produce cracking noise for a period
of about 20 days. Rodriguez Wells, caverns melted in the
ice at a depth of 50-100 m as a water source for IceCube
drilling, also produce a cracking noise during refreezing.

The acoustic signals from refreezing IceCube holes and
from anthropogenic sources have been used to localize
acoustic events. The absence of any transient events
observed from locations other than known sources al-
lows us to set a limit on the flux of ultra high energy
(Eν > 1020 eV) neutrinos. Fig. 4 shows the neutrino flux
limit of the 2009 SPATS configuration (70 mPa threshold,
≥ 5 hits per event) compared to different neutrino flux lim-
its [12].

2
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Figure 3: The vertex position for all transient events recorded
since August 2008 in the horizontal plane of the the IceCube co-
ordinate system, see the original figure from Ref. [12].
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Figure 4: The neutrino flux limit of the 2009 SPATS configu-
ration (70 mPa threshold,≥ 5 hits per event), for the detailed
discription of the limits see Ref. [12].

3.4 Attenuation length

Measuring the attenuation length requires the comparison
of signal amplitudes or energies after different propagation
lengths through the ice. To achieve this, the 2008/2009
pinger was equiped with mechanical stabilizers, in order to
keep the pinger close to the central axis of the hole. Cen-
tralization of the pinger minimized pulse to pulse variations
caused by different signal transmission characteristics at
the water-ice interface. The pinger emission rate was in-
creased from 1 Hz (used in the previous season) to 10 Hz
in order to improve the signal to noise ratio.

The data sets from 2008/2009 were analyzed using differ-
ent sound sources, the pinger, the frozen-in SPATS trans-
mitters and transient signals from freezing IceCube holes
to determine the attenuation length. To minimize the un-
certainties due to different sensitivity of the sensors and

module
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Figure 5: The attenuation coefficients with standard error for
different SPATS sensors at 30 kHz.

unknown angular response, the attenuation length was de-
termined with each sensor individually placing the sound
source at different distances to the receiver, while trying to
keep the same direction seen from the sensor. All meth-
ods consistently deliver an attenuation length of about 300
m with a 20% uncertainty [13]. These measurements ob-
served a weak frequency dependence below 30 kHz. This
result is in strong contradiction with the phenomenological
model prediction of9± 3 km with absorption as the domi-
nant mechanism and negligible scattering on ice grains [7].

To investigate this discrepancy the pinger was modified for
the 2009/2010 Pole season to allow us to measure the at-
tenuation length at different frequencies from 30 kHz to
60 kHz. The result will help to discriminate between dif-
ferent contributing attenuation mechanisms: the scattering
coefficient is expected to increase withf4 while the ab-
sorption coefficient should be nearly frequency indepen-
dent. The modified pinger was successfully deployed in
three IceCube holes aligned with respect to the SPATS ar-
ray at horizontal distances between 180 m and 820 m and
delivered high quality data.

Each waveform consists of six pulses, two sets of 3 pulses
in a (30,45,60) kHz cycle. The energy contribution from
the noise-subtracted waveform was calculated at each fre-
quency in order to calculate the attenuation coefficient as
explained in [13]. Fig. 5 shows the attenuation coef-
ficient as obtained from the available horizontal pinger-
sensor configuration at a frequency of 30 kHz. The data
points scatter more than their error bars indicate, implying
that there are additional systematic uncertainities, e.g. aris-
ing from local ice properties or the interface between the
hole ice and the sensors. The error represents the spread be-
tween attenuation lengths measured with each sensor. The
weighted mean for the attenuation length is266± 27 m at
30 kHz and300± 88 m at 45 kHz. The contribution of 60
kHz is not strong enough at large distances to calculate the
attenuation length. The measured attenuation length at 30
and 45 kHz is independent of the frequency within the un-
certainties. Because Rayleigh scattering depends on grain

3
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Figure 6: Absolute sensitivity in ice for two different SPATS
sensor-channels

diameter and frequency, the measured attenuation length at
the South Pole is not dominaned by scattering.

3.5 SPATS sensor calibration

The SPATS sensor calibration was performed in the Aachen
Acoustic Laboratory (AAL) as a complement to the in-situ
test at South Pole with SPATS [14]. Sensor absolute sen-
sitivity was measured in water and in ice using reciprocity
calibration [15]. For this method, no absolute calibrated
receiver is needed as reference. Fig. 6 shows the absolute
sensitivity for two different SPATS sensor-channels in ice.

4 CONCLUSIONS

The South Pole Acoustic Test Setup has been operated suc-
cessfully since January 2007 and has been able to measure
or constrain all South Pole acoustic ice parameters. We
presented the latest results from SPATS including:

• The sound speed depth profile was measured in deep
ice and found to be consistent with a constant sound
speed below 200 m depth. Further analysis is under-
way including inclined paths. This will allow us to
probe the fabric of the ice because the sound speed
can vary from site to site due to the difference in the
crystal grain orientation.

• The absolute noise at the South Pole is very stable
and Gaussian distributed. The measurements of the
absolute noise level allow us to put a threshold for
a future acoustic neutrinos detector at South Pole
which depends on the noise level.

• SPATS identified sources for the transient noise,
acoustic pulse-like events, in the IceCube detector
volume and its vicinity.

• The attenuation length including the recent multi-
frequency measurements is presented. The measure-
ments do not show a strong depth dependency. The

attenuation length, which seems not to depend on
scattering, has been found to be about 300 m. This
is less than expected from theory. However, for
1018 eV neutrinos, the typical distance over which
they can be detected is reduced only by a factor of
about 2.

• A SPATS sensor has been absolutely calibrated by
the reprocity method in ice.

SPATS is continuing to take data. An upgrade of the DAQ
software to read out all sensor channels simultaneously and
to form a multiplicity trigger online, will increase the de-
tector sensitivity. SPATS results show that the acoustic de-
tection techique represents a promising tool to build a large
hybrid (acoustic/radio) neutrino telescope in the South Pole
ice. Individual hits from an acoustic array operated syn-
chronously with a radio array could still be valuable. The
coincidence between radio and acoustic hits could provide
much-needed confirmation about the direction and energy
reconstruction of the events.
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The Radio Air Shower Test Array (RASTA) – enhancing the IceCubeobservatory
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Abstract: Radio detection offers the opportunity to measure cosmic ray induced air showers at greater than PeV energies
via their electromagnetic emission in the MHz region. We intend to use this technique to extend the capability of the
IceCube and IceTop detectors at the South Pole to measure cosmic ray observables. The radio emission is dominated by
the electron contribution in the shower maximum, hence providing an integral measure of the shower development. It
supplements the measurement of high energetic muons deep in the ice by IceCube and the sampling of the air shower on
the surface by IceTop. Using these new, complementary observables, a radio extension can improve the measurement of
the composition of cosmic rays. Further, the surface radio detector will increase the neutrino sensitivity of IceCube by
providing a veto for air showers. It also may allow the study of photon induced air showers, which contain a smaller muon
component than air showers induced by charged particles. We present simulation and experimental studies demonstrating
the feasibility and providing a first impression of the physics potential of this approach.
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1 Introduction

After first being discovered in the late 1960s [1], radio
emission of air showers has again received increasing inter-
est in the past years. This is mainly due to the achievements
in information technology, which open the possibility to5

use phased arrays of radio antennas in combination with
digital beam forming. Its main advantages are low cost and
simple design of the radio antennas as compared to clas-
sical air shower detector elements (such as scintillators or
photomultipliers) and the very large field of view provided10

by the phased array (usually close to2π sr). A first proof
of this technology has been provided by the LOPES exper-
iment [2, 3], a prototype setup for LOFAR – a multi-site,
multi-purpose radio telescope spanning half of Europe. Ra-
dio technology is today also being developed as an exten-15

sion at many existing air shower experiments (KASCADE-
Grande, Pierre Auger Observatory, Tunka,. . .).

In this paper, we will first outline the physics motivation for
an extension of the IceCube observatory with an extended
O(10) km2 radio array, then describe the current prepara-20

tory measurements, and finally outline a roadmap towards
a prototype experiment at the South Pole: RASTA (Radio
Air Shower Test Array), that will allow us to fully quantify
the physics potential of a large scale radio extension for the
IceCube observatory.25

2 Physics Motivation

The all particle energy spectrum of cosmic rays follows a
simple power law with two prominent changes in spectral
index: a steepening at∼ 4 PeV, called the “knee” followed
by a flattening at a few times1018 eV, termed the “ankle”.30

The knee is believed to result from the cut-off in protons
from galactic sources, while the region between knee and
ankle would represent the dying out of heavier elements
from galactic accelerators and the transition to an extra-
galactic component at the ankle. However, the chemical35

composition of cosmic rays in this energy range is not well
constrained, yet. The composition is derived from the prop-
erties of cosmic ray induced extensive air showers. The
two quantities sensitive to composition usually used are
the depth of the shower maximum in the atmosphereXmax40

(and the width of theXmax-distribution) and the electron-
to-muon ratio at ground level.

The IceTop1 km2 air shower detector [4], part of the Ice-
Cube observatory [5] located at the geographic South Pole,
has an energy threshold of300 TeV primary energy and can45

measure up to∼ 1 EeV where it becomes limited by statis-
tics. We propose to enhance the IceCube observatory with
a large area (O(10) km2) antenna field on the surface, cen-
tered at IceTop, to detect radio emission from air showers
in the MHz frequency band. The envisioned radio detec-50
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tor is expected to have an energy threshold ofO(10) PeV
and its larger area will allow us to collect statistics up to
higher primary energies, resulting in a significant overlap
with the energy range accesible to the Pierre Auger Obser-
vatory. The range of cosmic ray primary energies covered55

by the enhanced IceCube observatory will in particular al-
low for measurements in the transition region between knee
and ankle of the cosmic ray spectrum and will enable sys-
tematic studies and cross calibration between IceTop, the
radio detector, and the Pierre Auger Observatory.60

The IceCube observatory is a very well suited facility to
study cosmic ray composition via the electron-to-muon ra-
tio of air showers [6]. IceTop at the surface measures the
charged particles at ground level while only high energy
muons can penetrate through the Antarctic ice sheet and be65

measured in the deep in-ice detector. The radio signal gives
an integral measurement of the electron component over
the whole development of the air shower and the largest
contributions are emitted in the shower maximum. The en-
hanced observatory would allow for three independent, co-70

incident measurements of air showers—charged particles
at ground level, high energy muons in-ice, and the radio
signal emitted over the whole shower development—thus
improving the knowledge about the primary particle. Stud-
ies on cosmic ray composition can be performed in two75

ways. First, for air showers where the muon bundle in the
shower core penetrates the geometric volume of the Ice-
Cube in-ice detector, the amplitude of the radio signal on
the surface can be used to estimate the electron number of
the shower and thus its energy, while the muon number can80

be estimated from the in-ice signal. With this method a
zenith range up to60◦ can be covered with a radio array
reaching out3 km from the centre of IceTop. Second, the
lateral distribution function of the radio signal is expected
to be a composition sensitive variable [7, 8] which would85

allow for radio-only composition studies, largely increas-
ing the aperture of the detector since no geometric over-
lap of the events geometry with IceCube is required. The
first method described above would also allow us to explic-
itly search for UHE photons which manifest themselves as90

electromagnetic showers with no, or a very small, muon
component in the deep in-ice detector.

Further, the increased area of the surface detector can be
used as a veto against air shower muon bundles in the deep
in-ice detector which are the main background channel95

in EHE neutrino searches in IceCube [9], increasing Ice-
Cube’s sensitivity to horizontal and down-going high en-
ergy neutrinos. An estimate shows that the sensitivity to
cosmogenic neutrinos can be increased by a factor of more
than three using a radio array extending3 km around the100

centre of IceTop [10].

To proof the technical feasibility of such a large area ra-
dio detector and to quantify the physics potential more pre-
cisely the installation of the RASTA test setup is proposed
(cf. Sec. 4). In parallel, to study the physics potential of105

the envisaged radio detector, a detector simulation chain
based on CORSIKA [11] simulations, the air shower ra-
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Figure 1: Radio signal strength as function of distance from
the shower axis. The inset shows the distribution of record-
ing antennas on the ground; the asterisk marks the position
of the shower core. The origin of the coordinate system is
located at the centre of IceTop.

dio emission code REAS3 [12], and the IceCube detector
simulation software has been developed. This simulation
chain allows for the uniform treatment of all three detec-110

tor components and is currently used to study the energy
threshold and composition sensitivity of different detector
configurations. For simulations, a radial geometry reaching
out to4.5 km radius has been chosen for the antenna array,
comprising a total of1110 antennas. Since showers with115

their axis intersecting the geometric volume of the in-ice
detector are most promising, the spacing between antennas
increases from80 m in the centre to800 m at the outer cir-
cumference, taking into account the increasing zenith an-
gle of these “golden events”. A typical simulated event,120

induced by a10 PeV primary proton, is shown in Fig. 1
together with part of the simulated antenna array and the
lateral distribution of the radio signal amplitude. The muon
bundle from this air shower generated a signal in571 opti-
cal modules of the deep IceCube detector.125

3 Preparatory Measurements

One important ingredient for the simulation of a radio de-
tector and the estimation of its sensitivity is the knowledge
of the electromagnetic background conditions at South
Pole station. This includes both, the continuous back-130

ground noise and its variations on different time scales, and
possible transient backgrounds. In the past several mea-
surement campaigns have been performed [10, 13], which
for technical reasons always took place close to South Pole
station buildings and thus yielded only upper limits on the135
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Figure 2: ‘Fat Wire Dipole’ surface antenna deployed in
the ARA test setup. The3.7 m long antenna is made from
copper pipes stabilized in a wooden frame.

noise conditionsO(1) km away from all buildings, where
a radio detector would be built.

In the austral summer 2010/2011 the ARA (Askaryan Ra-
dio Array) collaboration deployed a test setup [14] about
2.5 km away from South Pole station, outside the IceCube140

footprint. ARA is searching for Askaryan GHz radio emis-
sion in the ice from EHE neutrino interactions. Two DAQ
channels of the test setup have been instrumented with
3.7 m dipole antennas on the surface (cf. Fig. 2) that are
sensitive in the frequency range25 – 160 MHz. The sig-145

nal from the antennas is amplified with two low noise am-
plifiers (37 + 41 dB) and read out with12-bit ADCs at a
sampling rate of1 GHz.

Minimum bias data recorded with the surface antennas of
this setup allowed us to measure the power spectral density150

(PSD) of the electromagnetic background away from South
Pole station in the frequency band from25 – 160 MHz.
Figure 3 shows the measured PSD (ARA channel 15 and
16) at the input of the ADC averaged over all data avail-
able from 18 January to 6 April 2011. For comparison a155

parameterization of the expected galactic noise (from [15])
and thermal noise folded with the ARA system response
are shown. The antenna response has been simulated using
NEC4 [16]. The data are well described by a superposition
of galactic and thermal noise. The cut-off at∼ 30 MHz160

is suspected to be due to unaccounted features in the ARA
system response.

The surface antennas have been deployed in air in a trench
which will we be snowed in during the year. This will al-
low us to study the difference in the antennas response on165

and under the snow surface in both data and antennas sim-
ulation and the long time performance of the antennas in
the Antarctic environment.

Sensitivity of the setup to galactic noise can further be
shown by analyzing the variation of the background noise170

during the sidereal day. At South Pole the galactic centre
always has the same elevation but the antenna response is
not uniform in azimuth. Figure 4 shows the RMS of the
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Figure 3: Time averaged background noise measured with
the two ARA surface antennas. For comparison, the galac-
tic [15] and thermal noise expectations, convoluted with the
ARA amplification and system response, are shown.
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background noise in ten minute bins modulo one sidereal
day for different frequency bands. Following the symme-175

try of the antenna, two full oscillations are observed per
day. The amplitude of the modulation decreases for higher
frequencies as is expected from the galactic emission spec-
trum (cf. Fig. 3). At∼ 90 MHz the phase of the modulation
is inverted. This effect is understood from simulations of180

the antenna response function.

During the austral winter 2011 a dedicated surface trigger
in the ARA test setup will allow us to study transient back-
grounds at South Pole far from the station buildings and the
IceCube array.185

4 Roadmap

Considering the restricted deployment cycle due to the re-
mote location, a staged proposal spanning three years has
been made. In the first year we will aim towards unambigu-
ously establishing the detection of air showers above the190
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Figure 5: Possible configuration for RASTA having partial
overlap with the IceCube footprint (gray shaded area). The
configuration of the antenna pairs is shown in the upper left
inset. The dashed lines indicate the data and power trans-
mission network. The upper right inset illustrates the con-
nection to the IceCube network using existing spare cables
running to the IceTop stations.

background noise and provide a proof-of-viability for this
detection technique in the Antarctic environment. Using
a conservative estimate based on REAS2 [17] simulations,
air showers with a primary energy ofEprim > 1017 eV
should be detectable at> 5σ above the ambient noise level195

at a distance of125 m [10]. Antennas will be deployed
in orthogonally polarized pairs. Four such pairs forming an
equilateral triangle with95 m side length and one pair in its
centre and requiring a three-fold coincidence will provide
an effective area of3 · 104 m2. Using the charged cosmic200

ray flux as measured by the KASCADE experiment [18],
each of these clusters will detect∼ 8 events per day. Even
allowing for considerable inefficiencies (e.g. due to anthro-
pogenic backgrounds), some103 events will be accumu-
lated per year.205

In the second and third seasons all of the key technologies
that are required for a several-km2 array should be em-
ployed. This will also allow us to demonstrate the scala-
bility of the approach. With a significantly larger number
of antennas on an enlarged footprint, this second stage will210

collect a data sample large enough to allow detailed verifi-
cation of the array performance and shower reconstruction.
Figure 5 shows a possible setup for the third year stage of
RASTA. Partial overlap with the IceCube footprint allows
for coincident air shower measurements with IceTop and215

allows us to study both, influences of possible noise from
IceTop and data measured at some distance to existing in-
frastructures.

5 Conclusions and Outlook

A large area surface radio detector is a promising enhance-220

ment for the IceCube observatory to study the composition
of cosmic rays in the transition region from the knee to the
ankle and improve IceCube’s sensitivity to UHE neutrinos.
A full detector simulation chain based on REAS3 has been
developed and different detector configuration and their225

physics potential are presently studied. In-situ measure-
ments of electromagnetic interference show promisingly
low noise levels. A path towards RASTA, a full test setup
to demonstrate the viability of a full detector, has been pre-
sented.230
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Abstract: In preparation for designing a large scale array sensitive to high energy neutrinos (EeV), several Radio
Frequency (RF) detectors and calibration equipment were installed with the IceCube neutrino detector at the geographic
South Pole between the years 2006–2010. The wide and deep holes drilled for IceCube provided a unique opportunity
for deep-ice RF detection studies at depths never surveyed before. The deployed detectors are installed between 5 to
1400 meters deep in the ice, and are sensitive to frequencies in the range of 200 MHz–1 GHz. We will present results of
ice properties studies (attenuation length and index of refraction) and environmental noise study.
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1 Introduction

The concept of high energy neutrino radio frequency detec-
tor buried in ice at shallow depths or deployed as a surface
array was suggested nearly 30 years ago [1]. The RICE
[2] array and the ANITA experiment [3] are already taking
advantage of the Askaryan effect and the massive volume
of ice in Antarctica for neutrino detection by looking for
the coherent radio Cherenkov emission from charge asym-
metry in high-energy neutrinos cascades. Future experi-
ments include ARIANNA [4], a surface array on the Ross
Ice Shelf, and ARA [5], an in-ice array at shallow depths
near the South Pole. Our unique access to IceCube’s deep
and wide holes have provided us with an opportunity for
deploying radio frequency (RF) detectors in the deep Po-
lar ice. These detectors use the communication and time
calibration systems developed for IceCube and rely on the
experience within the IceCube Collaboration for develop-
ing hardware and software and for building and deploying
highly-sensitive equipment in the extreme South Pole envi-
ronment as well as on radio technology expertise from the
RICE and ANITA Collaborations. IceCube’s deep holes
and well-established data handling system provide a unique
opportunity for deep-ice RF detection studies.

2 Hardware description

2.1 Full digitization detectors

IceCube’s radio extension modules, consisting of several
radio frequency (RF) detectors as well as calibration equip-
ment, were installed on IceCube strings during the austral
summers between 2006 and 2010 at depths of5 to 1400 m.
Each radio module was installed directly above IceCube’s
digital optical modules (DOMs). The RF components were
mechanically attached to the∼ 3 km-long IceCube main
cable (a 5-cm-diameter cable bundle for communication
and power) which simply served as a mechanical support;
some of the modules, however, were tapped into one of
the auxiliary twisted-pairs within the main cable designed
for specialized device operations. The main cable, being a
massive conducting object, can shadow the RF antennas.

During the first two seasons five detectors capable of full
waveform (WF) digitization were deployed. These so
called “clusters” consist of four receiving channels equally
spaced over∼ 40 m along the IceCube cable, a transmit-
ting channel and a central electronics module. Each re-
ceiver channel consists of a broadband dipole antenna (with
the gain centered at∼ 400 MHz in air and∼ 250 MHz in
ice), and a set of front-end electronics (housed in a metal
tube), including filters (450 MHz notch filter for reject-
ing constant interference from the South Pole communica-
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tion channel, and200 MHz high-pass filter) and amplifiers
(∼ 50 dB low-noise amplifier). An additional∼ 20 dB am-
plification is done at a later stage within the electronic mod-
ule for a total amplification of∼ 70 dB. A schematic of the
2006–2007 cluster is shown in Figure 1. Three clusters
were deployed at depth of∼ 300 m , and two at∼ 1400 m.
A detailed description of the electronics installed inside the
DRM can be found elsewhere [6, 7].

2.2 Transient detectors

The idea of using an array of simple transient sensors to
image the unique spatiotemporal signature of neutrino in-
teractions in Antarctic ice was proposed by Gusev and
Zheleznykh nearly thirty years ago [1]. In this type of
detector system, the pattern of coincident hits among a
large number of sensors provides event confirmation, in-
dication of direction and energy, and information for re-
jecting sporadic noise on the basis of time-of-arrival and
amplitude. Six units of transient-prototype-detector were
deployed in the 2009–2010 season. Each unit consists of
a discone wide-band omni-directional antenna feeding into
a Transient Detector Assembly (TDA), an exploratory de-
vice, whose block diagram is shown in Figure 1. Each unit
is read out using a control motherboard (MB) developed
for the IceCube DOM [8]. The IceCube cable and cali-
bration system also facilitates timing calibration and data
handling. The units were deployed in pairs above three
IceCube strings, with one unit atz = −5 m and the other
atz = −35 m. The Local Coincidence (LC) capabilities of
the IceCube MB are also exploited; when LC is enabled,
each TDA pair reads out data only if both units in the pair
are triggered in some adjustable time window. The rise-
time of the output pulse from these units is on the order of
10–20 ns and is largely independent of amplitude.

Figure 1: The radio cluster, consisting of the DRM (Digi-
tal Radio Module), 4 receiving antennas and 1 transmitting
antenna (left); Block diagram of the Transient Detector As-
sembly (right).
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Figure 2: Map of the IceCube radio detector deployments,
plotted on top of the full IceCube array. Also shown are the
deployment depth of each unit relative to the surface, and
the location of the RICE transmitters.

Figure 2 summarizes the in-ice locations and depths of the
deployed units.

3 Ice Properties

The properties of ice at radio frequencies determine the
feasibility and design of future GZK neutrino detectors.
Specifically, the attenuation length affects the spacing be-
tween channels and the effective detector volume, whereas
uncertainties in the index of refraction determine the recon-
struction capabilities and simulation quality.

3.1 Attenuation Length

The attenuation lengthλ is the distance over which the sig-
nal amplitude diminishes by a factor ofe due to absorp-
tion and/or scattering. In general,λ varies with the density
and temperature of a medium and with the frequency of the
radiation. In South Pole ice, the density and temperature
vary with the depthz, and so the attenuation length is also
a function of depth.

The previous in-ice RF attenuation data from the South
Pole were obtained by sending signals down into the ice us-
ing a surface transmitter and recording the signals reflected
from the bedrock below. This measurement provided an
average RF attenuation over the round-trip, weighted by
the temperature profile along the path [9].

The IceCube Radio Extension provides us with the first
opportunity to make a point-to-point attenuation measure-
ment independent of the unknown bedrock reflection co-
efficient. Of 20 available receiver channels, we use the 6
which have similar amplifiers and electronics. Our sources
are RICE antennas which transmit signals from a pulser op-
erated in an on-site lab. The pulse power can be varied by
inserting attenuators in the line. The transmitting antennas
are similar to the receiving antennas and are located at var-
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ious depths down to220 m, and up to∼ 1400 m away from
the receivers (see Figure 2).

The simplest possible relative attenuation measurement
would involve broadcasting a signal and measuring the
relative power received by antennas at different distances
from the transmitter. However, IceCube Radio Exten-
sion digitizers have insufficient dynamic range for this ap-
proach. Thus, we instead vary the transmitter power, mea-
suring the values which yield the same power at different
receivers. The differences between these values are∆Ltotal,
the total receiver–receiver difference in losses.

We assume that (in a logarithmic scale)∆Ltotal =
∆Ldipole(θ)+∆Lfree space(~r, n(z))+∆Lattenuation(~r, λ). We
use a standard dipole pattern for transmitters and re-
ceivers:I(θ) = (3/8π)I0 sin2(θ). The free space losses,
which for uniform index of refraction would give the in-
verse square law, are calculated using ray tracing sim-
ulation. After obtaining∆Ltotal from measurement and
∆Ldipole and∆Lfree spacefrom simulation, we can calculate
the path-averaged attenuation length〈λ〉: ∆Lattenuation =
10 log10 e−2∆r/〈λ〉. Figure 3 shows the measurement of
pulses from a RICE transmitter. Deep receiver channels
show a linear response. Shallow receiver channels have a
flatter response for higher power due to saturation; how-
ever, for sufficient transmitter attenuation, they also have a
linear response.
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Figure 3: Measured intensity vs. transmitter attenuation.

A linear fit with a slope of−1 is done for the linear region
on each curve. The difference between thex-intercepts for
any pair of fits is equal to∆Ltotal for that antenna pair. To
date, sufficient data has been taken only with one of RICE
transmitters. Preliminary values obtained from this data
for 〈λ〉 range from 400 to 700 meters. These numbers are
somewhat lower than past results [9]; however, preliminary
systematic error estimates suggest that these results will not
be inconsistent with each other.

This measurement is ongoing. Our simulation of the effects
of reflection and shadowing by an IceCube cable in the
vicinity of a broadband dipole antenna is not yet complete.

Other remaining work includes estimating other systemat-
ics such as receiver gain uncertainties; taking data with ad-
ditional transmitters; and combining results for〈λ〉 with
existing density and temperature measurements to obtain a
model forλ(z).

3.2 Index of refraction

Uncertainties in index of refraction lead to uncertainties
of the order of a few ns in the time difference mea-
sured between two receivers a few meters apart (geometry-
dependent); therefore, a precise knowledge of index of re-
fraction is necessary for a sub-ns-resolution detector. The
latest index of refraction measurement at the South Pole re-
ported in [10] combines results using the RICE array down
to 150 m and ice cores down to240 m. The model used is
of the formn(z) = ndeep+ (nshallow− ndeep)e

nc·z, where
nc ≈ −0.0132 m−1, ndeep ≈ 1.78, andnshallow ≈ 1.35.
The changing index of refraction causes rays to curve in
the ice layers, especially in the soft ice layers on top of
the glacier (firn), and decreases the angular acceptance of
shallow-deployed detectors by causing total reflection of
rays propagating between the layers. When looking at pos-
sible paths connecting a transmitter and a receiver both in
ice there will be either zero or two solutions (direct ray
and reflected ray) to the ray-tracing problem. The reflec-
tion takes place at the ice-air boundary on the surface, as
illustrated in Fig. 4A.
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Figure 4: A. Ray Tracing showing the direct- and reflacted-
rays solutions. The depths and separation between the
transmitter and the receivers in this figure correspond to
the transmitter-recievers used in the analysis. B. Average
WF collected on the top (solid) and bottom (dashed) anten-
nas of the transient detectors. The time delay between the
direct and the refracted ray detected by the bottom antenna
is consistent with simulations (137 ns).

The extremely shallow location of the TDA units makes
them sensitive to small variations in the index of refraction
model, especially tonshallow andnc. Five out of six TDA
units were able to trigger on a calibration pulse transmitted
by a calibration antenna from depth of−245 m. The sixth
unit that did not see the pulser (Top antenna at hole 8) was
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in the shaded area where no solution exists. Limits on the
ice model parameters can be set by measuring the trigger
time differences between different units as well as the time
differences between the direct and reflected ray. This is il-
lustrated in Fig 4B where an average WF from a pulser run
for the top and bottom detectors is shown. The expected
time delay between the direct and reflected ray for the top
antenna was calculated to be about14 ns, and the direct
and reflected peaks are not resolvable. For the bottom an-
tenna the simulated time delay was about137 ns, in good
agreement with the measurement. Figure 5 shows prelimi-
nary constraints onnshallowandnc based on combined time
differences measured between detectors.
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Figure 5: Excluded parameters space for index of refrac-
tion based on time delays between hits. This area includes
systematic uncertainties from the following uncertainties:
timing resolution, slewing, geometry andndeep.

4 Environmental Noise

We have previously shown that timing of elevated noise
rates coincided with the periods of winds stronger than
∼ 20 knots (see Figure 6). Since the South Pole is elec-
trically insulated, electrostatic charge accumulates easily,
leading to a discharge causing EMI. There are two possi-
ble mechanisms as to how electrostatic charge builds up in
strong winds: “precipitation charging” [11] where blow-
ing snow causes structures to charge up; and “snowstorm
electrification” [12], where charge separation occurs near
the snow surface. A preliminary reconstruction study has
pointed to an area around large structures in the Dark Sec-
tor as the origin of this interference. Preliminary studies
with radio detectors away from the station have shown no
such interference, supporting the assumption that the noise
is originating from structures and not spotaneous charging
of the ice. However, additional data are required since this
analysis was preformed early in the austral winter, using
limited statistics [5].

We were also sensitive to weather balloon launches, hap-
pening twice a day. Since this noise source is well defined
in time and frequency, it will not be a problem for future
detectors.
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Figure 6: Average trigger rate vs. wind speed for the five
clusters described in Section 2.1. The meteorological data
were taken from the “Clean Air” automatic weather station,
operated by The Antarctic Meteorological Research Cen-
ter (AMRC) and the Antarctic Automatic Weather Station
(AWS) Program [13].

5 Summary

IceCube’s mature drilling and data acquisition technology
have facilitated the deployment of the first fully digital ra-
dio test equipment in South Pole ice as well as deployment
to greater depths in South Pole ice than was previously pos-
sible. Using the IceCube radio frequency extension, we
have obtained tighter constraints on the index of refraction
model parameters, and an attenuation length measurement
is also underway. We have also been able to characterize
and understand the RF noise environment at the Pole. This
information will provide a valuable guide for the design of
a future GZK neutrino detector.
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to 1.01 × 1034 years. In the supersymmetric extensions of SU(5), the lifetime of the proton is expected to be lower
than 1036 years. To reach 1036 years sensitivity to proton decay requires a detector with a volume on the megaton
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ring imaging Cherenkov experiment in the search for proton decay. The ice, studied by the IceCube Collaboration, is
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1 The Search for Proton Decay1

In Grand Unified Theories (GUTs), introduced by H.2

Georgi and S.L. Glashow in 1974 [1], baryon number vio-3

lating processes, like proton decay, are allowed. A favored4

predicted proton decay channel, by the minimal SU(5)5

gauge symmetry, is the decay into a neutral pion and a6

positron, where the neutral pion subsequently decays into7

two gammas. If the proton decays inside a volume of ultra-8

pure and transparent water (or ice), the decay products9

may be detected by observing the induced Cherenkov light10

cones, see Figure 1. Such a detection strategy is used by11

the Super-Kamiokande water Cherenkov experiment. The12

most recent limit on the proton lifetime decaying into the13

“golden” channel, p → π0+e+, by the Super-Kamiokande14

Collaboration corresponds to 1.01 × 1034 years [2]. This15

result, based on 12 years of data taken between 1996 and16

2008, already constrains part of the supersymmetry param-17

eter space allowed by SU(5) supersymmetric extension. In18

this paper we report first steps towards a new idea for a19

proton decay experiment at the few megaton scale. The20

detector material we investigate here is the deep Antarctic21

glacial ice at the South Pole to be potentially instrumented22

with novel optical modules deployed inside the existing23

IceCube-DeepCore fiducial volume. The deployment strat-24

egy we consider is the one used by IceCube, namely strings25

of photo-sensors in holes drilled with hot water.26
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Figure 1: Artist’s view of a proton decaying into a π0 (γγ)
and a e+. Shown in the figure are the Cherenkov cones
that result from interactions involving the final states of the
decay products.

2 The IceCube Neutrino Observatory27

IceCube is the world’s largest neutrino detector. It is situ-28

ated close to the geographic South Pole at the Amundsen-29

Scott South Pole Station. With an instrumented volume30

of roughly one gigaton, it is the most sensitive neutrino31

detector in a wide energy range, from tens of GeV up32

to the EeV scale. The detector operates on the principle33

of measuring the Cherenkov radiation emitted by charged34

particles, which have been produced in neutrino interac-35

tions. The measurements are taken with optical sensors36

(Digital Optical Modules, DOMs) deployed at depths be-37

tween 1450 m and 2450 m, positioned along cables, called38

strings. IceCube consists of 86 such strings in a configura-39

tion of 78 laid out in a hexagonal grid with an inter-string40

spacing of 125 m and 8 DeepCore strings located at the41

center of the grid with an inter-string spacing of 40 m to42

72 m. Each string of the standard IceCube configuration43

is equipped with 60 DOMs with a uniform DOM spacing44

of 17 m, covering a volume of ≈ 1 km3. The DeepCore45

strings are equipped with 60 DOMs with high quantum ef-46

ficiency PMTs and with a denser spacing of 10 m in the47

upper part (1,750 m - 1,850 m) and 7 m below 2,100 m.48

With the dense instrumentation in the deepest, clearest ice49

and use of the high quantum efficiency PMTs, DeepCore50

aims to achieve trigger threshold for muon neutrinos of ≈51

10 GeV [3].52

2.1 The South Pole Ice as Detector Material53

The optical properties of the deep ice at the South Pole are54

excellent with a measured scattering length in the range 40-55

70 m and a maximum absorption length of about 200 m56

measured at 400 nm (see [4] and Figure 8 in [5]). The clear-57

est ice is found at depths below ≈ 2,100 m [5]. We note58

that the wavelength dependence for scattering and absorp-59

tion length are incorporated in the simulation reported here60

just as they are in the IceCube general simulation chain.61

The site is characterized by exceptional operational condi-62

tions, including high radiopurity and low stable tempera-63

ture. In this environment the IceCube optical modules op-64

erate with very low noise, providing an average dark noise65

rate of 400 Hz [6] and a somewhat higher rate in the Deep-66

Core higher quantum efficiency modules.67

The installation of additional future detector components68

could follow the well established deployment methods69

used for IceCube strings, exploiting the ice cap as both70

Cherenkov medium and support infrastructure for the de-71

tector elements. IceCube has already successfully demon-72

strated the ability to instrument a gigaton-scale volume73

water Cherenkov detector within prescribed schedule and74

budget constraints. If the concept of Cherenkov ring re-75

construction in the ice proves feasible, the underground76

physics community would have an attractive alternative to77

the daunting technological challenge of preparing few MT-78

scale deep caverns for next generation experiments.79

The proposed location for a new detector, at the center80

of the IceCube-DeepCore ice bound arrays, would benefit81

from an active veto against muons induced by cosmic rays.82

DeepCore has already demonstrated the usability of Ice-83

Cube as an efficient muon veto: as reported in more detail84

in [8], a muon background rejection of about 8 · 10−3 [7]85

for the overall IceCube trigger (∼ 2700 Hz) is achieved86

with an on-line filter algorithm. Novel muon reconstruc-87

tion methods, currently under investigation, are expected88

to provide an overall muon rejection efficiency of the order89

10−6 [9]. Further, the inclusion of the DeepCore array in90

such a veto scheme is expected to enhance the efficiency for91

future low-energy detector installed in the ice. Although92

cosmic muons, and the spallation products they produce,93

are likely not the crucial background for the p → π0 + e+94

channel (as shown by Super-Kamiokande we expect the95

main background to be atmospheric neutrino interactions96

[10]) the veto does provide valuable information to identify97

activity in the detector with an expected minimal impact on98

detector deadtime.99

3 Proton Decay Simulation100

A first challenge, discussed here, concerns establishing a101

robust Monte Carlo simulation which can provide the nec-102

essary information to initiate a full design feasibility study.103

Dedicated software for the simulation of proton decay104

events has been developed that combines Geant4 [11], [12]105

with a custom GPU-enabled simulation algorithm for pho-106

ton propagation based on the IceCube software called Ice-107

tray [13]. Geant4 is used to simulate the particle cascade108

starting from the decay products of the proton, e.g. π0 and109

e+. Integrating already existing or new Geant4 simulation110

code into Icetray, and to additionally add parallel process-111
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ing support to Geant4, required development of a suite of112

tools. This suite includes a photon propagation algorithm113

that takes into account the optical properties of the deep114

glacial ice at the South Pole. Scattering and absorption are115

modeled using horizontal ice layers with properties derived116

from measurements taken by IceCube [4]. Photon propa-117

gation is one of the most computationally intensive tasks118

during event simulation and thus its optimization is highly119

desirable. Since all photons are independent and may be120

treated in exactly the same way, the algorithm lends itself121

for implementation on dedicated parallel multiprocessors,122

e.g. Graphics Processing Units (GPUs). One such imple-123

mentation, using OpenCL [14], was developed specifically124

for this task. Cherenkov photon-emitting particle steps125

from Geant4 are collected and provided in bunches to the126

GPU where, in turn, photons are generated according to the127

Cherenkov spectrum. The photons are propagated through128

the detector medium until either absorbed or incident on129

an optical module. In the latter case, all photon properties130

are stored for post-processing. After propagation, informa-131

tion on the incident photons is transferred to the host PC132

and used to generate hits. Decoupling hit generation from133

photon propagation permits different optical module design134

choices to be easily evaluated. We note that, while not the135

focus of this particular paper, the simulations for the crit-136

ical atmospheric neutrino background events will use the137

GENIE software package [15] which is currently being in-138

corporated into the IceCube simulation chain.139

A first study is now underway with an idealized strawman140

detector, see Figure 2. The goal of such a geometry is to141

make it straightforward to optimize the detector geometry142

for proton decay. The idealized detector consists of a cylin-143

drical arrangement of 235 strings where each string on a144

ring has a distance of ≈ 5 m to its neighboring strings on145

the same ring and the neighboring rings have a distance of146

15 m to each other. We note that the 5 m distance of closest147

approach for the strings assumes no further improvement148

in the IceCube method of drilling. In the strawman design149

each string has 400 optical modules, spaced evenly over150

400 m. The simulation has the ability to consider a variety151

of optical sensor technologies; from the standard IceCube152

digital optical modules, of which more than 5000 are cur-153

rently successfully operating deep in the ice, to new multi-154

PMT modules [16] that have the potential to significantly155

increase the photocathode coverage.156

4 Beyond IceCube157

The goal to achieve a sub-GeV energy threshold inside the158

Antarctic ice requires a very densely instrumented detec-159

tor compared to IceCube-DeepCore. First steps towards160

a better understanding of the feasibility of such sub-GeV161

detector is now underway. Interest in such a detector in-162

cludes many members of IceCube and groups from the163

broader community. An informal collaboration named164

PINGU, for “Phased IceCube Next Generation Upgrade,”165

has been formed in order to provide a framework for the166

Figure 2: The geometry of the idealized proton decay de-
tector used for this simulation study here reported.

design and R&D studies connected to future opportunities167

for astroparticle physics at the South Pole. A first informal168

PINGU workshop took place in Amsterdam in March 2011169

(http://www.nikhef.nl/pub/conferences/icecube/pingu/).170

The simulation tools we have introduced in this paper pro-171

vide an effective starting point for determining the feasibil-172

ity of an ice bound proton decay detector. As part of the173

ongoing study, different geometries of strings and photon174

sensors are considered. Particular attention at the current175

stage is paid to the effective photon coverage of the de-176

signs, which includes the photocathode coverage and quan-177

tum efficiency for the sensors as well as a comprehensive178

study of the background induced by atmospheric neutri-179

nos. An ambitious goal has been set to test the feasibility180

for designing a 5 MT ice ring-imaging Cherenkov detector181

(1.6 × 1036 protons). The strategy aims to be competitive182

in terms of budget, in particular considering infrastructure183

costs, instrumented volume and time-line with respect to184

other existing design studies like for example [18, 19, 20].185

The Super-Kamiokande detector collects approximately 7186

p.e. per MeV deposited for a wavelength range of 350 nm187

to 500 nm [17] in order to reconstruct neutrinos of solar188

origin to energies below 5 MeV. The detector contemplated189

here would need to achieve a photon collection efficiency190

sufficient to image rings at the higher energies relevant for191

proton decay. In doing so, and assuming the dominant at-192

mospheric neutrino background levels are the same, one193

arrives at a potential scenario for
√
Nbkgd improvement in194

sensitivity for the increased fiducial volume.195
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