Recent Results from the IceCube Neutrino Telescope

> 15th Lomonosov Conference Moscow State University 19 August 2011

Erik Strahler Vrije Universiteit Brussel For the IceCube Collaboration

Overview

- Neutrino Astronomy
- The IceCube Detector
- Recent Results (Selected)
- Summary and Outlook

Neutrino Sources and Cosmic Rays

What is the origin of Cosmic Rays with Energy up to 10^{20} eV ?

Why Neutrinos?

π+, π

π0

Challenges with other high-E probes - magnetic fields

- absorption

source

Why a 1 km³ Detector?

Rate = Neutrino flux x Neutrino Effective Area

= Neutrino flux x Neutrino Cross Section x Absorption in Earth x Size of detector x (Range of muon for v_{μ})

Expected GZK neutrino rate in 1 km³ detector: \sim 1 per year

Scientific Goals of IceCube

- General: detect neutrinos (all flavors) between $\sim 10^{10}$ eV and 10^{20} eV, as well as low energy v's from supernovae
- Astronomy
 - Astrophysical neutrino point sources
 - <u>Diffuse</u> astrophysical flux from all sources
- New Physics
 - Dark Matter
 - Neutrino Oscillations
 - Exotics (Monopoles, etc...)
- Cosmic Rays
 - Spectrum
 - Composition
 - Anisotropy

Scientific Goals of IceCube

- General: detect neutrinos (all flavors) between ~10¹⁰ eV and 10²⁰ eV, as well as low energy v's from supernovae
- Astronomy
 - Astrophysical neutrino point sources
 - <u>Diffuse</u> astrophysical flux from all sources
- New Physics
 - Dark Matter
 - Neutrino Oscillations
 - Exotics (Monopoles, etc...)
- Cosmic Rays
 - Spectrum
 - Composition
 - Anisotropy

This Talk

A Neutrino Telescope at the South Pole

IceCube

Principles of Neutrino Detection

- Array of optical sensors
- High energy daughter lepton emits Cherenkov light
- Record light arrival times, amplitudes

Neutrino Signatures

Tracks:

• $\nu_{\mu} + N \rightarrow \mu + X$

pointing resolution ~1°

used for point source and

diffuse flux searches

Cascades:

• e-m and hadronic cascades $v_{\tau(\tau)} + N \rightarrow e(\tau) + X$

$$V_f^{e(\tau)} + N \rightarrow V_f + X \quad f = e, \mu, \tau$$

energy resolution 10% in log(E)

V

W, Z

hadronic shower

used for <u>diffuse flux</u> searches

<u>Composites</u>

- starting tracks
- tau double bangs
- good directional and energy resolution

The IceCube Detector

IceCube

- Detector completion in 2010-2011
- 1450 m 2450 m
- 80 strings
 - 60 DOMS each
 - 125 m horizontal
 - 17 m vertical
- +6 DeepCore strings

Digital Optical Module (DOM)

More about DeepCore

- Deployed in deepest, clearest ice
- High QE PMTs
- More densely spaced
 - 72 m horizontal
 - 7 m vertical
- Lowers energy threshold to ~10 GeV
- IceCube as active veto (muon shield)

Background Rejection (low energy)

- Reject muon backgrounds by <u>direction</u>
- Topology helps remove mis-reconstructed muons

Background Rejection (high energy)

- Dominated by well-reconstructed atm. muons
- Reject backgrounds by <u>energy</u>

Reconstructing Direction and Energy

- Likelihood Based
 - Arrival times / intensities
 - Detailed ice properties
- Spatial Resolution
 - IceCube: < 1 degree</p>
- Energy Resolution
 - 0.3 in ln(E_{reco}/E_{true})

Angular Resolution: the Moon's Shadow

- Moon Shadow seen in muons at 10σ
- Systematic pointing error < 0.1°

Atmospheric Muon Neutrinos

• High-purity atmospheric neutrino sample achieved after quality cuts

Strings	Year	Livetime	ν_{μ} rates
IC22	2007	275 days	28/day
IC40	2008	375 days	110/day
IC59	2009	360 days	160/day
IC79	2010	1 year	
IC86	2011-	Since 05/13/2011	220/day*

*estimated

Atmospheric Neutrino Energy Spectrum

- IC40: high statistics sample of HE (E>100 GeV) atm. v_{μ} (13000, 95% purity); flux consistent with previous measurements in the overlap region
- 40000 v_{μ} in IC59
 - Extend to > 1 PeV
 - Probe charm contribution?
- No atm. v_e observed so far in conventional analysis
- DeepCore: extension to lower energies / higher rates

Low Energy Atmospheric Neutrinos

• 10% of 79-string data, 60% purity

Diffuse Searches

<u>Diffuse flux</u> : integrated flux from all unresolved extraterrestrial sources

• Search for excess of astrophysical neutrinos with a harder spectrum than background atmospheric neutrinos

 Advantage over point sources: sensitive to weaker fluxes

- Disadvantage: high background
- Sensitive to all three flavors of neutrinos

Muon Neutrino Diffuse Flux Limit

- Upper limit on diffuse flux of <u>muon</u> neutrinos produced with an E⁻² energy spectrum
 - 375.5 days of 40-string data

Latest results fall below the Waxman-Bahcall upper bound

Cascade Diffuse Flux Limit

Upper limit on diffuse flux from cascades (all flavor) produced with an E⁻² energy spectrum
 257 days of 22-string data

EHE Diffuse Flux Limits (GZK)

- 40-string data, analyses optimized for various energies
- Leading all flavor limits from 10⁶ to 10¹⁰ GeV

Point Source Searches

- Time integrated (all sky)
- Source Lists (single, stacking)
- Transients
 - Flares
 - GRBs
 - SN
- Follow up
 - Send alerts to optical, x-ray, gamma telescopes

40+59-string All Sky Point Source Search

0.02

0.00

- Total Events: 43329 (upgoing) + 64230 (downgoing)
- Livetime: 375 days (40-string) + 348 days (59-string)

Indirect Dark Matter Searches

- Various candidates: MSSM (neutralino), UED (LKP), ...
- Capture in center of massive objects (Sun, Earth, GC)
- Annihilation leads to SM particles, neutrinos

$$\chi\chi \rightarrow b\overline{b}, \tau^+\tau^-, W^+W^-, \dots \rightarrow \nu s$$

- Event rates and energies depend on DM model and astrophysics (relative velocities, galactic density profile)
 - few to 10³ events per year
 - GeV to TeV energies

Dark Matter Annihilation in the Sun

• 90% C.L. upper limits on SD and SI WIMP-nucleon scattering cross sections, assuming equilibrium between annihilation and capture

Dark Matter Annihilation in the Galaxy Halo (22-string)

- northern hemisphere anisotropy

- Galactic Center (40-string)
 - Excess of down-going events from direction of GC
- Results consistent with background \rightarrow limit on $\langle \sigma_A v \rangle$

Neutrino Oscillations Atm. v

L=12700m

- DeepCore accesses 1st peak
- v_{μ} disappearance MC
 - 3-flavor oscillations
 - Signal simulation only
 - 1 year 79-string livetime

Summary and Outlook

- IceCube Detector Completion in December 2010
 - 86 string data taking began May 13, 2011
- Includes DeepCore subarray
 - Extends sensitivity down to ~10 GeV

Summary and Outlook

- IceCube Detector Completion in December 2010
 - 86 string data taking began May 13, 2011
- Includes DeepCore subarray
 - Extends sensitivity down to ~10 GeV
- Some Results from partial configurations
 - Atmospheric muon neutrinos: 100s/day, energy spectra
 - Low energy atmospheric neutrinos (DeepCore), several/day, cascades / v_e
 - Ongoing searches (Limits)
 - Point sources (v_{μ})
 - Diffuse flux (all flavor)
 - Dark Matter

Summary and Outlook

- IceCube Detector Completion in December 2010
 - 86 string data taking began May 13, 2011
- Includes DeepCore subarray
 - Extends sensitivity down to ~10 GeV
- Some Results from partial configurations
 - Atmospheric muon neutrinos: 100s/day, energy spectra
 - Low energy atmospheric neutrinos (DeepCore), several/day, cascades / v_e
 - Ongoing searches (Limits)
 - Point sources (v_{μ})
 - Diffuse flux (all flavor)
 - Dark Matter

No astrophysical neutrino sources yet, but... New 79 and 86 string results coming soon