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Outline

• Neutrino detectors

• IceCube and its DeepCore sub-array

• Design

• First results

• Predicted performance

• PINGU (Phased IceCube Next Generation Upgrade)

• PINGU-I:   A possible enhancement to DeepCore down to Eν~1 GeV

• physics motivations, possible designs

• PINGU-II:   A possible GeV to sub-GeV Mton-scale Cherenkov ring-imaging detector

• physics motivations, possible designs
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Historically, two main branches of the neutrino detector family tree:

The Neutrino Detector Spectrum
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IceCube Status: Fully Constructed!

Digital Optical 
Module (DOM)
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IceCube DeepCore: 
Introduction

• IceCube extended its “low” energy response with a densely 
instrumented infill array: DeepCore

• Significant improvement in capabilities from ~10 to ~300 GeV
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IceCube DeepCore: 
Introduction

• IceCube extended its “low” energy response with a densely 
instrumented infill array: DeepCore

• Significant improvement in capabilities from ~10 to ~300 GeV

• Scientific Motivations:

• Indirect search for dark matter

• Neutrino oscillations (e.g., ντ appearance)

• Neutrino point sources in the southern hemisphere (e.g., galactic 
center)
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scattering

DeepCore: 
Design

• Eight special strings plus 12 nearby 
standard IceCube strings

• 72 m interstring horizontal 
spacing (six with 42 m spacing)

• 7 m DOM vertical spacing

• ~40% higher Q.E. PMTs

• ~5x higher effective photocathode 
density

• Deployed mainly in the clearest ice, 
below 2100 m

• λeff = 47 m (average)

• λabs = 155 m (average)

• Result: ~30 MTon detector with 
~10 GeV threshold, collecting 
O(200k) atmospheric ν/yr
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Overhead View
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HQE DeepCore Strings
DeepCore Infill Strings
(Mix of HQE and
normal DOMs)
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DeepCore strings have
10 DOMs with a
DOM-to-DOM spacing
of 10 meters

50 HQE DOMs with an
DOM-to-DOM spacing
of 7 meters

21 Normal DOMs with a
DOM-to-DOM spacing
of 17 meters
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DeepCore: 
Atmospheric Muon Veto

• Overburden of 2.1 km water-
equivalent is substantial, but not as 
large as at deep underground labs

• However, top and outer layers of 
IceCube provide an active veto shield 
for DeepCore

• ~40 horizontal layers of modules 
above; 3 rings of strings on all sides

• Effective μ-free depth much 
greater

• Use veto to distinguish atmospheric μ 
from atmospheric or cosmological ν

• Atm. μ/ν trigger ratio is ~106

• Vetoing algorithms expected to 
reach at least 106 level of 
background rejection
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DeepCore: 
Atmospheric Muon Online Filter

• First, trigger on 3 or more 
hits in DeepCore fiducial 
volume in 2.5μs (“SMT3”)

• Then, look for hits in veto 
region consistent with 
speed-of-light travel time to 
hits in DeepCore

• Achieves >2 orders of 
magnitude rejection of 
cosmic ray muon 
background

• Loss of <2% of fiducial 
neutrinos
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Require speed to be between 
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The value “0.40” was chosen by 
holding 0.25 constant and 
varying upper value, giving plot 
on left.  (And similarly for 0.25.) 
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DeepCore:
Lepton Effective Volume
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• Many events in IceCube will also trigger DeepCore
• These events are rejected by the online veto algorithm

• Below ~100 GeV, DeepCore improves Veff significantly
• Final Veff will be lower than shown once we require good event reconstruction

Veff =
Nacc

Ngen

Vgen
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DeepCore:
Neutrino Effective Area

10

4
0

0
 m

300 m

Physical
Deep Core

Volume
~28 MT

DeepCore+IceCube trig
ger

DeepCore filterνe νμ

• Below ~100 GeV, DeepCore improves Aeff significantly
• Improved trigger efficiency of DeepCore overcomes its smaller volume relative to IceCube

• Linear growth in Aeff  is due to neutrino cross section, not detector efficiency

• Final Aeff will be lower than shown once we require good event reconstruction
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DeepCore: 
First Results (Preliminary)

• Historical background:

• First high energy neutrinos detected years ago by AMANDA

• detected long muon tracks created by atmospheric νμ 
interactions

• many IceCube analyses have grown in this fertile soil

• In parallel, launched efforts to detect EM and hadronic showers 
produced by, e.g., νe

• in many channels, searches for high energy ν-induced showers 
had comparable strength to their νμ track-based companions

• but the actual detection of lower energy atmospheric νe has been 
much more challenging
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DeepCore: 
First Results (Preliminary)

• Enter DeepCore with its potent combination of

• Vetoing from surrounding IceCube strings

• beats down copious cosmic-ray background

• Lower energy threshold

• increases event rate

• With just one year of DeepCore data, we may have first detection of 
νe in a previously inaccessible energy regime

• Expected to see them, so this is not a fundamental discovery

• But it is a very important milestone for IceCube

• clearly highlights DeepCore’s design advantages

• opens up a new and important analysis channel

• lights the path for further extensions with lower Eν thresholds
12
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DeepCore: 
First Results (Preliminary)
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• With harsh cuts to
eliminate the νμ 
background we 
expect to obtain a 
sample of ~800 
neutrino-induced 
cascades per year

• Approximately 500
background νμ CC
events expected

• Contamination from
atmospheric muons
still being evaluated

• Efforts to increase νe yield and reduce νμ CC background ongoing

νμ CC (likely with short muon tracks)

νe + νμ NC (~800 / year)
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DeepCore: 
First Results (Preliminary)

Two candidate events

14

(Standard hit cleaning algorithm removed all noise hits in rest of detector.)
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DeepCore:
Predicted Performance: ν Oscillations

L = 2Rearth

Neutrino
hierarchy
(sin2(2θ13)=0.1)

ντ appearance

νµ disappearance

M
en

a, 
M

oc
io

iu
 &

 R
az

za
qu

e,
 P

hy
s. 

Re
v. 

D
7

8
, 0

93
00

3 
(2

00
8)

15NChannels [Hit DOMs]
0 10 20 30 40 50 60 70 80 90 100

Ev
en

ts
/N

Ch
an

ne
l/Y

ea
r

0

200

400

600

800

1000

1200

1400
Unoscillated
Oscillated

No Reconstruction
/2! = 23"

 eV-3 10# = 2.4 2
23m$

Cos(zenith) < -0.6

Preliminary

• Atmospheric neutrinos from 
Northern Hemisphere oscillating 
over one earth diameter have νμ 
oscillation minimum at ~25 GeV

• Higher energy region than 
accelerator-based experiments

• νμ disappearance (see lower plot)
• Analysis efficiencies not included yet 

– work ongoing

• Uses number of hit DOMs as a crude 
energy estimator

• ντ appearance
• Will have cascade sensitivity, working 

on energy resolution and particle ID 
to extract ντ appearance.

• excess event rate over finite range 
in E

• energy spectrum distortion

Simulation
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Deep Core:
Predicted Performance: WIMPs

• Solar WIMP dark 
matter
searches probe
SD scattering
cross section

• SI cross section
constrained well
by direct search
experiments 

• DeepCore will 
probe large 
region of allowed
phase space

Corresponding σSI within factor
 103 of current direct limits

Corresponding σSI more than factor 
103 beyond current direct limits
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Allowed 
MSSM models

IceCube+DeepCore hard

spectrum sensitivity

(prelim.)

IceCube hard spectrumIceCube soft spectrum

Super-K

Direct Detection Experiments
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PINGU: 
Phased IceCube Next Generation Upgrade

17

• First stage (“PINGU-I”)

• Add ~20 in-fill strings to DeepCore to extend energy reach down to ~1 GeV

• improves WIMP search, neutrino oscillation measurements, other low energy physics

• test bed for physics signals addressed by next stage

• Use mostly standard IceCube technology

• Include some new photon detection technology as R&D for next step

• Add new calibration devices designed with low energy signals in mind

• Second stage (“PINGU-II”)

• Using new photon detection technology, build detector that can reconstruct Cherenkov 
rings for events well below 1 GeV

• proton decay, supernova neutrinos, PINGU-I topics

• Comparable in scope to IceCube, but in a much smaller volume

• Detection medium is the support structure; no costly excavation required to build detector
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PINGU-I:
Physics Motivations for ~1 GeV Energy Threshold

• Probe lower mass WIMPs

• Gain sensitivity to second oscillation peak/trough

• will help pin down (Δm23)2

• Gain increased sensitivity to supernova neutrino 
bursts

• Extension of current search for coherent increase 
in singles rate across entire detector volume

• Only 2±1 core collapse SN/century in Milky Way

• Gain depends strongly on noise reduction via 
coincident photon detection (e.g., in neighbor 
DOMs)

• Begin initial in-situ studies of sensitivity to proton 
decay

• Pathfinder technological R&D for PINGU-II

18
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• will help pin down (Δm23)2
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• Gain depends strongly on noise reduction via 
coincident photon detection (e.g., in neighbor 
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• Begin initial in-situ studies of sensitivity to proton 
decay

• Pathfinder technological R&D for PINGU-II
Equivalent size of a background free detector
for beginning 0.38 s of Lawrence Livermore model, 
1 m DOM and 10 m string distance, 18 strings 
(~6,000 DOMs) (figures from Lutz Koepke/Mainz)
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PINGU-I:
Possible Geometry

• Could continue to
fill in the DeepCore
volume

• E.g., an additional
18 strings (~1000 DOMs)
in the 30 MTon 
DeepCore volume

• Could get to a few GeV
threshold in inner
10 MTon volume

• Price tag would likely be around $25M
Image courtesy of A. Karle

Existing
IceCube
Standard
Strings

Existing 
DeepCore
Strings 
(and 
Strings)

New 
PINGU-
I
Strings 
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PINGU-II:
Physics Motivations for sub-GeV Energy Threshold

• Proton decay

• Target p → π0 + e+ channel

• Supernova neutrinos

• Need to reach well beyond our galaxy to get statistical sample of SN 
neutrinos

• Plus improvements for WIMP, oscillation analyses over PINGU-I & 
DeepCore
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PINGU-II:
Proton Decay

• For fiducial volume of 1.5 MT (5x1035 
protons) with ~100 MeV energy threshold 
(expect ~200 photons/MeV)

• τp~1035-1036 yr for p → π0 + e+ channel

• SU(5) - 1036 yr sensitivity probes minimal 
realistic theory

• SUSY SU(5) - 1036 yr would rule out 
MSSM defined for MGUT << MPlanck

• MC studies needed to understand:

• energy resolution in a volume detector

• possibilities for e/μ ID from Cherenkov rings

• required photocathode coverage

• preliminary MC calculations indicate 
5-10% coverage may be within reach

M. Shiozawa, NNN99

Thanks to E. Resconi

Super-K
PMT coverage

¼ of Super-K
(10%) coverage
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PINGU-II:
Supernova Neutrinos

• With ~200 Cherenkov photons per MeV:

• A detector in the ice could reach down as low as 10 
MeV

• Would confer sensitivity out beyond ~1 Mpc, giving 
neutrino bursts from ~1 SN/yr (!!!)

• Nν ~ 20 × (D/Mpc)-2 × (V/Mton)

• Other benefits:

• Neutrinos would provide early triggers for 
optical observations

• Similarly, gravitational wave detectors would 
gain background reduction of ~106 

• significance gain = ~1000x stronger signal

• Caveats: LOTS of uncertainties (reconstruction, 
particle ID,...)
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PINGU-II:
Detector Concept

• O(few hundred) strings of “line” 
detectors within DeepCore 
fiducial volume

• Physics extraction from 
Cherenkov ring imaging in the ice

• Need high quality measurement of 
particle momenta and energy for 
sensitivity to proton decay

• We don’t yet know if this is feasible; 
MC studies are underway

• Surrounding IceCube & DeepCore 
detectors provide active vetoing

5 m

24

Cherenkov
cone
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PINGU-II:
Composite Digital Optical Module

• Based on a KM3NeT 
proposed design

• Glass sphere containing 31 3” 
PMTs and associated 
electronics

• Effective photocathode area 
4x that of standard 8” PMT, 
but 

• with better granularity

• hopefully lower cost/area

• Single connector simplifies 
deployment
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Courtesy E. de Wolf & P. Kooijman
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PINGU-II:
Composite Digital Optical Module

Possible
design for 
PINGU-II:
64 x 3” 
PMTs

• Glass cylinder containing 64 3” PMTs 
and associated electronics

• Effective photocathode area >6x that of 
a 10” PMT

• Diameter comparable to IceCube DOM 
so drilling requirement would be similar 
(modulo much tighter vertical spacing)

• Single connector

• Would be a big step towards enabling 
Cherenkov ring imaging in the ice

• imagine connecting “stripes” of light 
created by Cherenkov rings as they 
intersect with the sides of many such 
cylinders

26

Courtesy E. de Wolf & P. Kooijman
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Conclusions

• DeepCore is working very well and has one year of data
• Energy threshold as low as 10 GeV (10x lower than IceCube)
• Strong evidence for high energy νatm cascades

• High-E, high-stats νμ disappearance and ντ appearance analyses underway
• Sensitivity to WIMPs down to Mχ = ~50 GeV

• Future projects
• PINGU-I

• Extend reach of DeepCore lower by another ~10x
• Cost: well understood based on IceCube experience
• Possible schedule: Deploy in 2 seasons starting 2014/15
• Submit proposals to funding agencies in <1 year

• PINGU-II
• Completely new detector with sub-GeV threshold

• proton decay to ~1036 years
• detect neutrinos from ~1 SN/yr

• Cost: driven by photocathode area; not detector size 
• “Schedule”: Begin deployment in 2018/19 ©
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The End
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