Direct supersymmetric analyses with IceCube

Pat Scott for the IceCube Collaboration

Department of Physics, McGill University

August 2, 2011

With: Matthias Danninger, Chris Savage, Joakim Edsjö, Klas Hultqvist

Slides available from www.physics.mcgill.ca/~patscott

Introduction

Thanks Carlos.

Introduction

Thanks Carlos.

Recap:

- Halo WIMPs scatter on nuclei in the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core
- Annihilate with each other, producing neutrinos
- Propagate+oscillate their way to the south pole, convert into muons in the ice
- Look for Čerenkov radiation from the muons

What can the muon signal tell me?

Roughly:

Number – how much annihilation is going on in the Sun \implies info on $\sigma_{\rm SD}$, $\sigma_{\rm SI}$ and $\langle \sigma v \rangle$

Spectrum – sensitive to WIMP mass m_χ and branching fractions BF into different annihilation channels X

Direction – how likely it is that they come from the Sun

In model-independent analyses a lot of this information is either discarded or not given with final limits

Goal:

Use as much of this information on $\sigma_{\rm SD}$, $\sigma_{\rm SI}$, $\langle \sigma v \rangle$, m_{χ} and BF(X) as possible to directly constrain specific points and regions in WIMP model parameter spaces

What can the muon signal tell me?

The focus here is supersymmetry (SUSY) – but this talk is on a framework, applicable to any model.

All the methods discussed here will be available in a future release of DarkSUSY

Goal:

Use as much of this information on $\sigma_{\rm SD}$, $\sigma_{\rm SI}$, $\langle \sigma v \rangle$, m_{χ} and BF(X) as possible to directly constrain specific points and regions in WIMP model parameter spaces

SUSY Scanning with IceCube – Physics

DarkSUSY for computing neutrino fluxes:

- No assumption of equilibrium between capture and annihilation
- No assumption of particular annihilation final state
- Inclusion of perturbations to WIMP orbits by Jupiter
- Full numerical capture, SD and SI scattering on many more isotopes than just ¹H
- Full neutrino production, propagation and oscillation via tabulated WIMPSim results

Explicit example models – lightest neutralino in SUSY, as realised in:

- MSSM-7 (μ , M_2 , $m_{\tilde{f}}^2$, m_A , tan β , A_t , A_b)
- CMSSM $(m_0, m_{\frac{1}{2}}, A_0, \tan \beta, \operatorname{sgn} \mu)$

SUSY Scanning with IceCube – Statistics I

The simplest way to do anything is to turn it into a counting problem...

Compare observed number of events n and predicted number θ for each model, taking into account error σ_{ϵ} on acceptance:

$$\mathcal{L}_{\text{num}}(n|\theta) = \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \int_{0}^{\infty} \frac{(\epsilon\theta)^{n} e^{-\epsilon\theta}}{n!} \exp\left[-\frac{1}{2} \left(\frac{1-\epsilon}{\sigma_{\epsilon}}\right)^{2}\right] d\epsilon. \tag{1}$$

From this, construct a modified *p*-value as

$$p(n) = \frac{p_{\text{signal+BG}}(n)}{p_{\text{BG}}(n)} = \frac{\sum_{n_i \le n} \mathcal{L}_{\text{num}}(n_i | \theta_{\text{signal+BG}})}{\sum_{n_i \le n} \mathcal{L}_{\text{num}}(n_i | \theta_{\text{BG}})}$$
(2)

Can now say immediately, for a single point, that the point is excluded at a confidence level of 1 - p.

SUSY Scanning with IceCube – Simple IN/OUT analyses

Assuming preliminary (conservative) estimate of IC-86 effective area

SUSY Scanning with IceCube – Statistics II

OK, that's a nice start, but...

- Only partial goodness of fit, no measure of convergence, no idea how to generalise to regions or whole space.
- Frequency/density of models in IN/OUT scans means essentially nothing.
- More information comes from a global statistical fit.
 - \implies parameter estimation exercise

Composite likelihood made up of observations from all over:

- dark matter relic density from WMAP
- precision electroweak tests at LEP
- LEP limits on sparticle masses
- *B*-factory data (rare decays, $b \rightarrow s\gamma$)
- muon anomalous magnetic moment
- LHC searches, direct detection (not yet)

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal}+BG}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \mathcal{L}_{\text{ang},i}$$
(3)

with

$$\mathcal{L}_{\text{spec},i}(N_i, \Xi) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{dN_i}(N_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \int_0^\infty E_{\text{disp}}(N_i|E_i') \frac{dP_{\text{signal}}}{dE_i'}(E_i', \Xi) dE_i'$$
(4)

and

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} PSF(\cos\phi_i|1)$$
 (5)

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal}+BG}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \mathcal{L}_{\text{ang},i}$$
(3)

with Number of lit channels (energy estimator)

$$\mathcal{L}_{\text{spec},i}(N_i, \Xi) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{dN_i}(N_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \int_0^\infty E_{\text{disp}}(N_i|E_i') \frac{dP_{\text{signal}}}{dE_i'}(E_i', \Xi) dE_i'$$
(4)

and

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} PSF(\cos\phi_i|1)$$
 (5)

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal+BG}}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \, \mathcal{L}_{\text{ang},i}$$
(3)

with Number of lit channels (energy estimator)

$$\mathcal{L}_{\text{spec},i}(N_i, \Xi) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{dN_i}(N_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \int_0^\infty E_{\text{disp}}(N_i|E_i') \frac{dP_{\text{signal}}}{dE_i'}(E_i', \Xi) dE_i'$$
(4)

and

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} PSF(\cos\phi_i|1)$$
 (5)

Event arrival angle

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal+BG}}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \, \mathcal{L}_{\text{ang},i}$$
(3)

with Number of lit channels (energy estimator)

$$\mathcal{L}_{\text{spec},i}(\mathbf{N}_{i}, \mathbf{\Xi}) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\mathbf{N}_{i}}(\mathbf{N}_{i}) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \int_{0}^{\infty} E_{\text{disp}}(\mathbf{N}_{i}|E'_{i}) \frac{dP_{\text{signal}}}{dE'_{i}}(E'_{i}, \mathbf{\Xi}) dE'_{i}$$
(4)

and

SUSY parameters

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} PSF(\cos\phi_i|1)$$
 (5)

Event arrival angle

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal}+BG}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \mathcal{L}_{\text{ang},i}$$
(3)

with

$$\mathcal{L}_{\text{spec},i}(N_i,\Xi) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{dN_i}(N_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \int_0^\infty E_{\text{disp}}(N_i|E_i') \frac{dP_{\text{signal}}}{dE_i'}(E_i',\Xi) dE_i'$$
(4)

and

Observed background distributions

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} PSF(\cos\phi_i|1)$$
 (5)

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal+BG}}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \, \mathcal{L}_{\text{ang},i}$$
(3)

with

Predicted signal spectrum (from theory)

$$\mathcal{L}_{\text{spec},i}(N_i,\Xi) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{dN_i}(N_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \int_0^\infty E_{\text{disp}}(N_i|E_i') \frac{dP_{\text{signal}}}{dE_i'}(E_i',\Xi) dE_i'$$
(4)

and

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} PSF(\cos\phi_i|1)$$
 (5)

Predicted signal direction (δ function at Sun)

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal+BG}}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \, \mathcal{L}_{\text{ang},i}$$
(3)

with

Predicted signal spectrum (from theory)

$$\mathcal{L}_{\text{spec},i}(N_i, \Xi) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{dN_i}(N_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \int_0^\infty \frac{E_{\text{disp}}(N_i|E_i')}{dE_i'} \frac{dP_{\text{signal}}}{dE_i'}(E_i', \Xi) dE_i'$$
(4)

and

Instrument response functions

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} \frac{PSF(\cos\phi_i|1)}{\theta_{\text{signal}+\text{BG}}}$$
(5)

Predicted signal direction (δ function at Sun)

SUSY Scanning with IceCube – Global Fits

SD nuclear scattering cross-section in the CMSSM with IceCube-22 events

Contours indicate 1σ and 2σ credible regions

Shading+contours indicate **relative** probability only, not overall goodness of fit

Scans performed with modified SuperBayes 1.5.1 and unreleased DarkSUSY

SUSY Scanning with IceCube – Global Fits

SI nuclear scattering cross-section in the CMSSM with IceCube-22 events

Contours indicate 1σ and 2σ credible regions

Shading+contours indicate **relative** probability only, not overall goodness of fit Scans performed with modified SuperBayes 1.5.1 and unreleased DarkSUSY

SUSY Scanning with IceCube – Global Fits

Mass parameters in the CMSSM with IceCube-22 events

Contours indicate 1σ and 2σ credible regions

Shading+contours indicate **relative** probability only, not overall goodness of fit

Scans performed with modified SuperBayes 1.5.1 and unreleased DarkSUSY

Closing remarks

- A framework for directly comparing event-level IceCube data to individual points in theory parameter spaces is in place
- The requisite tools will be available in DarkSUSY in the future
- Event data will eventually be released in a form digestible by the tools
- Direct SUSY analyses of IC79 data are on the way
- Many models exist in low-energy (p)MSSM variants that only IC86 will be sensitive to

Backup Slides: Profile Likelihoods

SD nuclear scattering cross-section in the CMSSM with IceCube-22 events

Backup Slides: Profile Likelihoods

SI nuclear scattering cross-section in the CMSSM with IceCube-22 events

Backup Slides: Profile Likelihoods

Mass parameters in the CMSSM with IceCube-22 events

