dark matter searches with IceCube

Carlos de los Heros Uppsala University

TeVPA, Stockholm 1-5 August, 2011

- · IceCube is complete ! (last string down on Dec 18th 2010)
 - taking data with 86 strings since May 2011
- · Results from 2008/09 (22/40 strings) are being released
- · IceCube reaches the Galactic Center and Halo

opens possibility for a multi-wavelength approach to dark matter searches

- · Analysis on 79 strings in the pipeline
- New statistical techniques being developed: global model fits using all available data
- IceCube searches for DM competitive with direct searches. Natural extension to collider searches
- The low-energy extension, DeepCore, deployed and taking data

the IceCube neutrino telescope

7 last strings installed during Dec 2010

86 strings and 80 IceTop tanks

complete!

IceTop: Air shower detector

80 stations/2 tanks each threshold ~ 300 TeV

1450 m

Inice array: 80 Strings 60 Optical Modules 17 m between Modules 125 m between Strings v threshold ≤100 GeV 2450 m

> DeepCore array: 6 additional strings 60 Optical Modules 7/10 m between Modules 72 m between Strings v threshold ~10 GeV

the IceCube Digital Optical Module

Each DOM is an autonomous data collection unit

- PMT: Hamamatsu, 10"
- Digitizers:
 - ATWD: 3 channels. Sampling 300MHz, capture 400 ns

<u>FADC</u>: sampling 40 MHz, capture 6.4 μ s

Dynamic range 500pe/15 nsec, 25000 pe/6.4 μ s

- Flasher board: 12 controllable LEDs at 00 or 450

Clock stability: $10-10 \approx 0.1$ nsec / sec Synchronized to GPS time every ≈ 5 sec at 2 ns precision

dark matter candidates

<u>WIMPS</u>

- Arise in extensions of the Standard Model
- Assumed to be stable: relics from the Big Bang
- weak-type Xsection gives needed relic density

$$\Omega_{\delta} h^2 \approx \frac{10^{-27}}{\langle \sigma_{ann} v \rangle_{fr}} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

- mass from few GeV to few TeV
- **MSSM** candidate: lightest neutralino,

 $\chi \square_{1}^{0} = N_{1}B + N_{2}W^{3} + N_{3}H^{0}_{1} + N_{4}H^{0}_{2}$

- UED: lightest 'rung' in the Kaluza-Klein ladder

SIMPZILLAS

- Non-thermal, non-weakly interacting stable relics

- A wealth of candidates from different theoretical models:
 - dark baryons (primordial nucleosynthesis constraints)
 - MACHOs BHs, neutron stars, white/brown dwarfs... (microlensing constraints)
 - neutrinos (mass constraint)
 - primordial Black Holes (cosmological constraints)
 - Weakly Interacting Massive Particles (LSPs from "x"MSSM, Kaluza-Klein modes...)
 - Non-weakly Interacting Supermassive particles (Simpzillas)
 - axions (too light+astrophysical constrains)
 - many others
- ... + (alternative gravity theories)

DM-induced SM particles:

 $\kappa\kappa, \chi\chi, SS \rightarrow \left\{ \begin{array}{c} q\overline{q} \\ \ell^{+}\ell^{-} \\ W, Z, H \end{array} \right\} \rightarrow \nu, \gamma, e^{+}e^{-}, \overline{p}$

Kaluza-Klein modes an additional useful channel:

 $\kappa\kappa \to \, \nu\nu$

signature:

v excess over background from Sun/Earth/Galactic Halo/nearby galaxies

A lot of physics uncertainties involved:

- relic density calculations
- DM distribution in the halo
- velocity distribution
- χ ,K,S properties (MSSM/UED...)
- interaction of χ ,K,S with matter (capture)
- self interaction (annihilation)

indirect searches for dark matter

Look at objects where dark matter can have accumulated gravitationally over the evolution of the Universe

Sun, Earth, Galactic Halo/Center, dwarf spheroids

Atmospheric muons ~O(10¹⁰) events/year (downwards)

Atmospheric neutrinos ~O(10⁴) events/year (all directions)

Triggered data still dominated by atmospheric muons

Reject misreconstructed atmospheric muon background through event and track quality parameters

Use of **linear cuts** and/or multivariate methods to extract irreducible atmospheric neutrino background (Neural Nets, Support Vector Machines, Boosted Decision Trees)

DM searches directional: good additional handle on event selection

\rightarrow distribution-shape analysis

(allow for a higher background contamination)

sequential cuts

Solid angle to the Sun ψ ($\rho\alpha\delta$)

analysis strategies in neutrino telescopes

$$\begin{array}{c} \mathbf{N}_{\text{data'}}, \mathbf{N}_{\text{bck}} \\ \mathbf{\Psi}_{\text{data'}}, \mathbf{\Psi}_{\text{bck}} \\ \hline \rightarrow \mathbf{N}_{90} \\ \hline \mathbf{F}_{\nu\mu} \leq \frac{\mathbf{N}_{90}}{V_{\text{eff}} \cdot t} \\ \hline \mathbf{Experimentally obtained quantity:} \\ \text{allowed number of signal events still compatible with background, at 90% confidence level} \\ \hline \mathbf{F}_{\nu\mu}(m_{\chi}) = \mathbf{F}_{A} \cdot \frac{1}{4\pi R_{\oplus}^{2}} \int_{0}^{m_{\chi}} \sum B_{\chi\chi \rightarrow \chi} \left(\frac{dN_{\nu}}{dE_{\nu}} \right) \\ \times \sigma_{\nu+N \rightarrow \mu} + \dots \left(E_{\nu} | E_{\mu} \geq E_{\text{thr}} \right) \rho_{N} dE_{\nu} \\ \hline \end{array}$$

$$\begin{array}{c} \text{Use model to convert} \\ \text{to a muon flux} \\ \hline \phi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\text{thr}}) = \frac{\Gamma_{A}}{4\pi D_{\odot}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\mu}) = \frac{\Gamma_{A}}{4\pi D_{\oplus}^{2}} \int_{E_{\text{thr}}}^{\infty} dE_{\mu} \frac{dN_{\mu}}{dE_{\mu}} \\ \hline \\ \psi & \phi_{\mu}(E_{\mu} \geq E_{\mu}) = \frac{\Gamma_{A}}{4\pi D_{\oplus}^{2}} \int_{E_{\mu}(E_{\mu} \otimes E_{\mu}) } \\ \psi$$

searches from the Sun: results

IceCube results from 1065 days of livetime between 2001-2008

90% CL muon flux limit from the Sun

(compared to MSSM scans)

90% CL neutralino-p Xsection limit

(compared to MSSM scans)

(particle physics and solar model)

Assume (ie. model dependent) effective quark-DM interaction,

 $\lambda^2/\Lambda^2 (\overline{q}\gamma_5\gamma_\mu q)(\overline{\chi}\gamma_5\gamma^\mu \chi)$

and look for monojets in $p\overline{p}$ collisions,

 $p\overline{p} \rightarrow \chi \overline{\chi} + jet$

(as opposed to the SM process $pp \rightarrow Z+jet$ and $pp \rightarrow W+jet$)

Constrains from monojet searches at the TeVatron:

90% CL neutralino-p Xsection limit

Universal Extra Dimensions:

 $n=1 \rightarrow Lightest Kaluza-Klein mode, B^1$

good DM candidate

90% CL LKP-p Xsection limit vs LKP mass

searches from the Sun: Superheavy DM

<u>SIMPZILLAS (</u>Superheavy DM)

- Produced **non-thermally** at the end of inflation through vacuum quantum fluctuations or decay of the inflaton field

- strong Xsection (simply means non-weak in this context)

- m from $\sim 10^4$ GeV to 10^{18} GeV (no unitarity limit since production non thermal)

 v, \overline{q}

$$N_s(m_{\rm x},\sigma_{\rm XN}) = N_t \cdot BR_{\rm w} \cdot \Gamma_A(m_{\rm x},\sigma_{\rm XN}) \cdot T \cdot \int \frac{dN_\nu}{dE} A_{eff} dE$$

90% CL simpzilla-p Xsection limit vs simpzilla mass

Extend the search to the southern hemisphere by selecting starting events

 \rightarrow Veto background through location of interaction vertex

- muon background: downgoing, no starting track
- WIMP signal: interaction vertex within detector volume

work in progress

Starting Track Interaction Vertex

searches from the Sun: secluded dark matter

Secluded dark matter

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{WIMP} + \mathcal{L}_{mediator}$

DM annihilates into mediator, $\chi\chi \rightarrow \phi\phi \rightarrow SM$ with $m_{\phi} = O(GeV)$

 ϕ is long lived, escapes the Sun and decays into $\mu^+\mu^-$ in or near the detector

 \rightarrow signature: two closely separated muon tracks (~ 1m)

look for stopping pairs of tracks in order to further reduce the background.

work in progress

searches from the Sun: neutrino energies at the detector

: Indirect dark matter searches from the **Sun** are a low-energy analysis in neutrino telescopes: even for the highest DM masses, we do not get muons above few 100 GeV

Not such effect for the Earth and Halo (no v energy losses in dense medium)

Explaining Fermi/PAMELA data in terms of dark matter favors boost in DM annihilation Xsection

If the dark matter annihilation rate is enhanced, the timescale for equilibrium diminishes \rightarrow flux of annihilation products can be much larger than away from equilibrium.

→ an enhanced annihilation Xsection can produce a detectable neutrino flux from the center of the Earth (while not enhancing the Solar flux) (C. Delaunay, P. J. Fox and G. Perez, JHEP 0905 , 099 (2009)).

Using the atmospheric neutrino measurement of IceCube-40, model-independent limits on boost factors can be set

searches from the Galactic Halo

searches from the Galactic Center

Look for an excess of events in the on-source region w.r.t. the off-source

on-source region below the horizon: need to veto downgoing μ s.

Use central strings of detector as fiducial volume, surrounding layers as veto. Only from IC40 this is possible.

IC40: observed on-source: 798842 evts observed off-source: 798819 evts

Same strategy as in the galactic halo analysis:

IceCube22/40 results from DM searches from the Galaxy

 line thickness in IC22 results reflects uncertainty due to halo profile

 no energy loss of secondaries before decay: harder spectra than in Sun for same annihilation channel

IC22: Phys. Rev. 84, 022004 (2011) IC40: in preparation Galactic Center results in the framework of satellite searches

· multi-wavelength approach to dark matter searches:

IceCube results in the context of Pamela and Fermi anomaly

searches from nearby dwarf galaxies: strategy

- dwarf galaxies: high mass/light ratio
- \rightarrow high concentration of DM in the halos
- known location. Distributed both in the north and southern sky.
 - Point-like search techniques: stacking
 - known distance -> determination of absolute annihilation rate if a signal is detected
- same expected neutrino spectra as for the galactic center/halo

IceCube analysis in progress

Same strategy as in the galactic halo analysis:

$$\frac{d\Phi_j(\Delta\Omega, E_j)}{dE_j} = \frac{\langle \sigma v \rangle}{2m_\chi^2} \frac{dN_j}{dE_j} J(\Delta\Omega)$$

10⁴ WIMP mass (GeV)

the DeepCore infill

• Aim: lower energy threshold through a denser core in the center of the IceCube array

 6 additional strings of 60 high quantum efficiency PMTs

denser instrumentation:
7 m DOM vertical spacing (17m in IceCube),

72 m inter string spacing (125m in IceCube)

full sky sensitivity using IceCube surrounding strings as a veto:

375m thick detector veto: three complete IceCube string layers surround DeepCore

—> access to southern hemisphere, galactic center and all-year Sun visibility

Preliminary studies show 10³ background rejection with 99% signal efficiency possible at filter level

DeepCore veto capabilities

- \cdot we have 1 km³ of ice instrumented with optical modules
- · we can detect flavours (muon tracks, e/τ cascades)
- · we can define through-going, starting and contained tracks
- · we cover a wide neutrino energy range, from few tens GeV to PeV
- we can look at all the sky (at once and continuously)

..... if you have a model of exotic physics that involves neutrinos, we can probe it