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The IceCube Neutrino Observatory, situated at the geographic South Pole, was completed in December 2010. A lattice (IceCube
Array) of 5160 photomultiplier tubes monitors one cubic kilometer of deep Antarctic ice in order to detect neutrinos via Cherenkov
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photons emitted by charged by-products of their interaction in matter. Another 324 digital optical sensors are implemented in
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operating systems. In this way it is ensured that each
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distribution of the individual r, can be described by
lognormal distributions that are approximated by
Gaussians with rate expectation value <r,> and standard deviation expectation values <0,>. These expectation values are
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