### Particle Physics in Ice with IceCube DeepCore



Tyce DeYoung Department of Physics Pennsylvania State University for the IceCube Collaboration



RICAP '11 Rome, Italy May 25, 2011

### The Neutrino Detector Spectrum



## IceCube DeepCore

- IceCube collaboration decided to augment "low" energy response with a densely instrumented infill array: DeepCore
  - Significant improvement in capabilities from ~10 GeV to ~100 GeV ( $v_{\mu}$ )
- Primary scientific rationale is the indirect search for dark matter
- Particle physics using atmospheric neutrinos
  - Neutrino oscillations, including tau neutrino appearance
- Neutrino sources in Southern Hemisphere
  - Galactic cosmic ray accelerators, dark matter in the Galactic center
- Neutrino astronomy at low energies (e.g. GRBs)

## IceCube DeepCore

- DeepCore extends the reach of IceCube to lower energies
  - Denser module spacing
  - Hamamatsu super-bialkali PMTs
  - Deployed in the clearest ice





### Online Atmospheric Muon Veto



- Look for hits in veto region consistent with speed-of-light travel time to hits in DeepCore
  - Achieves 7 x 10<sup>-3</sup> rejection of cosmic ray muon background
  - Loss of <2% of fiducial neutrinos</li>



### DeepCore Lepton Effective Volume



Many DeepCore triggers are events occurring in the rest of IceCube

- These events are rejected by the online veto algorithm
- Online efficiency for neutrinos interacting in the DeepCore volume is >98%
- Efficiency in final analysis will be significantly lower; losses to reconstruction efficiency, background rejection

### DeepCore Neutrino Effective Area



- DeepCore dominates total response for  $E_{\nu}$  below ~100 GeV, depending on flavor
  - Improved trigger efficiency overcomes much smaller volume
  - Linear growth at high energies reflects neutrino interaction cross section, not detector efficiency

### Neutrino Astronomy with DeepCore

#### • Atmospheric neutrino veto

- May allow observation of sources in the Southern hemisphere with fluxes too low to be seen above atmospheric background (Schönert et al. 2009)
- Sensitivity to low energy neutrinos from transients
  - E.g. choked or magnetically dominated GRBs (e.g., Ando & Beacom 2005; Razzaque, Meszaros & Waxman 2005; Meszaros & Rees 2011)





# Sensitivity to MSSM WIMPs

- Solar WIMP dark matter searches probe SD scattering cross section
  - SI cross section constrained well by direct search experiments
- DeepCore will probe large region of allowed phase space



## Neutrino Oscillations

- Atmospheric neutrinos from Northern Hemisphere oscillating over one earth diameter have  $v_{\mu}$  oscillation minimum at ~25 GeV
  - Higher energy region than accelerator-based experiments
- Plot of  $\nu_{\mu}$  disappearance shows only simulated signal
  - Analysis efficiencies not included yet – work ongoing
  - Uses number of hit DOMs as a simple energy estimator





# Observation of Neutrino Cascades (Preliminary)

- Disappearing  $v_{\mu}$  should appear in IceCube as  $v_{\tau}$  cascades
  - Effectively identical to neutral current or  $v_e$  CC events
  - Could observe v<sub>τ</sub> appearance as a distortion of the energy spectrum, if cascades can be separated from muon background
- We believe we see neutrino cascade events for the first time
  - The dominant background now is CC  $v_{\mu}$  events with short tracks



Candidate cascade event Run 116020, Event 20788565, 2010/06/06

### Observation of Neutrino Cascades (Preliminary)

- With harsh cuts to eliminate the v<sub>µ</sub> background we expect to obtain a sample of ~800 neutrino cascades per year
  - Approximately 500 background ν<sub>μ</sub> CC events expected
  - Contamination from atmospheric muons still being evaluated



• Efforts to increase  $\nu_e$  yield and reduce  $\nu_\mu$  CC background ongoing

## Beyond DeepCore: PINGU



Price tag expected to be around \$25M – \$30M

# R&D: Multi-PMT Digital Optical Module

- Based on a KM3NeT prototype
- Glass cylinder containing 64
  3" PMTs and associated electronics
  - Effective photocathode area >6x that of a standard IceCube 10" PMT
  - Diameter similar to IceCube DOM, single connector
- Might enable Cherenkov ring imaging in the ice
  - Feasible to build a multi-MTon detector in ice with an energy threshold of 10's of MeV?





|  |  |  |  | 175mm      250mm      350mm | Courtesy E. de Wolf<br>& P. Kooijman<br>Possible<br>design<br>for future<br>array:<br>64 x 3"<br>PMTs |
|--|--|--|--|-----------------------------|-------------------------------------------------------------------------------------------------------|
|  |  |  |  |                             |                                                                                                       |

## Conclusions

- DeepCore has been running for 1 year, just commenced taking data in final configuration
  - Additional 8 strings, densely instrumenting the inner 30 MTon of IceCube
  - Reduce energy threshold to ~10 GeV
- Significant improvement in sensitivity to dark matter, potential for measurements of neutrino oscillations, low energy astrophysical neutrinos
  - Preliminary analysis suggests we may have detected atmospheric electron neutrinos for the first time in a high energy neutrino telescope
- Thinking about a future upgrade of IceCube to further extend its particle physics capabilities – PINGU
  - In the more distant future, could we build a Cherenkov ring imager in ice?