Astrophysical neutrino results

--overview and comments

(Neutrino telescope session tomorrow includes IceCube, Antares, Baikal-GVD, KM3NeT)

RICAP 25-05-2011

Outline

- Motivation and history (since 1960)
- Effective area and event reconstruction
- Atmospheric neutrinos
- New limits on astrophysical neutrinos
- Implications for models of sources
- Search for cosmogenic neutrinos
- Status and future

Detecting neutrinos in H₂0

Proposed by Greisen, Reines, Markov in 1960

- Heritage:
- DUMAND
- IMB
- Kamiokande
- Baikal
- AMANDA

ANTARES All use Cherenkov light from charged products of v interactions 3

Cosmic-ray connection

- Galactic SNR can accelerate particles into nearby molecular clouds
- Extra-galactic jets (in AGN or GRB) may share power between c.r. & v
- Expect a few TeV v/yr in a gigaton detector in hadronic scenarios
- Sets km³ scale for HE neutrino astronomy

RICAP 25-05-2011

High-energy Neutrino telescopes

Detector	Number of OMs	Enclosed volume	Depth	Status
		(Megatons)	(m.w.e.)	
Baikal (NT200+)	230	10	1100-1310	Operating
AMANDA	677	15	1350-1850	2000 - 2009
ANTARES	900	10	2050-2400	Operating
IceCube	5160 + 324	900	1350-2250	Operating
KM3NeT	${\sim}10{,}000$	km^{3}	2300-3300 (NEMO)	Design study
		$\rm km^3$	3000-4000 (NESTOR)	
		$\rm km^3$	1400-2400 (ANTARES site)	
GVD (future Baikal)	${\sim}2500$	$\rm km^3$	800-1300	Design study

Large volume--coarse instrumentation--high energy (> TeV) as compared to Super-K with 40% photo-cathode over 0.05 Mton = 4 x 10⁵ cm² / kT compared to 50 for Antares & 2 for IceCube

RICAP 25-05-2011

IceCube Digital Optical Module and deployment

Main board for digitizing & time stamping

RICAP 25-05-2011

High-energy events in IceCube-40

~ EeV air shower

a high energy $v_e \sim 50$ TeV

RICAP 25-05-2011

IC-79 events illuminate deep core

IceCube Deep Core talk by Ty DeYoung in afternoon session

RICAP 25-05-2011

Detecting neutrinos

- Rate = Neutrino flux

 x Absorption in Earth
 x Neutrino cross section
 x Size of detector
 x Range of muon (for ν_µ)
- Range favors v_{μ} - ~4 to 15 km.w.e. for $E_{\nu} \sim 10$ to 1000 TeV

Probability to detect v_{μ} -induced μ

$$P_{v}(E_{v}, E_{\mu}, min) = N_{A} \int dE_{\mu} \frac{dU_{v}(E_{v})}{dE_{\mu}} R(E_{\mu}, E_{\mu}, min)$$

RICAP 25-05-2011

Neutrino effective area $A_{\text{eff}}(\Phi, E_{\nu}) = E(\Phi) A(\Phi) P_{\nu}(E_{\nu}, E_{\mu}, \min) e^{-\sigma_{\nu}(E_{\nu}) N_{A} \times (\Phi)}$

- Rate:
- $= \int \phi_{v}(E_{v}) A_{eff}(E_{v}) dE_{v}$
- Earth absorption
 - Starts 10-100 TeV
 - Biggest effect near vertical
 - Higher energy v's absorbed at larger angles

RICAP 25-05-2011

Atmospheric v in IceCube S.P.

Zone 1, I: -30 to -90 ; 3.14 sr Zenith: $90 < \theta < 120^{\circ}$ (40% of Zone 1 is over the Antarctic continent)

Zone 2, I: -30 to +30; 2.30 sr Zenith 120 < θ < 150°

Zone 3, I: +30 to +90, 0.84 sr Zenith: $150 < \theta < 180^{\circ}$

Cosmic ray produces v in atmosphere that puts a muon into the detector

RICAP 25-05-2011

Tom Gaisser

Cuts and event reconstruction

- 40-string IceCube:
 - 375 days livetime in 08/09 @ 1 kHz
 =3.3x10¹⁰ triggers, 99.9999% muons
 - 8 x 10⁸ filtered & sent over satellite from S.P.
 - Quality cuts applied to get ~14,000 upward v_{μ} induced muons

All-sky plot of muons in IceCube-22 from 2007 (P. Berghaus, IceCube, ISVHECRI-2008 arxiv.org/abs/ 0902.0021)

Atmospheric v_{μ} with IceCube-40

Two analyses:

- 1. Unfolding
- Forward folding as a by-product of a search for diffuse astrophysical v
- Look in detail at 2

Measurement of v_{μ} -induced μ

- Fit 3 components:
 - Atmospheric v from K^{\pm} and π^{\pm}
 - Use Honda 2007 to 10 TeV
 - + power-law extrapolation
 - ~ $\cos^{-1}(\theta)$
 - Prompt v
 - Harder spectrum to $> 10^7$ GeV (\sim E^{-2.7}), isotropic
 - Astrophysical v
 - Isotropic, with E⁻² spectrum assumed
 - Note different response for astro. v vs atmos. v

Measured dE/dX

Results of likelihood fit

- Consistent with only K, π atmospheric ν to 100 TeV
- Charm component not yet seen; "intrinsic" charm in doubt?
- No astrophysical neutrinos seen yet

IceCube v_{μ} : measurements & limits

Comments on diffuse v results

- Input to analysis
 - Specific spectrum assumed for atmospheric ν from decay of π and K (Honda et al., PR D75:043006,2007)
 - Extrapolate with power law for $E_v > 10$ TeV up to 10 PeV
 - For prompt ν use Enberg et al.. PR D 78, 043005, 2008
 - Overall normalization fitted for each component with a single fitted slope for both components
- Limitations of this analysis
 - Limits depend on simple power-law extension of conventional atmospheric v_{μ} to $E_{\nu} > PeV$
 - Neutrino spectrum must steepen to some extent above 100 TeV to reflect the knee in the primary spectrum
 - Bounds on prompt and astrophysical ν will be relaxed to some extent with a more realistic assumption for shape of atmospheric ν
 - Recent calculation extends calculation of v_{μ} to > PeV
 - Illana, Lipari, Masip, Meloni, Astropart. Phys. 34 (2011) 663

RICAP 25-05-2011

Limits from point src searches IceCube 40, Ap.J. 732 (2011) 18

Note: IceCube energy threshold is set very high for Southern sources to reduce background of atmospheric muons. Antares is complementary.

RICAP 25-05-2011

Generic model I

- CR acceleration occurs in jets - AGN or GRB
- Abundant target material
 - Most models assume photo-production:
 - $p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0 \rightarrow p + \gamma \gamma$
 - $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \rightarrow n + \mu + \nu$

- Ideal case (~ "Waxman-Bahcall limit")^{Waxman, Bahcall, PRD 59}, Also TKG astro-ph/9707283v1
 - Strong magnetic fields retain protons in jets
 - Neutrons escape, decay to protons & become UHECR
 - Extra-galactic cosmic rays observed as protons
 - Energy content in neutrinos ≈ energy in UHECR
- This picture disfavored as limits go below W-B RICAP 25-05-2011 Tom Gaisser

Generic model II

- UHECR are accelerated in external shocks analogous to SNR
 - See E.G. Berezhko, 0809.0734 & 0905.4785
 - mixed composition (accelerate whatever is there)
 - Low density of target material
 - \rightarrow lower level of neutrino production

Cosmogenic (GZK) neutrinos

- Cosmogenic v from $P + \mathcal{Y}_{2.7}$, $\longrightarrow \mathcal{Y}_{2.7}$, $\longrightarrow \mathcal{Y}_{2.7}$
- Intensity depends on
 - Spectrum at sources
 - Evolution of sources
 - Composition of UHECR (Heavy nuclei give less v)
- Third flight of ANITA
 - Optimized for UHECR as well as GZK v, 2011/12 ?

Radio Detection of neutrinos

ANITA-II over Antarctica

FIG. 3: Events remaining after unblinding. The Vpol neutrino channel contains two surviving events. Three candidate UHECR events remain in the Hpol channel. Ice depths are from BEDMAP [12].

http://arxiv.org/abs/1003.2961

Vpol:1 neutrino candidate; HPol: $3 > 10^{19}$ eV cosmics

RICAP 25-05-2011

EeV v_{τ} detection with Auger et al.

 $\Gamma c \tau \sim 100$ km for E_τ ~ 2 x 10¹⁸ eV followed by τ-decay shower T. Weiler, D. Fargion Tom Gaisser 27

IceCube limits on cosmogenic v

- GZK search looks for
 - Very bright events
 - Near the horizon
 - with compact initial burst of light
- Range of sensitivity
 - PeV EeV
 - Complementary to diffuse v_{μ} search that starts by measuring atmospheric v_{μ}
 - Model 6 (Fermi max): expect 0.4 events
 RICAP 25-05-2011

IceCube-40 arXiv:1103.4250

Related science with IceCube

- Cosmic-ray physics
 - Composition/spectrum with IceCube/IceTop
 - Cosmic-ray anisotropy with 5 x 10¹⁰ μ/yr (arXiv:1005.2960 Ap. J. Letters in press)
- Monitoring stream
 - Galactic SN v will manifest as sharp increase in background counting rate of 5000 DOMs
 - Detect solar particle events as increase in IceTop DOM rates (2008 ApJ 689 L65)
- Neutrino alerts to optical follow-up (ROTSE, et al.)

Cosmic-ray physics with IceCube

- IceCube sees cosmic ray events from all directions
 - 30,000 atmospheric v/year
 - 100 billion atmospheric μ /year
 - 1 billion air showers/yr in IceTop
 - ~10% in coincidence with deep IceCube
- Spectrum / composition:
 - TeV to EeV

Status

- Atmos. v spectrum extended to 100 TeV
 - Models with intrinsic charm (e.g. RQPM) disfavored
 - New analysis underway with bigger detector
 - \bullet Will use more realistic shape for atmospheric ν
 - Will look at angular dependence to discriminate prompt v
- Limit on an isotropic contribution of high-energy neutrinos is below W-B "bound"
 - Models with energy parity between UHECR and neutrinos are disfavored (e.g. Ahlers et al., PR D79, 083009, 2009)
 - Generic Model I with extra-galactic p is disfavored
- No point sources yet with 0.5 km³yr data

Future projects at South Pole

- Acceptance and sensitivity of IceCube will increase rapidly as new analyses use full detector
- Larger acceptance needed to measure cosmogenic (GZK) neutrinos in EeV range
- ARA (Askaryan Radio Array) for higher energy
 - First test deployment next to IceCube in January, 2011
 - Aims for greater sensitivity than ANITA
- Beyond Deep Core for lower energy (~GeV)
 - Proposed expansion of present Deep Core
 - Talk by Ty DeYoung, May 25 afternoon session
- Dark Matter Ice two pilot scintillators deployed at 2500 m in IceCube holes in December, 2010
 - Seasonal variation of background opposite to DAMA,
 - Seasonal vatriation of DM signal universal

RICAP 25-05-2011

DM-Ice

DM-Ice Concept Large Pressure Vessel Segmented Crystals

38 Nal Crystals (each vessel contains 19)

- 95.6 mm Diameter
- 250 mm Long
- 6.5 kg each
- 2 PMTs each -

Instrument with few "DOMs" externally for veto

50 - 60 mm Copper Radial Shield

SS External Pressure Vessel Shell-

- 65 cm (25.6 inch) Outer Diameter

x2

- 1.7 m (67 inch) Length

250 kg Nal (38@6.5 kg crystals) 1500 kg total including pressure vessel

RICAP 25-05-2011

RICAP 25-05-2011