Towards GeV and sub-GeV Cherenkov Detectors in the South Pole Ice Cap

Doug Cowen Department of Physics Penn State University

Astrophysics from the South Pole: Status and Future Prospects Washington, DC April 4, 2011

Thanks to Tyce DeYoung and Darren Grant for numerous slides

Outline

- Neutrino detectors
- IceCube and its DeepCore sub-array
 - Design
 - First results
 - Predicted performance
- PINGU* (Phased IceCube Next Generation Upgrade)
 - PINGU-I: Extending DeepCore to E_{ν} ~1 GeV
 - physics motivations, possible designs
 - PINGU-II: A new GeV to sub-GeV Mton-scale Cherenkov ring-imaging detector
 - physics motivations, possible designs

* Provisional Identifier Not Granted Usage (yet)

Atmospheric/Astrophysical

Historically, two main branches of the neutrino detector family tree:

• Relatively small (<<MTon), high precision experiments

Atmospheric/Astrophysical

- Relatively small (<<MTon), high precision experiments
- Very large (~GTon), low precision experiments

/ terrospiterie// tserophysical

- Relatively small (<<MTon), high precision experiments
- Very large (~GTon), low precision experiments

- Relatively small (<<MTon), high precision experiments
- Very large (~GTon), low precision experiments

- Relatively small (<<MTon), high precision experiments
- Very large (~GTon), low precision experiments

- Relatively small (<<MTon), high precision experiments
- Very large (~GTon), low precision experiments

- Relatively small (<<MTon), high precision experiments
- Very large (~GTon), low precision experiments

IceCube DeepCore: Introduction

- IceCube extended its "low" energy response with a densely instrumented infill array: DeepCore
 - Significant improvement in capabilities from ~10 GeV to ~300 GeV (v_µ)

IceCube DeepCore: Introduction

- IceCube extended its "low" energy response with a densely instrumented infill array: DeepCore
 - Significant improvement in capabilities from ~10 GeV to ~300 GeV (ν_{μ})

• Scientific Motivations:

- Indirect search for dark matter
- Neutrino oscillations (e.g., ν_τ appearance)
- Neutrino point sources in the southern hemisphere (e.g., galactic center)

DeepCore: Design

- Eight special strings plus seven nearest standard IceCube strings
 - 72 m interstring horizontal spacing (six with 42 m spacing)
 - 7 m DOM vertical spacing
 - ~40% higher Q.E. PMTs
 - ~5x higher effective photocathode density

DeepCore: Design

- Eight special strings plus seven nearest standard IceCube strings
 - 72 m interstring horizontal spacing (six with 42 m spacing)
 - 7 m DOM vertical spacing
 - ~40% higher Q.E. PMTs
 - ~5x higher effective photocathode density
- Deployed mainly in the clearest ice, below 2100 m
 - $\lambda_{eff} > \sim 50 m$

scat	tering			
3	2			
Jan Star	IceCube			
mon and a l		extra veto cap		
	5		AMANDA	
		320 m	Deep Core	
		2:	50 m	

DeepCore: Design

- Eight special strings plus seven nearest standard IceCube strings
 - 72 m interstring horizontal spacing (six with 42 m spacing)
 - 7 m DOM vertical spacing
 - ~40% higher Q.E. PMTs
 - ~5x higher effective photocathode density
- Deployed mainly in the clearest ice, below 2100 m
 - $\lambda_{eff} > \sim 50 m$
- Result: 30 MTon detector with ~10 GeV threshold, will collect O(200k) atmospheric v/yr

DeepCore: Atmospheric Muon Veto

- Overburden of 2.1 km water-equivalent is substantial, but not as large as at deep underground labs
- However, top and outer layers of IceCube provide an active veto shield for DeepCore
 - ~40 horizontal layers of modules above; 3 rings of strings on all sides
 - Effective µ-free depth much greater
- Can use to distinguish atmospheric μ from atmospheric or cosmological ν
 - Atm. μ/ν trigger ratio is ~10⁶
 - Vetoing algorithms expected to reach at least 10⁶ level of background rejection

DeepCore: Atmospheric Muon Veto

- Overburden of 2.1 km water-equivalent is substantial, but not as large as at deep underground labs
- However, top and outer layers of IceCube provide an active veto shield for DeepCore
 - ~40 horizontal layers of modules above; 3 rings of strings on all sides
 - Effective μ -free depth much greater
- Can use to distinguish atmospheric μ from atmospheric or cosmological ν
 - Atm. μ/ν trigger ratio is ~10⁶
 - Vetoing algorithms expected to reach at least 10⁶ level of background rejection

DeepCore: Atmospheric Muon Veto

- Overburden of 2.1 km water-equivalent is substantial, but not as large as at deep underground labs
- However, top and outer layers of IceCube provide an active veto shield for DeepCore
 - ~40 horizontal layers of modules above; 3 rings of strings on all sides
 - Effective μ -free depth much greater
- Can use to distinguish atmospheric μ from atmospheric or cosmological ν
 - Atm. μ/ν trigger ratio is ~10⁶
 - Vetoing algorithms expected to reach at least 10⁶ level of background rejection

DeepCore: Effective Area & Effective Volume

- Historical background:
 - Feasibility of high energy neutrino astronomy shown years ago by AMANDA
 - detected long muon tracks created by atmospheric ν_{μ} interactions
 - many IceCube analyses have grown in this fertile soil
 - In parallel, launched efforts to detect EM and hadronic showers produced by, e.g., ν_{e}
 - in many channels, searches for high energy v-induced showers had comparable strength to their v_{μ} track-based companions
 - \bullet but the actual detection of lower energy atmospheric ν_e has been much more challenging

- Enter DeepCore with its potent combination of
 - Vetoing capability
 - beats down copious cosmic-ray background
 - Lower energy threshold
 - increases event rate
- \bullet With just one year of DeepCore data, we may have first detection of ν_e in a new, high energy regime
 - Expected to see them, so this is not a fundamental discovery
 - But it is a very important milestone for IceCube
 - clearly highlights DeepCore's design advantages
 - opens up a new and important analysis channel
 - lights the path for further extensions with lower E_{ν} thresholds

Two candidate events

AMITRANSS

Deep Core: Predicted Performance: WIMPs

- Solar WIMP dark matter searches probe SD scattering cross section
 - SI cross section constrained well by direct search experiments
- DeepCore will probe large region of allowed phase space

DeepCore: Predicted Performance: v Oscillations

DeepCore: Predicted Performance: v Oscillations

PINGU:

Phased IceCube Next Generation Upgrade

- Proto-collaboration of ~70 members from
 - IceCube, KM3Net
 - Several other neutrino experiments
 - Photon detector developers
 - Theorists
- Semi-monthly conference calls for past few months
- First meeting held 19-20 March at NIKHEF in Amsterdam
 - ~30 participants
 - Main discussion points:
 - physics drivers
 - detector design options
 - new photon detector configurations and technologies
 - timelines, collaboration issues

Astrophysics from the South Pole

PINGU: Possible Detector Configurations

- First stage ("PINGU-I")
 - Add ~20 in-fill strings to DeepCore to extend energy reach to ~1 GeV
 - improves WIMP search, neutrino oscillation measurements, other low energy physics
 - test bed for physics signals addressed by next stage
 - Use mostly standard IceCube technology
 - Include some new photon detection technology as R&D for next step
- Second stage ("PINGU-II")
 - Using new photon detection technology, build detector that can reconstruct Cherenkov rings for events well below 1 GeV
 - proton decay, supernova neutrinos, PINGU-I topics
 - Comparable in scope to IceCube, but in a much smaller volume

PINGU-I:

Physics Motivations for ~I GeV Energy Threshold

- Probe lower mass WIMPs
- Gain sensitivity to second oscillation peak/trough
 - will help pin down $(\Delta m_{23})^2$
- Gain increased sensitivity to supernova neutrino bursts
 - Extension of current search for coherent increase in singles rate across entire detector volume
 - Only 2±1 core collapse SN/century in Milky Way
 - need to reach out to our neighboring galaxies
 - Gain depends strongly on noise reduction via coincident photon detection (e.g., in neighbor DOMs)
- Begin initial *in-situ* studies of sensitivity to proton decay
- Pathfinder technological R&D for PINGU-II

PINGU-I:

Physics Motivations for ~I GeV Energy Threshold

- Probe lower mass WIMPs
- Gain sensitivity to second oscillation peak/trough
 - will help pin down $(\Delta m_{23})^2$
- Gain increased sensitivity to supernova neutrino bursts
 - Extension of current search for coherent increase in singles rate across entire detector volume
 - Only 2±1 core collapse SN/century in Milky Way
 - need to reach out to our neighboring galaxies
 - Gain depends strongly on noise reduction via coincident photon detection (e.g., in neighbor DOMs)
- Begin initial *in-situ* studies of sensitivity to proton decay
- Technological R&D for PINGU-II

Doug Cowen

Astrophysics from the South Pole

PINGU-I: Possible Geometry

- Could continue to fill in the DeepCore volume
 - E.g., an additional 18 strings (~1000 DOMs) in the 30 MTon DeepCore volume
 - Could get to a few GeV threshold in inner 10 MTon volume

• Price tag would likely be around \$20M

PINGU-II:

Physics Motivations for sub-GeV Energy Threshold

- Proton decay
 - Target $p \rightarrow \pi^0 + e^+$ channel
- Supernova neutrinos
 - Need to reach well beyond our galaxy to get statistical sample of SN neutrinos
- Plus improvements for WIMP, oscillation analyses over PINGU-I & DeepCore

PINGU-II: Proton Decay

Courtesy E. Resconi

- For fiducial volume of 1.5 MT (5x10³⁵ protons) with 10 MeV energy threshold (expect ~200 photons/MeV)
 - $\tau_p \sim 10^{35}$ -10³⁶ yr for p $\rightarrow \pi^0 + e^+$ channel
 - SU(5) 10³⁶ yr sensitivity probe minimal realistic theory
 - SUSY SU(5) 10³⁶ yr would rule out MSSM defined for M_{GUT} << M_{Planck}
- MC studies needed to understand:
 - energy resolution in a volume detector
 - \bullet possibilities for e/ μ ID from Cherenkov rings
 - required photocathode coverage
 - back-of-the-envelope calculations indicate 10% coverage is feasible

PINGU-II: Supernova Neutrinos

• Expect ~200 Cherenkov photons per MeV

- A detector in the ice could reach down as low as 10 MeV
- Would confer sensitivity out to ~1 Mpc, giving ~0.5 SN/yr
- Caveat: LOTS of uncertainties (reconstruction, particle ID,...)

PINGU-II: Detector Concept

- O(few hundred) strings of "linear detectors within DeepCore fiducial volume
 - Goals: few MTon scale with energy sensitivity of:
 - $\mathcal{O}(10 \text{ MeV})$ for bursts
 - $\mathcal{O}(100 \text{ MeV})$ for single events
- Physics extraction from Cherenkov ring imaging in the ice
- IceCube and DeepCore provide active vetoing

Astrophysics from the South Pole

PINGU-II: Composite Digital Optical Module

Courtesy E. de Wolf & P. Kooijman

- Based on a KM3NeT proposed design
 - Glass sphere containing 31 3" PMTs and associated electronics
 - Effective photocathode area 4x that of standard 8" PMT, but granular
 - Single connector

PINGU-II:

Composite Digital Optical Module

Courtesy E. de Wolf & P. Kooijman

- Glass cylinder containing 64 3" PMTs and associated electronics
 - Effective photocathode area >6x that of a 10" PMT
 - Diameter comparable to IceCube DOM so (modulo much tighter vertical spacing) drilling requirement would be similar, too
 - Single connector
- Might enable Cherenkov ring imaging in the ice

PINGU-I & -II: Near-Term Work

• Detailed Monte Carlo simulations underway

- GENIE v simulation from E_{ν} = 0.6-200 GeV
 - neutrinos generated per dataset using full IceCube simulation
 - can re-cast into many possible geometries inside DeepCore volume
- Also simulating proton decay and SN neutrinos
- New specialized reconstruction algorithms for lower energies and for Cherenkov rings need to be developed
 - Low energy reco will follow work on DeepCore now underway
 - Cherenkov ring reconstruction can modify existing algorithms from experiments like SuperK

Geant4: γ 's from SN ν 's

PINGU-I & PINGU-II: Very Rough Schedule

- Step 0
 - Submit Lol to NSF
- PINGU-I
 - Prerequisites: Results from DeepCore demonstrating ability to reconstruct low energy events
 - Cost: well understood based on IceCube experience
 - Schedule: Deploy in two seasons starting 2014/15
- PINGU-II
 - Cost: driven chiefly by photocathode area; not by detector size.
 - Drilling costs can be estimated with reasonable accuracy based on IceCube experience
 - "Schedule": Begin deployment in 2018/19

April 4, 2011

The End

• (Backup slides follow.)