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QOutline

e Neutrino detectors

¢ |ceCube and its DeepCore sub-array
e Design
e First results

e Predicted performance

e PINGU” (Phased IceCube Next Generation Upgrade) * Provisional
Identifier
e PINGU-I: Extending DeepCore to Ev~1 GeV N
Usage (yet)

¢ physics motivations, possible designs
e PINGU-II: A new GeV to sub-GeV Mton-scale Cherenkov ring-imaging detector

¢ physics motivations, possible designs
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The Neutrino Detector Spectrum
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lceCube Status: Fully Constructed!
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lceCube DeepCore:
Introduction

¢ [ceCube extended its “low” energy response with a densely
instrumented infill array: DeepCore

¢ Significant improvement in capabilities from ~10 GeV to ~300 GeV (vy)
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lceCube DeepCore:
Introduction

¢ [ceCube extended its “low” energy response with a densely
instrumented infill array: DeepCore

¢ Significant improvement in capabilities from ~10 GeV to ~300 GeV (vy)

e Scientific Motivations:
¢ Indirect search for dark matter
e Neutrino oscillations (e.g., vr appearance)

e Neutrino point sources in the southern hemisphere (e.g., galactic center)
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DeepCore:
Design

e Eight special strings plus seven
nearest standard IceCube strings

e /2 m interstring horizontal
spacing (six with 42 m spacing)

e 7 m DOM vertical spacing
e ~40% higher Q.E. PMTs

e ~5x higher effective
photocathode density

L
A

N |
B R IELEERIDE B s Bl 1  ERRRE . ..
B REIEEIIIR B B B NI IRR ] s B ! e
TWIET B e a8 I TEY B OB OB Rl B BHEE g
i
O |
C




DeepCore:
Design

scattering

e Eight special strings plus seven
nearest standard IceCube strings

e /2 m interstring horizontal
spacing (six with 42 m spacing)

e 7 m DOM vertical spacing
e ~40% higher Q.E. PMTs

e ~5x higher effective
photocathode density

e Deployed mainly in the clearest ice,
below 2100 m

® et > ~50m

— p—

|

RLLLUREEIRE L]
 MNIVIMNINUD/A

BT




DeepCore:
Design

scattering

e Eight special strings plus seven
nearest standard IceCube strings

e /2 m interstring horizontal
spacing (six with 42 m spacing)

e 7 m DOM vertical spacing
e ~40% higher Q.E. PMTs

e ~5x higher effective
photocathode density

e Deployed mainly in the clearest ice,
below 2100 m

® et > ~50m

¢ Result: 30 MTon detector with
~10 GeV threshold, will collect
O(200k) atmospheric v/yr
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DeepCore:
Atmospheric Muon Veto

e Overburden of 2.1 km water-equivalent
is substantial, but not as large as at
deep underground labs

e However, top and outer layers of
lceCube provide an active veto shield
for DeepCore

e ~40 horizontal layers of modules
above; 3 rings of strings on all sides

o Effective p-free depth much greater

e Can use to distinguish atmospheric p
from atmospheric or cosmological v

e Atm. p/v trigger ratio is ~10°

¢ \etoing algorithms expected to
reach at least 106 level of
background rejection
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DeepCore:
Atmospheric Muon Veto
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DeepCore:

Fffective Area & Effective Volume

Effective area for upgoing
vy at trigger level

Reconstruction efficiencies not included
yet — relative effect likely to increase
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interacting in Deep Core

NB: full analysis efficiency not included yet

Trigger: 23 DOMs hit in 2.5Us;

Online Veto: No hits consistent with muons outside DeepCore volume
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DeepCore:
First Results (Very Preliminary)

e Historical background:

¢ Feasibility of high energy neutrino astronomy shown years ago by
AMANDA

e detected long muon tracks created by atmospheric v, interactions
e many lceCube analyses have grown in this fertile soill

¢ In parallel, launched efforts to detect EM and hadronic showers produced
by, e.d., Ve

® in many channels, searches for high energy v-induced showers had
comparable strength to their v, track-based companions

¢ but the actual detection of lower energy atmospheric ve has been much
more challenging




DeepCore:
First Results (Very Preliminary)

e Enter DeepCore with its potent combination of
¢ \/etoing capability
e pbeats down copious cosmic-ray background
e |_ower energy threshold

® increases event rate

¢ \With just one year of DeepCore data, we may have first detection of ve
in a new, high energy regime

e Expected to see them, so this is not a fundamental discovery

e But it is a very important milestone for IceCube

e clearly highlights DeepCore’s design advantages
® opens up a new and important analysis channel

e lights the path for further extensions with lower Ey thresholds




DeepCore:
First Results (Very Preliminary)
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DeepCore:
First Results (Very Preliminary)
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Deep Core:
Predicted Performance: WIMPs
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DeepCore:
Predicted Performance: v Oscillations
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DeepCore:
Predicted Performance: v Oscillations
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PINGU:
Phased lceCube Next Generation Upgrade

e Proto-collaboration of ~70 members from
¢ |ceCube, KM3Net
e Several other neutrino experiments
e Photon detector developers

e Theorists
e Semi-monthly conference calls for past few months

¢ First meeting held 19-20 March at NIKHEF in Amsterdam
e ~30 participants
¢ Main discussion points:
® physics drivers
e detector design options
* new photon detector configurations and technologies

¢ timelines, collaboration issues
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PINGU:
Possible Detector Configurations

¢ First stage (“PINGU-I”)
e Add ~20 in-fill strings to DeepCore to extend energy reach to ~1 GeV

e improves WIMP search, neutrino oscillation measurements, other low energy
physics

¢ test bed for physics signals addressed by next stage
e Use mostly standard lceCube technology

¢ Include some new photon detection technology as R&D for next step

e Second stage (“PINGU-II”)

¢ Using new photon detection technology, build detector that can reconstruct
Cherenkov rings for events well below 1 GeV

e proton decay, supernova neutrinos, PINGU-I topics

e Comparable in scope to IceCube, but in a much smaller volume

Doug Cowen Astrophysics from the South Pole April 4, 2011




PINGU-I.
Physics Motivations for ~| GeV Energy Threshold

O N LA e e e

e Probe lower mass WIMPs

IS4
©

e Gain sensitivity to second oscillation peak/trough

154
=)

o will help pin down (Amzs)?

o
'S

Oscillation probabilities

e Gain increased sensitivity to supernova neutrino
bursts

e Extension of current search for coherent increase in 0t

singles rate across entire detector volume
e Only 2+1 core collapse SN/century in Milky Way
e need to reach out to our neighboring galaxies

e Gain depends strongly on noise reduction via
coincident photon detection (e.g., in neighbor DOMs)

® Begin initial in-situ studies of sensitivity to proton
decay

e Pathfinder technological R&D for PINGU-II

Doug Cowen Astrophysics from the South Pole April 4, 2011




PINGU-I.
Physics Motivations for ~| GeV Energy Threshold
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for beginning 0.38 s of Lawrence Livermore model,
1 m DOM and 10 m string distance, 18 strings
Astrophysics from the South Pole (~6,000 DOMSs) (figures from Lutz Koepke/Mainz)
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PINGU-I.
Possible Geometry

* Could continue to
fill in the DeepCore
volume

* E.g.,an additional
|8 strings (~1000 DOMs)

in the 30 MTon
DeepCore volume

* Could get to a few GeV
threshold in inner
|0 MTon volume

* Price tag would likely be around $20M

Doug Cowen
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PINGU-I
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PINGU-II;
Physics Motivations for sub-GeV Energy Threshold

e Proton decay

e Target p — 1° + e* channel

e Supernova neutrinos

e Need to reach well beyond our galaxy to get statistical sample of SN
neutrinos

e Plus improvements for WIMP, oscillation analyses over PINGU-| &
DeepCore
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PINGU-II:
Proton Decay

Courtesy E. Resconi

e For fiducial volume of 1.5 MT (5x103°
protons) with 10 MeV energy threshold
(expect ~200 photons/MeV)

® Tp~10%°-1036 yr for p = m° + e* channel

e SU(5) - 103° yr sensitivity probe minimal
realistic theory Super-K

e SUSY SU(5) - 10% yr would rule out PMT coverage
MSSM defined for Mcut << Mpianck

(B) 1/4
e MC studies needed to understand:

® energy resolution in a volume detector

. v
-----
*e

¢ possibilities for e/p ID from Cherenkov rings

¢ required photocathode coverage
Y4 of Super-K

e back-of-the-envelope calculations (10%) coverage

indicate 10% coverage is feasible
M. Shiozawa, NNN99




PINGU-I:
Supernova Neutrinos

e Expect ~200 Cherenkov photons per MeV
e A detector in the ice could reach down as low as 10 MeV
¢ \Would confer sensitivity out to ~1 Mpc, giving ~0.5 SN/yr

e Caveat: LOTS of uncertainties (reconstruction, particle ID,...)




PINGU-II;
Detector Concept

e O(few hundred) strings of “linear

detectors within DeepCore
fiducial volume

e Goals: few MTon scale with energy

sensitivity of:
e O(10 MeV) for bursts
e O(100 MeV) for single events

® Physics extraction from

Cherenkov ring imaging in the ice

® [ceCube and DeepCore provide
active vetoing

Y rin roughly
sc for} 10 m sp

i 'l
o X¥
ing E
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PINGU-II;
Composite Digital Optical Module

Courtesy E. de Wolf & P. Kooijman

* Based on a KM3NeT
proposed design

* Glass sphere containing 31 3” T
PMTs and associated \\
electronics

* Effective photocathode area S S —
4x that of standard 8” PMT, b
but granular

* Single connector

= P. Kooijman, NIM A567 (2008), S. Kuch NIM A567 (2006), KM3NeT TDR

—
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PINGU-II;
Composite Digital Optical Module

Courtesy E. de Wolf & P. Kooijman

® Glass cylinder containing 64 3”
PMTs and associated electronics

e Effective photocathode area >6x
that of a 10” PMT

e Diameter comparable to lceCube
DOM so (modulo much tighter
vertical spacing) drilling
requirement would be similar, too

e Single connector

® Might enable Cherenkov ring
imaging in the ice

Doug Cowen Astrophysics from the So

Possible
design for
PINGU-II:
64 x 3”
PMTs




PINGU-| & -II:
Near- Term Work

e Detailed Monte Carlo simulations underway
e GENIE vsimulation from Ey = 0.6-200 GeV

e neutrinos generated per dataset using full
lceCube simulation

e can re-cast into many possible geometries inside
DeepCore volume

¢ Also simulating proton decay and SN neutrinos

e New specialized reconstruction algorithms for
lower energies and for Cherenkov rings need to
be developed

e | ow energy reco will follow work on DeepCore now
underway

e Cherenkov ring reconstruction can modify existing
algorithms from experiments like SuperK

Doug Cowen Astrophysics from the South Pole

Figure: Lukas Schulte/Mainz

e
Geant4: y’s from SN v’s
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PINGU-| & PINGU-II:
Very Rough Schedule

e Step 0
e Submit Lol to NSF

* PINGU-I

* Prerequisites: Results from DeepCore demonstrating
ability to reconstruct low energy events

* Cost: well understood based on IceCube experience

* Schedule: Deploy in two seasons starting 2014/15

© 2010 Freeze Frame Manitoba

* PINGU-II

e Cost: driven chiefly by photocathode area; not by
detector size.

* Drilling costs can be estimated with reasonable
accuracy based on IceCube experience

* “Schedule”: Begin deployment in 2018/19
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The End

¢ (Backup slides follow.)
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