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Shadow is a known signal

End-to-end check of systematics and pointing
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Data Sample

Use events from a window around 
the Moon

Angular resolution is comparable 
to the size of the Moon
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Likelihood Approach 4
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Use central signal region and off-source 
background region 

At each point, vary the number of events 
blocked by the Moon, ns

Maximize likelihood
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Likelihood: background function 5
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fit to flat line

fit to 3-degree polynomial
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How steady is background 6
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Null hypothesis 
fluctuations: look at 
off-source region as if 
it were signal
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Null hypothesis 
fluctuations: look at 
off-source region as if 
it were signal

Width = 500 events
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Likelihood result 7

Signal depth: 
5000 events
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Conclusion:

IceCube observes the Moon shadow with 10σ, 
confirming accurate pointing up to O(°)
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Thanks to the IceCube Moon group,
especially:

David Boersma
Jan Blumenthal
Hugo Stiebel
Marcos Santander
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Uses for a known shadow
End-to-end check of 
systematics and pointing

Monitor monthly to 
confirm data

Use the shadow shape to 
describe the detector point 
spread function

Vary fit parameters and 
observe the effect on shadow 
strength

confirms simulation 
accuracy
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Likelihood: background 10
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Data set 11

10˚

10˚

40˚40˚
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Data Quality Cuts
Filter-level cuts:

(number of hit DOMs) ≡ NCh ≥ 12

(number of hit strings) ≥ 3

Analysis-level cuts:

estimated angular error of reconstruction ≤ 1.6˚

Resulting sample: 

69M events, 53% efficiency from filter

median angular resolution: 1.27o

Search Bin Size: 0.8o
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Search bin size optimization 13

significance ~
Nsig�
Nbkgd
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Search bin size optimization 13

significance ~
Nsig�
Nbkgd

Background:  scales with area

Nbkgd ∝ Area ∝ πr2

�
Nbkgd ∝ r

Expect best result with 
search bin of 0.8o

Signal: use simulated 
point spread function
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Back-of-the-Envelope Significance
Observe rate: 35k events/ sq˚

70.4k in each background bin

7k events blocked by Moon

Search bin contains 35% blocked events
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r = 0.8˚

r = 0.25˚

31

r = 0.8˚

r = 0.25˚

Moon blocks 10% 
of search bin

search bin

contained
Expect 2500 event deficit: 

8.9σ
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7.58σ simple statistical errors

7.56σ Li & Ma errors

Once events are reconstructed, this method is fast
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Alternate Binned Method
Consider several declination bands:

Use off-Moon bands to correct Moon band RA structure

This was tried on IC22
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It didn’t work well enough with IC22, 
and with IC40 a simpler binned analysis was good enough
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Does Geomagnetic field matter?
filter level cuts, zenith > 50˚
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Shift from magnetic fields is negligible
Tibet Air Shower Array

arXiv:0810.3757v1 [astro-ph]

1-40 TeV

→shift is also negligible in this analysis

http://arxiv.org/abs/0810.3757v1
http://arxiv.org/abs/0810.3757v1
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Approach II: Unbinned skymap 19

reconstructed positions
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paraboloid errors

Smear each event by its paraboloid error
Map the total weighted event sum
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Unbinned Skymap 20

Healpix: program for skymaps-- uses equal-area bins
Box-shape is from filter window
Gradient from zenith dependence of CR flux

Draw Moon centered at its average position
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Work in Progress:
Significance for IC59 skymap: 

try dummy-moon approach 

Assumes that RA distribution is flat:

21
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Skymap made from
170M events, 

12 of 13 IC59 months
Each bin is 

1.0° in RA,1.0 ° in Dec
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Most-of-IC59 skymap 22

Skymap made from
170M events, 
12 of 13 IC59 months 3° 2° 2° 

17° 

Each bin:
0.01° in RA 

0.01° in Dec

7.7° 


