

IceCube Neutrino Telescope

D. Jason Koskinen Penn State

Breakdown

- Particle Astrophysics
 - Use high energy astrophysical neutrinos to learn about the cosmos
 - Point Source, Gamma Ray Burst and Diffuse Astrophysical Flux results
- Astroparticle physics
 - Use particles from the cosmos to learn about the smallest bits of our universe
 - DeepCore Low energy extension to IceCube
 - Indirect Dark Matter results and neutrino oscillation prospects

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- Neutrinos are long distance cosmic messengers
 - Photons interact with CMB
 - Charged cosmic rays lose directionality through magnetic deflection
- The cosmic laboratory
 - Complementarity with cosmic rays
 - Astrophysical objects and Cosmic Ray acceleration, leptonic or baryonic? (GRB, SNR, PWN)

Multimessenger Astronomy

e±

cosmic rays +

neutrinos

cosmic rays+ gamma-rays

Gamma rays and neutrinos should be produced at the sites of cosmic ray acceleration

IceCube Detector

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- ~1km³ of instrumented ice
- Uses 5160 Digital Optical Modules (DOMs) across 86 strings within the ice to detect Cherenkov radiation
- 160 Cherenkov tank surface array (IceTop)
- Completed Dec. 18, 2010

IceCube DOM

IceCube Detector

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- ~1km³ of instrumented ice
- Uses 5160 Digital Optical Modules (DOMs) across 86 strings within the ice to detect Cherenkov radiation
- 160 Cherenkov tank surface array (IceTop)

• Completed Dec. 18, 2010

Collaboration

IceCube Experiment

- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

The IceCube Collaboration

36 institutions - 4 continents - ~250 Physicists

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- 375.5 livetime days using partially constructed 40 (IC40) string array collecting 36900 events (14121 up-going Northern Sky, 22779 downgoing Southern Sky)
- No evidence for neutrino source, yet

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- Searches for neutrinos produced by $p+\gamma$ interactions during the primary fireball using IC40 partial array
- 117 GRBs using IC40 detector exclude the Waxman & Bahcall and Guetta et al. at 90% C.L.

Astrophysical Diffuse Flux

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
 DeepCore Physics Capabilities
- In addition to cosmic rays, Fermi acceleration is theorized to produce neutrinos at a flux $\propto E_v^{-2}$
- IC40 analysis places new limits on diffuse E_v-2 flux of astrophysical muon neutrinos

- IceCube Experiment
- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

Accelerator based

Non-accelerator based

- IceCube Experiment
- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

Accelerator based

- IceCube Experiment
- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- IceCube Experiment
- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- IceCube Experiment
- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- IceCube Experiment
- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- IceCube Experiment
- IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- IceCube Experiment
 IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

Moving to Low Energy Neutrino Detection - DeepCore

DeepCore

- IceCube Experiment
 IceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- More Sensitive PMTs (High Quantum Efficiency)
- Denser module spacing
- Deployed in clearest ice

Size Matters

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
 DeepCore Physics Capabilities
- DeepCore, being a multi-MTon detector, will collect hundreds of thousands of neutrinos at trigger level
- Online Veto constrains vertex to be within DeepCore volume
- Physical size is ~28 MegaTons

Size Matters

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
 DeepCore Physics Capabilities
- DeepCore, being a multi-MTon detector, will collect hundreds of thousands of neutrinos at trigger level
- Online Veto constrains vertex to be within DeepCore volume
- Physical size is ~28 MegaTons

Size Matters

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
 DeepCore Physics Capabilities
- DeepCore, being a multi-MTon detector, will collect hundreds of thousands of neutrinos at trigger level
- Online Veto constrains vertex to be within DeepCore volume
- Physical size is ~28 MegaTons

IceCube ExperimentIceCube Physics

- DeepCore Extension
- DeepCore Physics Capabilities

- IceCube ExperimentIceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- IceCube ExperimentIceCube Physics

- DeepCore Extension
 DeepCore Physics Capabilities

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
- DeepCore Physics Capabilities

Background Rejection

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- Trigger level bkg to signal ratio is 10⁶:1
- DeepCore uses IceCube as an active veto to reject down-going atmospheric muons and neutrinos
- Online veto uses center-of-gravity (CoG) of hits within DeepCore and looks for >1 hit in veto region that is consistent with an atmospheric muon
- Atmospheric muon reduction of ~8x10³ with neutrino retention of ~99%
- Offline methods are used for further background reduction

Neutrino Oscillations

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- Northern Hemisphere neutrinos oscillating over one earth radii produce $v_{\mu}(v_{\tau})$ oscillation minimum(maximum) at ~25 GeV
- Higher energy region than accelerator based experiments
- ν_τ appearance measure excess in up-going cascade events
- Plot of ν_{μ} disappearance shows only signal Monte Carlo and uses hit DOMs as a simple energy estimator

Real Data

- IceCube ExperimentIceCube Physics
- DeepCore Extension
- DeepCore Physics Capabilities

- 8 hours of test data
- Specific DeepCore vetoes and a Boosted Decision Tree
- Up-Going muon neutrino candidate

|--|--|--|--|--|--|

- Galaxy clustering, Gravitational lensing, Bullet Cluster galaxies, etc... strongly suggest existence of Dark Matter
- Popular candidate for Dark Matter particle is Weakly Interacting Massive Particle (WIMP)
- IceCube-DeepCore searches for Dark Matter selfannihilation creating neutrinos
 - Point towards galactic objects where Dark Matter clumps (Sun, Galactic Halo)

$$\begin{array}{ccc} q\bar{q} \\ \chi\chi \rightarrow & l\bar{l} & \rightarrow \cdots \rightarrow v_{\mu} \\ W^{\pm}, Z, H \end{array}$$

W. H. Press and D. N. Spergel. Astrophys. J. 296, 679, (1985)
T. Gaisser, G. Steigman and S. Tilav. Phys. Rev. D34, 2206, (1986)
A. Gould. Ap. J. 328, 919, (1988).

Galactic Halo Dark Matter

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- Signal depends on Halo distribution(DM density) model and SUSY model(DM annihilation channels)
- on-source versus off-source anisotropy
- IC22 analysis did not observe a large scale anisotropy and has a 90% C.L. on WIMP selfannihilation cross-section of $<\sigma_{AV}> 10^{-22} \text{ cm}^3 \text{s}^{-1}$ in the WIMP mass range of 200 GeV-10 TeV

arXiv:1101.3349

Galactic Center

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

Solar Dark Matter Limits

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
 DeepCore Physics Capabilities
- Look for neutrino excess when the Sun is below the horizon
- Neutrino flux translates to cross-section
- DeepCore will provide order of magnitude improvement in spin dependent searches for Dark Matter
- Limits on MSSM model Dark Matter and Kaluza-Klein model

Conclusion

IceCube Experiment
IceCube Physics
DeepCore Extension
DeepCore Physics Capabilities

- Full 86 string IceCube deployment finished Dec. 18, 2010, and first test run occurred Jan. 18, 2011
- IC22 & IC40 analyses are setting neutrino flux limits ranging from GRBs and diffuse astrophysical neutrinos to Dark Matter candidate cross-sections
- Full deployment of the DeepCore low energy extension enhances Dark Matter searches and opens up energy ranges sensitive to neutrino oscillations

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
 DeepCore Physics Capabilities

Backup

Real Data 2

- IceCube Experiment
 IceCube Physics
 DeepCore Extension
 DeepCore Physics Capabilities

