/ i
by N \\v ¢ \w\.\\\\\ | m M
u \M., \ \\ , | ﬂ

)
Na
=
O
)
@)

[

What is GPU computing

lceCube

e 3D Graphic cards need to perform lots of
matrix operations to render images

o uneh e To achieve the high throughput massively

2010 parallel computing 1s implemented on
graphic cards

* Basically old vector processing at a much
bigger scale

e CHEAP !!! (Gaming hardware is driving the
development and has a mass market)

2/26/10 Martin Merck 2

Computing power evalution

lceCube

P GT200
NVIDIA GPU
wlintel CPU G80 G992 ‘.‘l
750 ,
Ultra
IT Lunch - G80
February 26t" §
2010 50 »
v G711 /
" 4
GT70
250 & 3.2GHz
Nvas NV4O o7 30GHz Harpertown
. *—o—eo—®
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008

2/26/10 Martin Merck

lceCube

Difference between a classical CPU
and the GPU architecture

IT Lunch
February 26t"
2010

2/26/10

e CP

Control ALU ALV
ALU ALV
CPU
U

Independent cores
Lots of cache

Prefetching and branch
prediction

Heavy weight threading

Martin Merck

R B]] e]

[[[T 1] HEN | |
[[[T[] [[1 [|
HEEEN HEN | |
[[T T T TTTTI] [|
[[T T T T TTTTTT] | |
[[[T[] [T[] [|
[[T T 11 [T 11 []
[T T L [[| |

|
1 1

GPU

e GPU
« Single instruction multiple
thread (SIMT)
« Little cache, lots of registers
* Overhead free threading
* No real branching

Detailed architecture of the NVidia

Graphics cards

IceCube
DeVice
o — Basic building block is a
: Streaming Multiprocessor
Multiprocessor 2 (SM) (30 on GTX 295)
IT Lunch e — — Executes the same
February 26t program on all processors

2010 — Branching handled by

2/26/10

Instruction
Unit

lvialitlll 1viCICN

executing all branches
and turning of single
processors

— Each multiprocessor
consists of 8 Scalar
Processor (SP), 2 special
function units and shared
(fast) memory

— Runs 32 threads
concurrently (called warp)

The CUDA software architecture

lceCube

e Basic programming unit 1s a “Kernel”

e Represents a function which 1s executed on a
T Lunch CUDA device un a huge number of parallel

February 26t threads. (~1000 - 10000)

2010 e Individual threads are combined into “blocks”. A

block can have up to 3 dimensions to map easily
to vectors, matrices and fields

e Each block is executed on one multiprocessor

e Blocks are group at a higher level into one or two
dimensional “Grids”. This allows to execute the
same kernel on several of the multiprocessors

2/26/10 Martin Merck 6

&

Software
IlceCube
o Each thread is the
Block (0, 0) Block (1,0) Block (2, 0)
same code.
IT Lunch ok (0. 3° Bock(1. 1" ack 2.1 To select different
February 26t 3

2010

2/26/10

Block (1,1)

data to process they
use global variables
for the blocklIdx/
gridDim and
threadldx/
blockDim. These
are 3 dimensional
indices.

The CUDA software architecture

lceCube

e Basic programming unit 1s a “Kernel”

e Represents a function which 1s executed on a
T Lunch CUDA device un a huge number of parallel

February 26t threads. (~1000 - 10000)

2010 e Individual threads are combined into “blocks”. A

block can have up to 3 dimensions to map easily
to vectors, matrices and fields

e Each block is executed on one multiprocessor

e Blocks are group at a higher level into one or two
dimensional “Grids”. This allows to execute the
same kernel on several of the multiprocessors

2/26/10 Martin Merck 8

A simple code example
Matrix Multiplication 1

#include <stdio.h>
#include <cuda.h>

IT Lunch /[Matrix multiplication kernel — per thread code
February 26t __global__ void MatrixMulKernel(float* A, float* B, float* C, int Width)
2010 {

float Celement= 0;

for (int k = 0; k < Width; ++k} {
float Aelement = A[threadldx.y * Width + k];
float Belement = B[k * Width + threadldx.x];
Celement += Aelement * Belement;

}

B[threadldx.y * Width+threadldx.x] = Celement;

2/26/10 Martin Merck

A simple code example

Matrix Multiplicat 1
- atrix Multiplication
int main(void)
{
float *a_h, *b_h; // pointers to host memory
float *a_d, *b_d, *c_d; // pointer to device memory
int N = 10*10;
IT Lunch size_t size = N*sizeof(float);
th // allocate arrays on host
Febr;g_?(’) 26 a_h = (float *) malloc(size);

2/26/10

b_h = (float *) malloc(size);
// Initialize arrays

cudaMalloc((void **) &a_d, size); // allocate array on device

cudaMalloc((void **) &b_d, size); // allocate array on device

cudaMalloc((void **) &c_d, size); // allocate array on device

cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice); // copy data from h2d
cudaMemcpy(b_d, b_h, sizeof(float)*N, cudaMemcpyHostToDevice)

MatrixMulKernel<<< 1, N*N>>> (a_d, b_d, c_d, 10); // do calculation on device
cudaMemcpy(c_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

free(a_h); free(b_h);

cudaFree(a_d); cudaFree(b_d); cudaFree(c_d);

Martin Merck

10

nvce
The CUDA C-Compiler

lceCube

e Code 1s C-like

e No C library functions can be used, but cuda
T Lunch library replicates all math functions and basic
February 26t malloc, memcpy etc.

o e No recursions
e No variable list parameters
e No static variables
e Just basic operators and flow control

e Compiler separates device and host code and
compiles device code.

* Does all register allocation etc.

2/26/10 Martin Merck 11

R

Memory models in CUDA

lceCube
Thread
i - - Each thread has a set of
registers and local
—) variables.
< » Per-block shared
IT Lunch > memory A thread block can share
February 26" fast memory between all
2010 : threads. Threads in a block
Grid 0 .
can be synchronized.
Block (0, 0) Block (1,0) Block (2, 0) . .
Threads in different blocks
Block 0,) | Block (1) | Block (2.2 and grids can only share
global device memory.
o The host process can only
Slobal memory access the global memory
Block (0, 0) Block (1, 0)
area
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)
2/26/10 12

Streams
Parallel execution of kernels

lceCube
 CUDA host functions are all asynchronous.
R e Streams can be used to group host/memory
February 267 IO and kernel execution into parallel flows.

e Overlaps IO and kernel execution to use
device while other 10 1s being performed.

2/26/10 Martin Merck 13

.A . ey
IceCube

Conclusions

Easy to learn (basics)
Cheap to build test/play systems
T Lunch Works great for highly parallel compute intensive
February 26t applications

2010

2/26/10

(Image processing, video en-/decoding, neural nets,
SVM)

Algorithms need lots of optimization to hardware
limitations

Lots of applications already available or having
optimized plugins

(Mathematica, MatLab, Adobe Flash, NueralNet tools,
etc.)

Martin Merck 14

IlceCube

IT Lunch
February 26t"
2010

2/26/10

CSDIGITAL LIBRARY

CUDA-Based Jacobi's Iterative
Method

i

GPU computing with
Kaczmarz's and otheriterative

a.. 10x

CSDIGITAL LIBRARY

A Program Behavior Study of
Block Cryptography Alg...

NVIDIA Nexus - Visual Studio-
based GPU Development

Parallel Algorithm for Solving
Kepler's Equation o...
600 x

Showing 1 - 15 of 1002

i ¥
- "__’ /

gpuocelot

Acceleration of a Finite-
Difference WENO Scheme fo...

Cuda-Renderer 2009 - A Multi-
Volume Polyhedral Ren...

lvidi il WVICICK

Showcase

Multiple Back-Propagation
source code

179 x

CSDIGITAL LIBRARY

Fast Disk Encryption through
BPGPU Acceleration

CSDIGITAL LIBRARY

Improving Performance of
Matrix Multiplication and...

CSDIGITAL LIBRARY

Optimal Data Distribution for
Versatile Finite Imp...

CSDIGITAL LIBRARY

Program Optimization of
Array-Intensive SPEC2k Ben...

CSDIGITAL LIBERARY

RankBoost Acceleration on
both NVIDIA CUDA and ATI...

10

&

IlceCube

More info

IT Lunch
February 26t"
2010

2/26/10

http://www nvidia.com/object/
cuda_home_new.html

http://developer.nvidia.com/object/

gpucomputing.html

http://www.drdobbs.com/architect/

207200659

http://courses.ece.illinois.edu/ece498/al/

Svyllabus.html

Martin Merck 16

