
Martin Merck

IT Lunch

February 26th 2010

Introduction to GPU Computing

IT Lunch

February 26th

2010

What is GPU computing

2/26/10
 2
Martin Merck

•  3D Graphic cards need to perform lots of
matrix operations to render images

•  To achieve the high throughput massively

parallel computing is implemented on
graphic cards

•  Basically old vector processing at a much
bigger scale

•  CHEAP !!! (Gaming hardware is driving the
development and has a mass market)

IT Lunch

February 26th

2010

Computing power evalution

2/26/10
 3
Martin Merck

IT Lunch

February 26th

2010

Difference between a classical CPU
and the GPU architecture

2/26/10
 4
Martin Merck

•  CPU

•  Independent cores
•  Lots of cache
•  Prefetching and branch

prediction
•  Heavy weight threading

•  GPU

•  Single instruction multiple

thread (SIMT)
•  Little cache, lots of registers
•  Overhead free threading
•  No real branching

IT Lunch

February 26th

2010

Detailed architecture of the NVidia
Graphics cards

2/26/10
 5
Martin Merck

•  Basic building block is a
Streaming Multiprocessor
(SM) (30 on GTX 295)
–  Executes the same

program on all processors
–  Branching handled by

executing all branches
and turning of single
processors

–  Each multiprocessor
consists of 8 Scalar
Processor (SP), 2 special
function units and shared
(fast) memory

–  Runs 32 threads
concurrently (called warp)

IT Lunch

February 26th

2010

The CUDA software architecture

2/26/10
 6
Martin Merck

•  Basic programming unit is a “Kernel”

•  Represents a function which is executed on a

CUDA device un a huge number of parallel
threads. (~1000 - 10000)

•  Individual threads are combined into “blocks”. A
block can have up to 3 dimensions to map easily
to vectors, matrices and fields

•  Each block is executed on one multiprocessor

•  Blocks are group at a higher level into one or two

dimensional “Grids”. This allows to execute the
same kernel on several of the multiprocessors

IT Lunch

February 26th

2010

Software

2/26/10
 7
Martin Merck

•  Each thread is the
same code.�
To select different
data to process they
use global variables
for the blockIdx/
gridDim and
threadIdx/
blockDim. These
are 3 dimensional
indices.

IT Lunch

February 26th

2010

The CUDA software architecture

2/26/10
 8
Martin Merck

•  Basic programming unit is a “Kernel”

•  Represents a function which is executed on a

CUDA device un a huge number of parallel
threads. (~1000 - 10000)

•  Individual threads are combined into “blocks”. A
block can have up to 3 dimensions to map easily
to vectors, matrices and fields

•  Each block is executed on one multiprocessor

•  Blocks are group at a higher level into one or two

dimensional “Grids”. This allows to execute the
same kernel on several of the multiprocessors

IT Lunch

February 26th

2010

A simple code example
Matrix Multiplication 1

2/26/10
 9
Martin Merck

#include <stdio.h>

#include <cuda.h>

// Matrix multiplication kernel – per thread code
__global__ void MatrixMulKernel(float* A, float* B, float* C, int Width)‏
{
 float Celement= 0;
 for (int k = 0; k < Width; ++k)‏ {
 float Aelement = A[threadIdx.y * Width + k];
 float Belement = B[k * Width + threadIdx.x];
 Celement += Aelement * Belement;
 }

 B[threadIdx.y * Width+threadIdx.x] = Celement;
}

IT Lunch

February 26th

2010

A simple code example
Matrix Multiplication 1

2/26/10
 10
Martin Merck

int main(void)

{

 float *a_h, *b_h;

// pointers to host memory

 float *a_d, *b_d, *c_d; // pointer to device memory

 int N = 10*10;

 size_t size = N*sizeof(float);

 // allocate arrays on host

 a_h = (float *) malloc(size);

 b_h = (float *) malloc(size);

 // Initialize arrays

 cudaMalloc((void **) &a_d, size); // allocate array on device

 cudaMalloc((void **) &b_d, size); // allocate array on device

 cudaMalloc((void **) &c_d, size); // allocate array on device

 cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice); // copy data from h2d

 cudaMemcpy(b_d, b_h, sizeof(float)*N, cudaMemcpyHostToDevice)

 MatrixMulKernel<<< 1, N*N>>> (a_d, b_d, c_d, 10); // do calculation on device

 cudaMemcpy(c_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

 free(a_h); free(b_h);

 cudaFree(a_d); cudaFree(b_d); cudaFree(c_d);

}

IT Lunch

February 26th

2010

nvcc
The CUDA C-Compiler

2/26/10
 11
Martin Merck

•  Code is C-like

•  No C library functions can be used, but cuda

library replicates all math functions and basic
malloc, memcpy etc.

•  No recursions

•  No variable list parameters

•  No static variables

•  Just basic operators and flow control

•  Compiler separates device and host code and
compiles device code.

•  Does all register allocation etc.

IT Lunch

February 26th

2010

Memory models in CUDA

2/26/10
 12
Martin Merck

•  Each thread has a set of
registers and local
variables.

•  A thread block can share
fast memory between all
threads. Threads in a block
can be synchronized.

•  Threads in different blocks
and grids can only share
global device memory.

•  The host process can only
access the global memory
area

IT Lunch

February 26th

2010

Streams
Parallel execution of kernels

2/26/10
 13
Martin Merck

•  CUDA host functions are all asynchronous.

•  Streams can be used to group host/memory

IO and kernel execution into parallel flows.

•  Overlaps IO and kernel execution to use

device while other IO is being performed.

IT Lunch

February 26th

2010

Conclusions

2/26/10
 14
Martin Merck

•  Easy to learn (basics)

•  Cheap to build test/play systems

•  Works great for highly parallel compute intensive

applications�
(Image processing, video en-/decoding, neural nets,
SVM)

•  Algorithms need lots of optimization to hardware
limitations

•  Lots of applications already available or having
optimized plugins�
(Mathematica, MatLab, Adobe Flash, NueralNet tools,
etc.)

IT Lunch

February 26th

2010

Showcase

2/26/10
 15
Martin Merck

IT Lunch

February 26th

2010

More info

2/26/10
 16
Martin Merck

•  http://www.nvidia.com/object/
cuda_home_new.html

•  http://developer.nvidia.com/object/
gpucomputing.html

•  http://www.drdobbs.com/architect/
207200659

•  http://courses.ece.illinois.edu/ece498/al/
Syllabus.html

