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Abstract

Cosmic rays arriving at Earth are the most energetic particles ever measured, and the mystery of
their origin and acceleration has perplexed physicists since their discovery. Above 10'® eV, we can
only study them indirectly from the extensive air showers they produce in the atmosphere, using
large ground-based detectors. Reconstructing the original cosmic ray’s energy and mass from ground
observations alone is very difficult, but possible from measuring different components of an air shower
with a coincidence experiment.

SPASE/AMANDA is a unique such coincidence experiment, a surface scintillator array and
buried ice Cherenkov detector working together at the South Pole. SPASE-2 detects the electrons in
the air shower, while AMANDA-B10 detects the penetrating high-energy muons from their Cherenkov
light. Together, the two detectors pin down a very accurate shower position and direction.

A technique is developed in this work for characterizing and quantifying the amount of light
released into the ice by the high-energy muons. The photon field is sampled by the AMANDA
detector’s optical modules, and fit to an expected form. The amount of light is parametrized by the
average measured amplitude at a fixed distance from the muons’ track (a parameter called K50),
which is proportional to the muon energy loss in the ice.

Combining the information from the two detectors (muons from AMANDA, and electrons from
SPASE), the energy and mass of the cosmic ray primary can be measured. Experimental data from
1998 have been reconstructed in this way, and by comparing the data to simulations of proton and
iron cosmic ray primaries, the average log mass {ln A) of cosmic rays as a function of energy has
been measured between 4 x 101 eV and 6 x 10'° eV. The mass is unchanging at (In A) = 2.0 up to

1.2 x 10'° eV, where the mass begins to rise to (In A) = 2.8 at 6 x 10'° eV.
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Chapter 1

Introduction to Cosmic Rays

1.1 Why cosmic rays?

In the early 1910’s, Victor Hess studied the mysterious discharging of electroscopes on balloons
as a function of altitude, discovering an unforeseen source of radiation coming from the sky. These
cosmic rays have perplexed physicists ever since. Now known to include protons, atomic nuclei,
electrons, positrons, and photons, cosmic rays rain down upon Earth’s atmosphere from all directions.
They are a radiation hazard to astronauts and Concorde flight attendants. Detectors both in space
and on the ground have tried to determine their nature and origin.

Astroparticle physics in general and cosmic ray physics in particular offer a unique astro-
nomical window on this curious high-energy corner of the universe. In addition, it is becoming an
important tool for high-energy physics. While human-built accelerators are reaching a point of di-
minishing returns in size and energy, cosmic rays arriving at Earth are the most energetic particles
ever measured, with energies of up to 3 x 102° eV [31].

However, as in neutrino astronomy, what makes the study exciting is often the same thing that
makes it difficult. As cosmic ray energies rise through the realm of supernova blast waves and into
strange new phenomena, our knowledge and understanding of cross-sections and energy loss physics
begins to dwindle. Finding a mechanism which can generate these energies poses a challenge to both
astronomy and particle physics. Measuring them at all (or at all well) poses an equally daunting

challenge to designers of experiments. Without direct accelerator data to compare to, cosmic ray



physics depends heavily on extrapolations, modeling, and assumptions.

1.2 The energy spectrum

The most striking feature of cosmic rays is their falling power-law energy spectrum, measured
by many experiments using both direct and indirect techniques (see Figure 1.1). The spectrum is

well-described by the power-law equation
dN/dE < E~¢

where the spectral power index « is a subject of much discussion and excitement. This spectral index
stays remarkably constant at o = 2.7 across a huge range of energies, from a GeV up to a PeV. At
around 3 PeV (a point known as the “knee”), the power-law slope steepens to @ = 3.0. Beyond the
knee, at even higher energies, are still more puzzling features; in particular, the spectrum flattens

again at energies of around 10'° eV, in a feature known as the “ankle.”

1.3 Composition

At low energies where fluxes of cosmic ways are high, experiments can be flown in space or high
in the atmosphere on balloons to identify the different particles in the cosmic ray zoo with precision.
In this regime there are plenty of clues to the mystery. The ratio of different elements known to
be secondary and primary (for instance, B/C or sub-Fe/Fe) can be used to estimate the amount of
matter that cosmic rays have traversed on their way here [10]. Proportions of radioactive isotopes
present in cosmic rays is an indication of how long ago they were produced [10]. Some experiments
can identify electrons and positrons in the cosmic rays, others search for “ultraheavy” nuclei. Such
techniques have provided a wealth of valuable information for solving the puzzle, but only up to
energies of GeV per nucleon (see [13] for a review of some of these measurements).

The highest-energy direct measurements of cosmic rays are balloon-borne experiments such
as SOKOL, JACEE, and RUNJOB. At hundreds of TeV, cosmic rays are dominated by protons
and nuclei (electrons and positrons having disappeared due to inverse-Compton scattering off of the
2.7° microwave background). These instruments can distinguish between nuclei (protons, helium,

CNO, Mg-group, and iron) up to about 10** eV. At 10'5 eV, however, the flux of particles has
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Figure 1.1: Energy spectrum of cosmic rays, from [7].
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fallen to one particle per m? per year, far too low for even a satellite-borne instrument to collect
significant statistics. We must turn instead to large ground-based detectors, which can indirectly
measure properties of the cosmic rays by observing the extensive air showers that they produce in
our atmosphere. To understand data from these experiments, we rely heavily on theoretical modeling

of these air showers.

1.4 Extensive air showers

When a cosmic ray primary particle enters Earth’s atmosphere, it interacts with a nucleus
(most likely nitrogen) and produces a cascade of particles known as an air shower. This first inter-
action of the primary occurs at a depth in the atmosphere characterized by its interaction length
A & 1/0 where ¢ is the cross section for the interaction.

The products of the first interaction include secondary hadrons (smaller nuclei) and charged
and neutral pions (and also kaons if the primary energy is high enough). The neutral pions decay to

two gamma rays, which then produce et, e~ pairs in an electromagnetic cascade:

™ =yt
Lset 4e.
Meanwhile, hadrons interact with other particles and disintegrate into smaller nuclei. The charged

pions and kaons decay to muons and neutrinos:

% = uF v, (or 7,)

The neutrinos escape detectors’ further notice, while the muons reach the surface only if they do not
decay en route.

Throughout the shower, the balance of particles is determined by the changing probabilities
for interaction or decay. At the beginning of the shower, secondary nucleons and electrons have high
energies, particle interaction rates are high, and the total number of particles is increasing. As the
particles lose energy, however, they drop below thresholds for further particle production, and the
shower begins to thin out. In between these two phases of the shower is “shower max,” the point at
which the particle count reaches its maximum.

There are three components, then, that can be measured at the ground: the electromagnetic
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component (photons and electrons), the hadronic component, and the muonic component!. Figure 1.2
summarizes these components. A 1 PeV proton primary will produce on average 80% photons, 18%

electrons, 1.7% muons, and 0.3% hadrons at sea level [10].

1.5 Air shower detectors

Ground (or underground) detectors for air showers come in as many varieties as there are

particles to detect, if not more. Some of the common techniques include:

e Scintillators, which detect the passage of charged particles through a scintillating medium.
They are primarily used to detect the electromagnetic component, but if shielded with lead (or

buried deep underground, as in MACRO and Soudan-2) they can also be used to detect muons.

e Air Cherenkov telescopes, which detect Cherenkov light from relativistic charged particles in

the medium of the atmosphere.
e Ionization chambers, which detect hadrons.

e Atmospheric fluorescence detectors, which detect the fluorescence emission from Ny molecules

excited by the air shower particles.

e Water/ice Cherenkov telescopes, which detect Cherenkov light from relativistic muons passing

through ice or water.

Having such a variety of detection methods is very important. Since any one experiment can fall
victim to unknown systematic effects or incorrect modeling, cross-checking between fundamentally
different measurement techniques can help reassure us that we are on the right track. Furthermore,
employing multiparticle measurements within one detector (or operating multiple detectors in coin-

cidence) is a powerful tool for disentangling all the interdependences which can confuse an analysis.

1.6 Observations and data at the knee

Many experiments, based on the different detection techniques described above, have explored

cosmic rays in the knee region. The knee itself (the change in power spectrum index) has been

ITechnically speaking, of course, one can also measure the neutrino component with a detector on the other side of
the Earth, as is done with AMANDA [77] and other underground detectors.
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observed by all experiments with sensitivity in this region, whether they detect the electromagnetic
component, muon component, or hadron component of the showers, as shown in Figure 1.3.

Figure 1.4 sets the stage for our discussion of cosmic ray mass composition. At 100 TeV to
1 PeV, direct measurements are still possible but statistics are scarce and error bars are large. At
these same energies, air shower experiments become sensitive. Lacking the ability to directly measure
cosmic ray mass on an event-by-event basis, air shower detectors must use indirect techniques to
measure the composition of the cosmic rays, which will be discussed in more detail in Chapter 3.
These methods are highly model-dependent, making the absolute proportions of the various nuclei
very difficult to measure reliably.

Many experiments therefore choose rather to emphasize changes in composition (the upward
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from [30].
or downward trend of some mass estimator), which is a more robust measurement. But even then,
as one can see in Figure 1.4, past 1 PeV the results of different experiments begin to diverge and
disagree. Although many experiments favor heavier nuclei with increasing energy, a handful of them
(most notably DICE) find the nuclei getting lighter’. CASA/BLANCA data shows the composition
getting first lighter and then heavier through the knee region. So do cosmic rays get lighter (more
“proton-like”) or heavier (more “iron-like”) with energy? The question must still be considered open;

in this work, the SPASE and AMANDA detectors will weigh in.

2The DICE experiment recently announced updated composition results, in which certain systematic effects in their
detector were taken into account. After the systematics correction, the lightward-sloping result shown here is now
flatter (more consistent with zero composition change) [59].



Chapter 2

Cosmic Ray Acceleration and Propagation

2.1 A likely mechanism: Fermi Acceleration

“Fermi Acceleration,” first proposed in 1949 [15], is a model of particle acceleration in a diffu-
sive medium containing shock fronts.! Fermi’s original paper proposed what is now called “second-
order Fermi acceleration,” in which a particle is afloat in a sea of shocks or disturbances moving in
random directions off which it can scatter (in particular, Fermi imagined “magnetized clouds”). The
particle encounters a shock head-on (which boosts its energy) more often than a shock from behind
(which drains its energy). After many successive shocks from randomized directions, the particle
will have gained more energy than it will have lost, leaving it with a net acceleration. Although a
promising candidate for an acceleration mechanism for cosmic rays, this theory was found to be too
“slow” to explain them.

However, under different conditions a similar idea (involving shocks and diffusion) offers a
compelling solution to the cosmic ray acceleration problem, and is now the most favored model. Called
“first-order Fermi acceleration” or “diffusive shock acceleration,” this model has been approached
from several different angles [17, 18] which all give the same basic answer. The principle is best
visualized as single shock front with a particle crossing back and forth across it.

The shock wave itself can be thought of as a discontinuity in velocity between two plasmas,
one upstream with a velocity Uy, and the other downstream with slower velocity U (see Figure 2.1).

In this description, the discontinuity itself is at rest. Alternatively, one can consider the upstream

1Good reviews of cosmic ray acceleration theory include Drury [11], Gaisser [2] and Chapter 21 of Longair [3].
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(a) Shock front traveling at speed U (¢) rest frame of downsiream medium

{b) seen in rest frame of shock from (d) rest frame of upstream medium

Figure 2.1: First-order Fermi mechanism diagrams, from [3].

material to be at rest. In this picture, the shock and the material downstream of it (the interstellar
medium into which the shock is spreading), have a velocity Uy — Uz = U.

A particle in either of these plasmas scatters off of the magnetic structures and disturbances
in the plasma. It diffuses through the plasma (with a characteristic diffusion constant x) and is
eventually isotropized in direction. If the particle’s motion does not itself influence the magnetohy-
drodynamics of the plasma, then it is called a “test particle” and many simplifications can be made.
For one thing, the ratio of the velocities Uz /U; (also called the “compression ratio” r) is determined

by the ratio of specific heats v of the two plasmas (for an ideal ionized gas, v = 5/3):

r=U/U1=(vy+1)/(y—1)=4

If a particle with speed v crosses the shock front at an incident angle 0 (either upstream —

downstream or downstream — upstream), it will appear in the rest frame of its destination region
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to have gained momentum, equal to [11]:

Ap Ul—U2
— = " “c

0s60 = gcosﬂ
P v v

Averaging over angles 6, this yields

(Ap) 4 (U — U,y 4U
s (57) =5y

v

p 3
for each pair of crossings (back and forth across the shock). Since particle directions are isotropized
on either side of the shock, a particle is likely to make repeated shock front crossings and thus gain
energy repeatedly. Unlike the second-order Fermi process with its randomized shock directions, this
process is first-order in U and is often likened to the acceleration of a ball bouncing between two
walls moving toward each other. The process continues until the particle escapes from the shock
environment. Thus the distribution of energies of the particles depends on the balance between the
acceleration timescale and the escape timescale.

A particle in the upstream region cannot escape, but during the time it spends in the down-

stream region, the probability of escape is given by [11]:
P = 4U2/U

If the process is left to continue for a long time, and if we assume that the system is in a steady state,
then we can compute the momentum (or energy) spectrum of the particles. After n cycles back and
forth across the shock, a particle of initial energy Ey now has E = Ey(1 + &)™, while the probability
of not escaping during those n crossings is (1 — Pes.)™. The number of particles which are successfully

accelerated to energy E can be solved for?:

N(> E) x (E/Ep)” " where =& P/ = %
1— Uz

Turning this into a differential distribution yields:
dN/dE o« E~(+7)

The resulting accelerated particles follow a power-law energy spectrum. This makes the theory
an appealing explanation for many astrophysical phenomena. Non-thermal particles obeying power-

law spectra abound in the universe, especially in locations where one might expect shock fronts; the

2See [2], [3] for details of the derivation.
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bow shock of the Earth (or of other planets) as it passes through the solar wind is a well-known
example within our own Solar System where non-thermal particles are observed. Further out in the
universe, non-thermal particles are seen in stellar wind termination shocks, supernova remnants, and
other shocked environments.

This formulation (with » = 4) predicts vy = 1, leading to a cosmic ray spectral index of —2.
This is the spectrum of the particles at the site of their acceleration; the particles must then be
propagated through the Galaxy to the Earth. Since the rate at which cosmic rays escape from the
Galaxy increases with cosmic ray energy, the underlying energy spectrum at the source (the “injected”

spectrum) must be flatter than the spectrum observed at Earth:

I(E)Earth = I(E)source)‘(E)

The mean escape column density, A, goes as E~°6 [16] (this is observed from the primary to secondary
ratio as a function of energy). So the theory predicts a cosmic ray spectrum at the Farth with an
index of —2.6, which is very close to the measured index of —2.7.

Modifications of the basic theory can change the index; = is generally parametrized as 1 + e,
where € is a small correction. For instance, adding confinement of particles near the shock by Alfvén
waves steepens the spectrum. Weakening the shock (reducing the compression ratio to r < 4) [12],
or adding synchrotron losses during the acceleration also steepen the spectrum. Lifting the “test
particle” condition and allowing the accelerated particles themselves to exert pressure on the system
flattens the spectrum. More accurate magnetohydrodynamics (including non-linear effects, sphericity
of shock waves, etc.) have been studied in detail by a variety of theorists, but the simple picture allows

us to make order-of-magnitude estimates of many of the expected properties of cosmic rays.

2.2 A likely origin: within the Galaxy

Cosmic rays arrive isotropically at Earth (aside from a small dipole anisotropy which is
consistent with the effect of the Solar System’s motion through the interstellar medium [11]) to
within a few parts in 10 at 100 GeV [16]. But this is expected, as the trajectory of any charged
particle traveling through the Galaxy’s magnetic field B will be bent with a gyroradius equal to

rg = p/ZeB ~ E(10'%eV)/ZB(uG) (for a radius in parsecs). For protons of energy 10'® eV, mov-
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ing through a galactic magnetic field of 2 pG, this radius is half a parsec, much smaller than the
Galaxy itself. Thus the galactic magnetic field contains the cosmic ray particles and isotropizes their
directions.

At low energies, the relative abundances of different nuclei provide important clues to cosmic
ray origin. Lithium, beryllium, boron, sub-Fe nuclei, and 3He, are all more abundant in cosmic
rays than in the Solar System. These elements can be produced by the fragmentation of a heavier
nucleus when it collides with interstellar matter, a process called spallation. Common source elements
produce rarer secondaries: Li, Be, and B are produced from spallation of C, sub-Fe elements from
Fe, and ®He from “He. The abundance of secondary nuclei relative to primary nuclei measures the
amount of material along the cosmic ray’s journey from source to Earth; the more material along
its path, the more spallation and the greater the ratio between secondary and primary abundances.
From measuring and modeling these relative abundances, we know that the path length of light
cosmic ray particles through the medium they travel through is ~ 80 kg m~2 at a few GeV [11]
(depending on energy, as discussed above).

Meanwhile, radioactive isotopes provide a measure of cosmic ray age, how long they have been
traveling. '°Be makes a good clock, with a half-life of about 3 x 10° years. Its abundance relative
to more stable nuclei indicates an age for cosmic rays of about 20 x 10° years [16]. Putting the two
pieces of information together and using the relation A = pvtqge, we can compute the average density
p of the medium through which cosmic rays travel: about 0.3 atoms/cm?® [34], and conclude that
these cosmic rays are confined to the Galactic disk (where p ~ 1 atom/cm?) and halo (which is less

dense) for their entire lifetime.

2.3 A likely source at the knee: supernova shocks

A supernova produces a total of 10°° — 10°2 ergs. 90% of this energy is released in the form
of neutrinos, so at most 10% can be considered available to accelerate cosmic rays. The rate of
supernovae is something on the order of 1-10 per galaxy per century (or about 10~% supernovae/sec).
So the total power available for the acceleration of cosmic rays in our own galaxy is E,, R, ~
10%° — 10*? ergs/s. Meanwhile, from the spectrum and intensity of cosmic rays we can compute the

total power required to sustain the cosmic ray population in a steady state: it equals the energy
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density of the particles (1 eV/cm?®) times the volume of the Galaxy (about 10! pc?) divided by the

lifetime of the particles (2 x 107 years), which equals about 10%°

ergs/s. The coincidence in numbers
suggests that supernova shock waves make a good candidate for the accelerators of cosmic rays.
The model is far from confirmed, and plenty of details are still left to explain. A shock
moving through the normal interstellar medium cannot reach energies beyond the knee, but a shock
expanding into an already energetic environment (such as the hot stellar wind of the progenitor star
or a Wolf-Rayet star [20, 21, 22]) could bridge the gap in energy between the knee and the ankle. An

alternative theory proposes that the Galactic cosmic rays disappear at the knee and an extragalactic

source takes over: for instance accelerated protons from accretion disks of active galactic nuclei

(AGN) [23].

2.4 Maximum energy of the Fermi mechanism

Since the Fermi mechanism for acceleration is gradual over many cycles across the shock,
acceleration must be able to compete with energy loss. Furthermore, a shock environment (such as
a supernova) has a finite age and therefore a finite time in which particles that we observe could
be accelerated. These considerations lead to a natural cutoff energy for Fermi-accelerated particles.
Acceleration will stop when the acceleration timescale ¢,..e; exceeds the age of the shock.

The acceleration timescale is determined by the diffusion constant of the plasma, x and the
speed of the shock U and is roughly t4cce; o £/U? [11]. But the length scale on which a particle
diffuses in a magnetic environment (= x/v) is on the order of its gyroradius. For maximum efficiency,
k = (1/3)r4v. In other words, for particles with a given energy, heavier nuclei have smaller gyroradii
and are easier to accelerate quickly. But the acceleration timescale increases with energy as particles
become harder to deflect or scatter.

Thus, if the acceleration is limited by the age of the shock (equal to R/U where R is the radius

of the acceleration region and U is the shock velocity®), then:

tage = taccel

3Supernova shocks have a more complicated relation between age and size, but to keep the theory general we will
make this estimate.
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One can arrive at the same answer by requiring that the diffusion length scale be smaller than the
acceleration region, or (as is true of accelerators in general) that the gyroradius of the particles be
less than the size of the accelerator. In this sense the energy cutoff is a general feature of accelerators.

For a typical 8 of a supernova shock = 0.01 [11] and a typical radius R of a supernova shock
region = 3 x 1017 meters, a proton’s E,,q, comes to 10'* eV, just below the knee. But the acceleration
limit for different elements should occur at a constant rigidity pc/Ze. In other words, there should be a
knee in the proton spectrum first, and in the iron spectrum later. Composition-sensitive experiments
should therefore observe an increase in the proportion of heavy elements in the cosmic ray spectrum

as we pass the knee and protons are being drained from the spectrum (see Figure 2.2).
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2.5 The leaky box model

The observed knee could reflect a spectrum change at the source, as discussed above, or
alternatively it could be due to a change in propagation behavior of cosmic rays. The confinement
and escape of cosmic ray particles can be primitively described by a “leaky box” model. In this
model, particles diffuse freely within some volume, and are reflected at its boundaries but with some
probability of escape from the volume at each reflection. As a result, the degree of confinement of
cosmic rays depends on the rigidity pc/Ze. Iron, with its smaller gyroradius, is more confined by
magnetic fields; therefore it leaks out of the Galaxy less easily. Like the Fermi maximum energy
model discussed above, the leaky box model predicts a spectral cutoff for each particle at a fixed
rigidity. Protons would disappear first and iron last, with the composition getting heavier through

the knee.

2.6 Physics at the ankle

If the physics of the knee is a mystery, then the physics in the “ankle” region of the cosmic
ray spectrum (10'° — 10%! eV) is an even deeper mystery. The highest energy particle measured to
date has an energy of around 3 x 10%° eV [31]. This is equal to about 50 Joules, or the energy of
a tennis ball moving at 100 km/hr [5]. At the energies of the ankle, detectors must be kilometers
in size to catch even a handful of events. The ankle structure raises questions: what are the cosmic
rays composed of, and why does the energy spectrum change again? But the most difficult question
is, how is it possible that these particles are here at all?

As cosmic rays reach an energy of about 6x 10'° eV, they are likely to interact with the ambient
4

low-energy photons of the Cosmic Microwave Background. These interactions produce pions* via:

pty—n+nt

p+y—p+a°

and the cosmic ray has been sapped of its energy. This effect (called the Greisen-Zatsepin-Kuzmin

or GZK cutoff [14]) is expected to drain the cosmic ray energy spectrum of events above about

4Pair production is another possible result of this interaction, with a lower energy threshold and smaller path length.
However, the energy loss is not as catastrophic as for pion production and so it is not as important for energy cutoff
considerations [5].
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Figure 2.3: Energy spectra in the region of the ankle, according to two detectors, both
figures taken from [7].

6 x 1019 eV if they are uniformly distributed in the Universe (see Figure 2.3). Their detection at
Earth constrains their distance to be within 100 Mpc [7].

Collectively from the Volcano Ranch, Haverah Park, Yakutsk, AGASA, and Fly’s Eye ex-
periments, there are about 20 events recorded beyond this cutoff [55], however new results from
HiRes [52, 54] suggest that the spectrum does in fact show a cutoff at the expected energy. The
contradictory results (from detectors with completely different detection principles) demonstrate the
vulnerability of these experiments to systematics, and motivate the construction of hybrid detectors
capable of detailed cross-checking.

The gyroradius of a 10'® eV proton (rather than a 10'® eV one) in the galactic magnetic field
is about 5 kpc, larger than the disk of the Galaxy. The intergalactic magnetic field is two orders
of magnitude weaker than the galactic field, so cosmic rays are not deflected there. Therefore they
have not been isotropized, and an experiment should be able to trace them back to their source or
at least detect anisotropies in their arrival directions. Searches for anisotropy have been made using

the handful of events that have been detected, and results are again mixed; AGASA, which claims
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17 events above 10%° eV, also claims to see significant anisotropy in the directions of the Galactic
center and anticenter [56, 57]. HiRes, which has fewer events but claims a larger aperture to high

energies, sees no anisotropy [53].

2.7 Proposed mechanisms at the ankle

Coming up with an acceleration mechanism for 1020 eV particles is difficult. The maximum
energy that a particle can attain via the Fermi acceleration mechanism is £ = kZeBRU as shown
earlier, where B is the magnetic field in the shock region, R is the size of the shock region, U is
the velocity of the shocks themselves, and k is an efficiency factor which is always less than one.
Even under optimal conditions (k = 1 and 8 = 1) it takes either a formidable magnetic field or a
huge volume to accelerate a proton up to 102° eV. Supernova shocks, although powerful accelerators,
simply cannot do the job.

There are many proposals for alternative accelerators for ultra-high-energy cosmic rays. Hot
spots in the lobes of radio galaxies such as M87 (termination shocks of relativistic jets) are candidates
for pushing the Fermi mechanism to its limits (see Figure 2.4). But since they are extragalactic
objects, the GZK problem is left unexplained unless the bulk of cosmic rays that we observe are
coming from a handful of powerful sources in our local neighborhood. The termination shock of the
Galactic wind is another candidate [25].

Another possibility is “direct” acceleration rather than statistical (that is, a one-shot acceler-
ation by a colossal EMF rather than the gradual acceleration of the Fermi mechanism). The surface
of a rapidly rotating neutron star could provide such an acceleration [24]. In this model, acceleration
need not compete with energy loss mechanisms which plague the slower Fermi process. In addition,
the sources can be Galactic and avoid the GZK dilemma. However, this acceleration mechanism also
has a maximum energy cutoff; for an EMF generated by a magnetic field B moving at a velocity U,
the maximum potential is RU B, and the maximum energy then is RU BZe, coincidentally the same
as for slow acceleration [11].

As an alternative, some suggest that the highest energy cosmic rays are produced more locally,
by the decay or interaction of some other particle which can traverse the Universe uninhibited by

the Cosmic Microwave Background. Ultra high energy neutrinos, for instance, colliding with relic
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neutrinos at the Z resonance could produce high-energy protons [26]. Others suggest instead that
the decay of some very massive and as-yet undiscovered particle beyond the Standard Model is
responsible for events beyond the ankle. Candidates include topological defects, strings, monopoles,

and other strange objects [27, 7], all of which are beyond the scope of this thesis.

2.8 The relevance of composition

Different theories lead to different predictions for the mass composition of the cosmic rays at
the knee. Constant-rigidity cutoff models predict an increase in average mass in the knee region as
protons first disappear. Accretion onto the black hole of an AGN, on the other hand, predicts that
protons should begin to dominate in the knee region, because heavier nuclei cannot survive the photon
fields of the dense central region without being broken up by pion photoproduction [23]. Measuring

the composition of these particles will be crucial for deciding between the competing theories.
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Chapter 3

Separation of protons and iron

3.1 Air shower observables

Past 10'* eV, we cannot directly measure the primary nucleus and must rely on extensive
air showers. Therefore, to distinguish between different primary compositions, one must find an
observable of the air shower which depends on the primary mass.

The difference between proton and iron showers can be qualitatively understood by considering
a nucleus of mass A to be approximately a superposition of A proton primaries all arriving at once.
For a given total energy F, each nucleon has an energy E/A. In other words, a proton has all of
its energy wrapped up in one particle, while the energy of an iron nucleus has its energy distributed
to 56 nucleons and into 56 smaller proton-like air showers. This phenomenon underlies many of the

observable differences between proton and iron showers.

3.1.1 Depth of shower max

An important shower parameter is the “depth of shower maximum” or X,,.,. This is the
depth in the atmosphere (measured in g/cm?) at which the density of particles in the shower is the
greatest.

Qualitatively, an iron primary can be approximated as 56 proton primaries all arriving at
once and each with 1/56th of the total energy. So an iron primary is more likely to have its first
interaction higher in the atmosphere. In addition, each nucleon has a fraction 1/A4 of the total energy;

each of the small showers in the superposition loses energy for further particle production sooner in
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its development. As a result of both these effects, heavier primaries have a smaller X ,,,, than light
primaries.

Quantitatively, the relation between X,,,, and the primary particle’s properties is approxi-

Xinaw = (1= B)Xo <ln <§> - 1nA>

where ¢ is the critical energy! in air, Xj is the radiation length? in air (37.1 g/cm?), and B is a

mately [2]:

model-dependent fudge factor. Simulations of shower development for protons and iron are shown
in Figure 3.1. Since some of the fluctuations of many superimposed proton-like showers cancel each
other out and are averaged away, fluctuations in X,,,, from shower to shower also become smaller

with increasing primary mass.

3.1.2 Cherenkov light

Cherenkov light is emitted by the charged particles in the air shower, overwhelmingly the
electrons. There is a great deal of useful information in the lateral distribution function (LDF) of
this light. In particular, one can measure X,,,; from the slope of the function (either by taking
a fitted slope parameter, as is done in HEGRA [49] or the ratio of the intensity at two different
distances, as is done in SPASE/VULCAN [106]. Meanwhile, the Cherenkov light intensity at a far
enough distance away (around 100 meters) provides a composition-independent measure of the shower
energy. Thus an array which is sensitive to both the near (X,,,.-sensitive) and far (energy-sensitive)
regimes of Cherenkov light is a powerful tool for measuring composition.

Imaging Cherenkov telescopes (such as DICE [51]) can furthermore measure the light intensity
as a function of altitude, a more direct measurement of X,,,, and of the evolving structure of the

shower’s longitudinal development.

3.1.3 Number and distribution of electrons

The electron component of air showers has been studied extensively for many years and is

relatively well-understood. The lateral distribution function of the electrons has a form known as the

1The energy at which bremsstrahlung losses dominate over ionization.

2Thickness over which an electron loses 1 — 1/e of its energy by bremsstrahlung.
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S(30) | Mean Energy (p) | Mean Energy (Fe)
5 200 TeV 400 TeV

10 350 TeV 650 TeV

20 650 TeV 1.2 PeV

30 950 TeV 1.6 PeV

50 1.4 PeV 2.4 PeV
100 2.9 PeV 4.3 PeV
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Table 3.1: Mean energies of protons and iron at S(30) values commonly referred to in
this work.

Nishimura-Kamata-Greisen (NKG) function [19]:

o (e
S(r) = CN, <L> <1 + 1)
To To

Here, S(r) is the density of particles as a function of radius, N, is the total electron count, C is a
detector-dependent normalization constant, r is a characteristic Moliere unit3, and « and 5 are also
empirically measured for each detector.

Because the behavior of the electrons is dominated by QED/electromagnetic cascade physics,
this functional shape of the LDF is largely independent of energy and composition. The total number
of electrons in the shower scales very nearly* with the energy of the primary. However the number
of electrons at a ground detector N, (or “shower size”) depends not only on the energy but also on
the height of interaction X,,,, and thus on the composition.

The SPASE detector, for example, measures a parameter called S(30), the particle density at 30
meters from the shower core. This can be used as an energy estimator, but it is not a composition-
independent one. The relationship between S(30) and energy is plotted in Figure 3.3 for SPASE

Monte Carlo simulations; protons and iron follow parallel but distinct trends.

3.1.4 Number and distribution of muons at the surface

Like the electron distribution, the muon lateral distribution function at surface level has been
extensively studied and mapped out with simulations. Unlike the electron number, the muon number
does strongly depend on both energy and composition. To understand this, consider again a heavy

nucleus to be a superposition of A separate nucleons. For each nucleon, the smaller energy fraction

3Mean perpendicular distance an electron is scattered after passing through one radiation length.

4With a power index close to one.
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Figure 3.3: Relationship between true primary energy and SPASE’s observable S(30).

that it carries results in lower energies of secondary pions. Pions with lower energy are more likely
to decay into muons before they interact again in the shower.

The number of muons as a function of muon energy E,, is parametrized by the equation [2]:

0.757 5.25
Nu(> E,) :A14.5 GeV < E > <1_ AE,L>
E,cos§ \AE, E

where A is the primary mass number, E is the primary energy, and # is the zenith angle of the shower.
The last term (to the 5.25 power) is usually a small correction except at very high muon energies,
reflecting changes in the cross section of pion production. Simulations of this muon energy spectrum

is shown in Figure 3.4. Simplifying the formula, the number of muons behaves as [5]:

where « is 0.757. Iron showers produce more muons for equivalent primary energy by about a factor
of two.
At extremely high energies, showers develop deep enough in the atmosphere that the path

length available for the pions to decay becomes shortened. As a result, the distinction in muon
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number between protons and iron begins to blur. However, this occurs at energies higher than will
be addressed in this work.

The lateral distribution function of muons at the surface looks like [43]:

pu(r) = Ny (1%) (r/Ro) "™ (14 1/Ry) 252

where Ry is a characteristic distance. In general, the muon distribution depends sensitively on a
combination of complex factors: hadronic interaction models, interaction depth, zenith angle, and

atmosphere. Therefore, it is difficult to draw conclusions from this measurement alone.

3.1.5 Number and distribution of muons underground/underwater/underice

High-energy muons (that is, muons capable of reaching a detector at depth) are created by
the decay of pions and kaons whose energies are still high. Thus, high-energy muons come from
high in the atmosphere and can be used to probe the properties of the shower while it is still early
in its development. But like the surface muons, the properties of these penetrating muons depend
on hadronic processes which are not fully understood or have not been directly measured. The
propagation of the muons through the rock or ice at high energies adds additional uncertainties. To
make matters more difficult, deeply buried muon detectors are often built for some other primary
purpose, such as detection of neutrinos or proton decay. Thus they are in some ways poorly suited
for studying cosmic rays. AMANDA, for instance, is too sparse an array to sample the muon lateral
distribution function in detail, while other detectors such as Soudan-2 and MACRO are too small
to sample anything but a small piece of the function. The inventive physicist, however, must not be
discouraged; these detectors can still yield results [44, 45, 46]. To use this observable, we must first
understand the number and shape of muons as a function of energy and composition.

The number of muons at depth can be computed by combining our knowledge of the muon
energy spectrum at the surface with a simple model of muon energy loss in matter, described by the

equation:

E
—— = e +beg By

This subject will be discussed in further detail in Chapter 5, but a short discussion here will allow us

to derive how many muons survive to depth. A muon at the surface must have a minimum energy
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E,in in order to reach a slant depth in the ice X before losing all of its energy. E,,;, can be computed
by solving the above differential equation, yielding:
Ein = (“—ﬁ‘> (ehr ¥ —1)
begr
The number of muons reaching a depth X therefore is equal to the number of muons at the surface
with energy equal or greater to E,,;,. In other words, if the surface muons have an energy distribution

given by:

N,

oy (> B) = KE™

then the number of muons at depth is:
- a G
Nson = Ny (> Ein) = Kt = | ($L ) (e — )]

Many underground detectors perform counting experiments with muons, and are interested in
the total number of muons which will be observed at the particular depth of the detector. This total
intensity curve as a function of depth (called the “depth-intensity relation”) can be computed by
setting the muon spectral index (vy,, above) equal to the cosmic ray index, and this curve has been
mapped by underground detectors [67].

In this work, however, we do not perform a counting experiment but rather study the structure
and properties of the muon events themselves. The volume of AMANDA spans a large range of depths
from 1500 to 2000 meters, and so the number of muons in a given event will be different between
the top of the detector and the bottom. We need to understand not how many total muons reach a
certain fixed depth, but rather how the muon intensity within a single event changes as it propagates
through the detector’s range of depths. Put another way, we want to know the relative rather than
absolute muon intensity as a function of depth.

Fortunately, this can be computed just as easily using the same equation but a different v,.

As discussed in the previous section, N, (> E,) scales as E, 1757 Each single event (of a given

surf
energy and composition) therefore contains muons which follow a power spectrum with an index of

vu = 1.757. By using this muon spectral index in the depth equation above, we compute the shape

of the muon intensity as a function of depth, for an event. Figure 3.5 shows the fraction of muons
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Figure 3.5: Fraction of muons reaching slant depth X, as a function of X, from air
shower and muon propagation simulations. The fraction is defined to be one at the
arbitrary reference depth of 1000 meters. Dashed line: theoretical expectation.

which reach a slant depth X as a function of X, according to simulations. The curve is normalized to
be equal to one at at the reference slant depth of X = 1000 m. The theoretical expectation derived
from the equation above is superimposed for comparison (arbitrarily normalized).

The shape of the lateral distribution reflects the distribution of transverse momenta imparted
to the muons when they are created in the atmosphere, which has the general form [2]:

1
(r+70)®

pu(r) = N,C
where « is around five and rg is a characteristic length which depends on composition only and is
energy-independent. Transverse momentum is distributed to pions and kaons in invariant proportions
at the top of the shower. So muons from iron showers are more widely-distributed, only because their
transverse momentum is imparted higher in the atmosphere and they have more room to spread out
before hitting the detector. This can be seen in Figure 3.6, in which the muon lateral distributions

of simulated proton and iron showers of comparable muon number are compared to each other and

to the theoretical expectation.
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The plots above illustrate averaged properties of air showers. Figure 3.7 shows the muonic
properties of four individual Monte Carlo events: the number of muons as a function of depth,
the spectrum of muon energies at the surface, and the lateral distribution function at the depth of

AMANDA.

3.2 Separation techniques: coincidence experiments

Extensive air showers contain different particle components: the electronic component (which
can be measured at the surface), the Cherenkov-light component (which images the charged particles
in the air), the muon component (which can be measured at the surface or underground), and the
neutrino component (which can only be measured on the other side of the Earth). Unfortunately, all of
them are tangled functions of both mass and energy. No component individually can make a uniquely-
determined measurement of mass; only by measuring two or more components simultaneously can

mass composition be pulled out of data.

3.2.1 N, and Cherenkov light

There are several cosmic ray experiments made of a scintillator array operated in coincidence
with Cherenkov telescopes either surrounding the array or embedded inside it. Some examples

include:

CASA/BLANCA [33]

HEGRA/AIROBICC [48]

SPASE/VULCAN [106]

EAS-TOP

The specific techniques for using combined information vary amongst experiments. Some plot
a Cherenkov light parameter against an electronic parameter to separate nuclei or to measure energy.
Others use the scintillator array with its accurate shower direction and core reconstruction to form a

subset of quality events and then reconstruct X,,,,; and energy from the Cherenkov properties alone.
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3.2.2 N, and surface N,

If one can measure both the electronic component and the muonic component of an air shower,
then one has an extra tool in the arsenal. These two variables together can give a composition-
independent determination of the energy. For this reason, many scintillator arrays are built with

muon detectors integrated within them, for instance:

e KASCADE [32, 63]
o EAS-TOP [36, 60]

e CASA/MIA [35]

Generally the muon distributions are not sampled as well as the electrons in these experiments,
so muon detection is not the focus of the experiment. However by plotting the electron count N, and

muon count N, against each other, protons and iron can be separated.

3.2.3 Other combinations

The HiRes fluorescence detector has been used in coincidence with the MIA muon array to
study cosmic ray composition past the knee [42]. HiRes on its own, with its technique of directly
measuring the longitudinal development of the shower, does not really need MIA in the same way
that electromagnetic or Cherenkov light detectors need muonic backup. However, MIA coincidences
provide a restricted data set which is very tightly constrained in shower direction, allowing better
energy resolution and reduced systematic errors.

Other hybrid detectors are planned for the near future. The Pierre Auger Observatory for
instance will employ a combination of water Cherenkov detectors and fluorescence detectors [64].
The underground Soudan-2 detector has also proposed building a surface air Cherenkov telescope

above its site [47].

3.2.4 N, and deep underground muons

Measuring the electron component at the surface together with the muon component at depth

is a relatively new approach, employed by separated detectors built in proximity to each other:
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¢ EAS-TOP/MACRO [40]
¢ EAS-TOP/LVD [37, 38|
e SPASE/AMANDA (this work)

The Gran Sasso laboratories (housing the LVD and MACRO experiments) have begun to
explore the potential of these coincidences, but it is difficult. The basic technique is to measure the
muon multiplicity as a function of electron shower size (similarly to the N, — N, analysis that is
done by surface muon detectors such as KASCADE). But specific approaches can vary. One can also
measure muon energy loss rather than multiplicity (since protons and iron of the same energy have
different kinematic limits for muon energy, they are separable by their energy behavior) [38]. Or, if
one has an energy-sensitive Cherenkov array at the surface, one can also compare muon multiplicity
to shower energy rather than N, [39].

The site of the Gran Sasso detectors, at the depth of over 3000 m.w.e., implies a threshold
muon surface energy of 1.4 TeV to reach the detector. As a result, the detector reaches full efficiency
at the energy range of the knee, and must contend with detector turn-on and threshold effects. The

AMANDA site at the South Pole, at a depth of only 1700 m.w.e., can explore lower energies.

3.2.5 Three components

Some sites have the capability to observe three components simultaneously:
e KASCADE: electrons, muons, hadrons [63]
e CASA/MIA /DICE: electrons, muons, Cherenkov light[50]
e SPASE/VULCAN/AMANDA: electrons, muons, Cherenkov light[113]

With three observables, the properties of the shower are overconstrained. However, there
are enough sources of uncertainty in both models and measurements that these triple-coincidence

experiments are invaluable for consistency checking.
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Figure 3.8: Relationship between N, and cosmic ray primary energy

3.3 Composition with SPASE/AMANDA

As with other coincidence experiments, SPASE and AMANDA can measure different observ-
ables which are all energy- and composition-dependent, but which together can isolate energy or
composition. SPASE measures the shower size 5(30); this is a measure of N,. AMANDA, a muon
detector, receives information only about the high-energy muons in the air shower. The muons are
described by a lateral distribution function as discussed above; their total number N, and the shape
of the function (described by a characteristic width ry) are therefore the two potential observables for
AMANDA. The width rq is in principle a powerful separation parameter, and an attempt to exploit
it was attempted (see Appendix B), however, AMANDA is ill-designed to measure it. The number
of muons N, however, is directly related to the amount of energy loss in the form of light which is
released into the ice. AMANDA, a large and fully active calorimeter, is well-suited to this observable,
as we will see later. Thus, N, will be the focus of this work, and its dependence on primary energy
is shown in Figure 3.8.

Before proceeding further, we must explore our ability to measure composition using the ob-
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Figure 3.9: Relationship between N,, and SPASE parameter S(30)

servables at hand. Assuming we find a way to perfectly measure the number of muons at AMANDA'’s
depth, can this observable (combined with S(30) from SPASE) distinguish between protons and iron?
The answer, as one can see from Figure 3.9, is yes. When the two variables are plotted against one
another, the two nuclei separate nicely.

So our mission would seem simple enough: to find a composition-independent measure of the
number of muons in AMANDA. A technique for doing this will be discussed in Chapter 8. However,
if the muon number is not simulated correctly or if our measurement of it suffers from systematic
errors, we must be very careful that our techniques are robust. Systematic errors will be discussed

in Chapter 9.
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Chapter 4

AMANDA and SPASE

4.1 The AMANDA detector

AMANDA (the Antarctic Muon And Neutrino Detector Array) is an ice Cherenkov telescope
constructed within the Antarctic ice cap near the South Pole. AMANDA’s primary mission is the
detection of high-energy neutrinos, from the Cherenkov light emitted by its interaction products. A
v, interaction near the detector in rock or ice produces a high-energy muon' which travels faster than
the speed of light in ice. The detector, an array of photomultiplier tubes buried in the ice, measures
the resulting pattern of Cherenkov light, and from this pattern reconstructs the muon’s trajectory.
At this time, neutrino-induced muons are seen by AMANDA, which are consistent in spectrum and
zenith angle distribution with cosmic ray-induced (or “atmospheric”) neutrinos from the northern
hemisphere [77]. Thus, AMANDA can place upper limits on the fluxes of extragalactic neutrinos
[94], neutrinos from WIMPS [99], magnetic monopoles [97], gamma ray bursts [96], and point sources
[81].

Cosmic ray muons (produced in the atmosphere above the South Pole) constitute the dominant
background for neutrino-induced muons, and so great pains are taken to remove them from neutrino
analyses [79]. Ultimately, the two are distinguished by their direction; an upgoing event must be
neutrino-induced, while a downgoing event is almost assuredly cosmic ray muon-induced. In searching
for neutrinos, cosmic ray muons which have been mistakenly reconstructed as upgoing are a formative

background.

1Similarly, a ve interaction produces a high-energy electron and a v, interaction a tau lepton. It is the muon tracks,
however, which are best understood in AMANDA and relevant here for cosmic ray studies.
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In this work, however, cosmic ray muons are the signal, rather than the background. Together
with the SPASE array on the surface of the ice, AMANDA can be calibrated using cosmic ray events,
and can even measure properties of cosmic rays themselves. Placing such a cosmic ray study in the
context of AMANDA'’s neutrino mission can be confusing. Some techniques and terminology will be
borrowed, others specially developed for this work. Some difficult challenges of a neutrino analysis

can be avoided here, while cosmic rays present new and different challenges of their own.

4.1.1 The hardware

The building block of AMANDA is the optical module (OM): a glass pressure housing contain-
ing a photomultiplier tube (PMT), silicon gel for optical coupling between the glass and the PMT,
and electronics of varying sophistication for distributing high voltage and transmitting output pulses.

The array is structured as long strings of these optical modules deployed down holes over two
kilometers deep. The holes are drilled using hot water, the strings then lowered into the hole while
it is still liquid. When the water-filled hole is allowed to refreeze, the OM’s are locked in place, each
one connected to the surface by a coax or twisted pair cable which provides both high voltage to the
module and signal transmission to the surface.

The configuration of the detector has changed over the years as more holes have been drilled
and more OM’s deployed to enlarge the array. In 1996, the detector consisted of 86 modules on
four strings (the AMANDA-B4 detector). In 1997, it had grown to 302 modules on ten strings (the
AMANDA-B10 detector). In 1998 and 1999, it had 428 modules on thirteen strings (the AMANDA-
B13 detector). And in 2000 up to the present day there are 677 modules on nineteen strings, a
configuration called AMANDA-II, seen in Figure 4.1. The modules on a string are separated by
10-20 meters (depending on the string), and the strings themselves are separated by 30-60 meters.
A range of depth between 1500 meters and 2000 meters is the most densely instrumented.

This work focuses on data from the AMANDA-B10 array. More detailed descriptions of this
configuration and the data it collected in 1997 can be found in [82]. Although 13 strings were
present in 1998 and 1999, SPASE/AMANDA coincidence data from just the 10-string subarray can
be analyzed identically to the 1997 array, to increase data statistics (this will be discussed in greater

detail later in Appendix C).
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4.1.2 The DAQ

The Data Acquisition (DAQ) system at the surface records the amplitude (ADC) and time
(TDC) of pulses arriving from the OM’s. The detector’s trigger can come from a variety of sources.
In normal mode, a hit multiplicity trigger logic determines when a required number of hits have
arrived within a required time window, and initiates a trigger. Or, the trigger can come from an
external source. SPASE-AMANDA coincidence events are of the second type; the SPASE detector
provides an external trigger and AMANDA operates in “slave mode.” This type of trigger offers many
advantages for calibrating AMANDA and reducing systematics or uncertainties related to AMANDA
trigger efficiency.

Amplitude and time information are recorded for all triggers, which occur at a rate of approx-
imately 100 Hz. When a trigger is received, a common stop signal is sent to the TDC’s, and all TDC
times (which are stored in a rotating buffer) are read out. The peak amplitude within a smaller time
window (which is measured by a peak-sensing ADC) is also read out. Hit information for an OM is
stored as a series of up to 16 leading and trailing edges, and one amplitude?.

This data is calibrated, cleaned, and analyzed later, as the bulk of the data (which is taken
during the Antarctic winter) can only reach the northern hemisphere once the South Pole Station
opens for the summer. The first analysis task is to quickly reconstruct the track of the muon through
the detector from its pattern of Cherenkov light, and to filter a subset of quality events which qualify
for the next stage of a more refined analysis. Special triggers (such as SPASE triggers) are separated
from the data at this early stage and set aside.

Figure 4.2 shows two sample SPASE/AMANDA coincidence events. One can see from these
event displays several phenomena: the progression of the timing of hits (displayed from early to late
through the colors of the rainbow) from the top of the detector to the bottom, the larger ADC values
(displayed as larger circles) located near the track and getting smaller with distance, and the superior

placement of the track by a combined fit (the green track) as opposed to the SPASE track alone (the

2The fact that many hits but only one amplitude can be recorded for an OM is problematic. A simple way to
adapt is to cut away all hits but the first one. Although this sacrifices information, it increases the probability that
the amplitude is associated with the correct hit.



42

Color displays: E Rimary Channels
Color displays: E Rimary Channels s 10
10]1 1086 17
454 O .
O .
O .
O . .
N\ 2602 [l 7 - @
g ‘@ .
o ,U"r1 -
. 360l 3 )
° 3613 ® -
3865] 1 ‘@ O
8 4118 o ¢
43711 ®
° 4623 2 v .
° .
Size displays: ADC size scaling: Lin ° Size displays: ADC Size scaling: Lin ? 5
< < <6 <8 <10 <12 <15 <17 . <1 <2 <3 <4 <5 <7 <8 <9 Q @
i ceees e o cecccecooe0 8
) L]
° 3 (9]
<19 <21 <23 <25 <27 <29 <32 <34 ° <10 <l <13 <14 <15 <16 <17 <19 8 %
e00000 : 00000000 °Q&
° Q
(€] o
@\ °
o 938
- e \0
O o)
° 0
el
O
(a) Event 210449 (b) Event 015480

Figure 4.2: Two example coincidence events in AMANDA. (They have been rotated
for the best view.)

blue track), which can be off by tens of meters.

4.2 The SPASE detectors

There have actually been two SPASE (South Pole Air Shower Experiment) arrays at the South
Pole. The first, SPASE-1 [107, 108, 109] operated between 1987 and 1997. It was a triangular grid
of 16 scintillator detectors, 1 m? each, with a 30 meter grid spacing. The second, SPASE-2 [110],
was completed in 1996 and has been operating ever since. It consists of 30 “stations” on a 30 meter
triangular grid (the same spacing as SPASE-1) where each station contains four scintillators of area
0.2 m? each. One of these modules is run at a low gain in order to extend the station’s dynamic

range. The angular acceptance of SPASE-2 and AMANDA-B10 operating in coincidence is about
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Figure 4.3: Sample SPASE event display and lateral distribution fit to determine S(30),

from [114].

100 m?sr, about twice the acceptance of EAS-TOP/MACRO [110]. SPASE-2 triggers with a station
multiplicity condition: 5-fold within one microsecond when VULCAN is also operating, and 4-fold
when it is not. The energy threshold is about 50 TeV for primary protons. [106].

SPASE, similarly to AMANDA, reconstructs the shower direction from the arrival times of
charged particles in its scintillators. The accuracy of this reconstruction depends on the size of the
shower; a small shower with few hits has a larger error on the fitted direction.

Like other ground arrays, SPASE reconstructs the shower size and properties by fitting the
lateral distribution of amplitudes to the NKG function. Since the shape of this function is invariant,
the shower size is expressed by the particle intensity at a constant distance. For SPASE events,
shower size is characterized by the parameter S(30), which is the measured particle density at 30
meters from the core of the shower, in units of particles/m?. The core location and the shower size
are fitted simultaneously. Figure 4.3 shows a sample event, its lateral distribution function, and how
S5(30) is fit to the data. Figure 4.2 shows how the resolution of SPASE’s reconstruction of direction,
core location, and shower size all improve with larger showers. Figure 4.5 shows the relationship
between S(30) and the electron number N,, and how it is independent of primary composition.

The scintillators saturate at the level of about 100 particles per module, the low-gain scin-
tillators at roughly five times this amount. This means that a 10!7 eV primary energy shower will

saturate even the low-gain module of a station 30 meters from the shower core [110]. Scintillator
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saturation will be discussed in more detail in Chapter 9.

4.3 The VULCAN detector

VULCAN [111] is an array of air Cherenkov telescopes, 9 detectors in all, which is embedded
within SPASE-2 (see Figure 4.6). In 1997, all the telescopes were aimed toward the sky in a direction
which, when traced backwards, aims at the center of the AMANDA-A detector (four prototype strings
which were deployed at about 900 meters depth). In 1998, the telescopes were re-aimed at the center
of AMANDA-B10. As a result, SPASE/VULCAN coincidences with AMANDA-BI10 from 1997 are
rare mis-aimed events, and of unknown reliability and systematics. Coincidences from 1998, when
the telescopes were properly aimed, are of greater value. SPASE/VULCAN/AMANDA coincidences

from 1998 were analyzed for composition in [113] and will not be discussed further in this work.

4.4 The GASP detector

GASP [112] was an air Cherenkov telescope embedded in SPASE-1, consisting of ten mirrors

and two PMT’s for each mirror. The viewing angle of each PMT in GASP is 1.5 degrees, and with
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Figure 4.6: Layout of AMANDA, SPASE-1, SPASE-2, and VULCAN, from [114].

all the mirrors aligned the angular acceptance of GASP is approximately 0.5 degrees. The telescopes
were aimed at the sky in alignment with AMANDA-B10. The detector triggers at a proton primary
energy of approximately 1 TeV. Because of its narrow field of view, this telescope provides a precise

beam for pointing calibration of AMANDA (see Chapter 7).

4.5 SPASE/AMANDA data

SPASE/AMANDA coincidences are a special subclass of AMANDA events. Every SPASE
trigger (regardless of direction or energy) sends a trigger to AMANDA. TDC and ADC gates are
opened at fixed times relative to the trigger to collect any hits. The event is given a tag so that it can
be identified as a SPASE trigger and separated from the rest of the AMANDA data offline. These
coincidences occur at a rate of about 5 Hz (for the 5-fold trigger) or 8 Hz (for the 4-fold trigger)
[110].

Meanwhile, SPASE records its own data for the same events and reconstructs their direction
and shower size using a program called SPV. Offline, the SPASE events and AMANDA events must
be matched up with each other. Each detector records the time of each event according to its own

GPS clock. Events within one millisecond of each other are considered a match; the flight time of
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the particles from one detector to the other is approximately 6 microseconds.

The exact positioning of the TDC and ADC gates changes from year to year. In 1997, the
TDC gate was 32 microseconds wide and centered on the trigger time, and the ADC gate was 4
microseconds wide and was opened about 1 microsecond before the arrival of the first pulses from the
event. In 1998, the ADC gate was widened to 9 microseconds. This change turns out to be crucial

for data quality, and is discussed later (see Appendix C).

4.6 SPASE/AMANDA Monte Carlo Simulations

A simulation of an air shower passing through not one but two experiments (which happen
to be separated from each other by over a kilometer of ice) involves several distinct stages. At each
stage, there are uncertainties and systematics (some better understood than others). For this work,
we will employ one “baseline” simulation chain, but will vary some of the links in the chain one at a
time to investigate systematic effects. These effects will be discussed in Chapter 9.

Events were generated with an E~! energy spectrum, to ensure plenty of statistics in the
interesting high-energy regime. To mimic the actual cosmic ray energy spectrum, Monte Carlo
events are all re-weighted to an £~ 27 spectrum below log F(GeV) = 6.5 (the knee), and to an E 32
spectrum above it3. Figure 4.7 shows the resulting energy spectrum of the simulated and re-weighted

events.

4.6.1 Air shower simulation and hadronic interaction model

There are several different air shower simulation packages available for experimenters. Much
of the physics of air showers is well understood; the electromagnetic interactions for instance can
be simulated exactly with QED. The common weak point to all air shower simulations, however,
is the details of the hadronic interactions. Accelerator data (on which simulations are based) do
not reach the very high energies of cosmic ray showers, and do not collect data well in the forward
direction which is relevant for most air shower interactions. So an air shower simulation must employ

extrapolations and assumptions. There have been several independent attempts to simulate these

31In our simulations, protons and iron are given a knee at the same energy, even though some cosmic ray theories and
experimental evidence suggests that the knee occurs at the same rigidity for different nuclei. This was done because
we want to measure this phenomenon rather than assume it.
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hadronic details, resulting in a small collection of different models (the most commonly used being
QGSJET, VENUS, SIBYLL, HPDM, and DPMJET*). Similarities and differences between these
hadronic interaction models comprise a body of literature on their own®, and some software packages
which model the entire air shower (such as MOCCA and CORSIKA) have modularized their code so
that the different hadronic interaction models can be directly compared to each other. Meanwhile,
experiments test their data against the different models to measure whether one is favored over the
others. The final verdict, of course, is still out.

For this work, the baseline hadronic interaction model used will be MOCCA/QGSJET. The
MOCCA code has been customized for the South Pole (in atmosphere, overburden, and magnetic
field, for instance) [114]. A similar simulation generated with the SIBYLL interaction model will
be used later to demonstrate the systematic uncertainty in the results due to hadronic interaction

model.

4.6.2 SPASE detector simulation

The response of the SPASE and VULCAN detectors together are simulated by the program
MONTE [114]. It is only at this stage that the shower is given an orientation relative to the Earth: it
is assigned axis coordinates (Zcore, Yeore, 0, @) relative to SPASE, in a local SPASE coordinate system.
To make the best use of each of the showers (which have been time-consuming to simulate), they can
be “reused” at this stage of the process. That is, each shower is duplicated many times but its core
position is scattered all over the SPASE array.

The arrival times and densities of the shower particles are then computed for each scintillator
module. Noise hits are added, and the information is converted to a “raw data” format mimicking
real data. The simulated values are smeared to reflect Poissonian fluctuations, uncertainties in
detector pedestal values, and so forth. The simulated data is then ready to be processed through the

SPASE/VULCAN reconstruction program SPV, identically to real data.

4A new hadronic interaction model called neXus has also been introduced recently [75]. It has not been subject to
as many tests yet (except by the Karlsruhe group) and is extremely slow.

5For a thorough review of the five interaction models, their similarities and differences, systematic effects on N,
and Ny, and ensuing experimental confusion, see anything by the CORSIKA authors, for instance [29]. A shorter and
more accessible review is [28].
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4.6.3 Muon propagation

After hitting SPASE, the air shower penetrates the South Pole snow and ice, only the high-
energy muons reaching the depth of AMANDA. Unfortunately, the propagation of high-energy muons
through matter is another source of uncertainty, as the physics of muon energy loss is not well-known
at high energies.

For this work, the baseline muon propagator is the PROPMU code developed by Lipari and
Stanev [74]. An alternative propagator MMC [98] has been recently written by members of the
AMANDA collaboration, intending to bridge the gap between treatment of energy losses at low and

high energies; this will also be used to study systematics.

4.6.4 AMANDA detector simulation

The program amasim simulates the response of the AMANDA detector to an event. The
simulation includes at its heart the propagation of light through the ice from source to OM. To
correctly simulate the scattering and absorption of photons is a time-intensive computation, so rather
than perform the simulation for each photon, tables of results are compiled separately by the software
package PTD (Photon Transport and Detection) [87]. amasim interfaces to these photon tables to
look up the photon intensity and arrival time probability distribution for any module from any muon
or shower.

amasim then builds a PMT waveform which would result from the photon hits, and sends this
waveform through a simulation of AMANDA'’s hardware and DAQ: cables, thresholds, peak-ADC'’s,
TDC’s, multiplicity logic and triggering, and data output [89].

The output of amasim has the same format as experimental data, and can be put through the

identical chain of processing (calibration, hit cleaning, reconstruction, etc.).

4.7 Calibration

“Raw” data (or Monte Carlo) contains the times at which signals arrived at the DAQ on the
surface, and the amplitudes in millivolts of the pulses when they arrive. However, the quantities of
real interest are the arrival times of photons in the ice and the amplitudes of pulses measured in units

of photoelectrons.
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The amplitude calibration is very straightforward: an ADC spectrum is taken for each OM,
and the position of the pedestal single photoelectron peak is measured in units of millivolts. To correct
the timing, we need two calibration constants: the signal transit time ¢y, between photocathode and
TDC, and an additional correction to account for “amplitude slewing.” The rise time of pulses (~
5 ns at the PMT) is smeared over 200 ns from the long journey up the electrical cable. The exact
time at which the waveform crosses the TDC discriminator threshold depends on the amplitude of

the pulse. In particular, the threshold-crossing time varies as:

1
VADC

tie =t) +

and the second calibration constant o parametrizes the additional correction which is computed from
the ADC on an event-by-event basis. The calibration constants for each individual OM are measured
each year during the austral summer season.

SPASE/AMANDA triggers are calibrated identically to normal AMANDA triggers. Distinct
sets of calibration constants are used for 1997 and 1998 data, as many things change (including, some-
times unintentionally, the cable lengths and t,’s) between seasons. Monte Carlo, which is generated

to look identical to raw 1997 data, is identically calibrated using 1997 calibration constants.

4.8 OM cleaning and hit cleaning

The OM’s in the AMANDA-B10 detector exhibit dark noise, at a rate of around 300 Hz for
the inner four strings and around 1100 Hz for the outer six. Some is inherent photomultiplier noise,
and the rest is due to decays of radioactive “°K in the glass housing (see Appendix E for more detail
on this phenomenon).

Although maximum-likelihood reconstructions are written to take into account the probability
of a hit originating from noise, stray noise hits can still fool the algorithms and some are more
vulnerable than others. In any case, cleaning out noise hits is a crucial aspect of muon reconstruction.
This is done in two stages: removing bad OM’s completely from the array, and removing hits on an
event-by-event basis which are likely to be noise.

Lists of “bad” OM’s are available for both 1997 and 1998 (see Appendix C). These OM’s are

permanently removed in software by setting their sensitivity to zero. Then, within each event, hits
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are deemed likely to be noise and temporarily removed if they:

[3

e Arrive outside a time window of 4500 ns in which all of the “real” (that is, muon-induced)

pulses are expected to arrive,
e Are “isolated” hits (that is, there are no other hits within 70 meters and 500 ns),
e Have an unphysical time over threshold (less than 125 ns or more than 2000 ns),

e Have no ADC, a very low ADC, or an unphysically high ADC (less than 0.3 photoelectrons or

more than 1000 photoelectrons),
e Are likely to be due to crosstalk,
e Are not the first hit (which is likely to be the one correctly associated with the recorded ADC).

The difference between permanent cleaning of OM’s and temporary or event-by-event cleaning
of hits is important enough to warrant a short discussion here. Many reconstruction techniques
implemented in AMANDA do not use information from OM'’s which are not hit. If this is the case,
then it doesn’t matter whether an OM is removed permanently from the array, or if only its hit is
removed. If, however, the reconstruction makes use of the information that a particular OM did not
receive a hit, then it is important to know whether that OM should have received a hit at all. If an
OM is noisy and is removed from the analysis entirely, then its probability of not being hit is always
exactly one, and the reconstruction must recognize this. If, on the other hand, the OM is operating
normally but had its only hit removed because it fell outside the time window or had a bad ADC,
then its probability of not being hit is still a relevant part of the overall likelihood, and should still
be considered by the reconstruction. In this work, modules not hit are included in the reconstruction
(in fact they are a crucial part of the likelihood), and so the two types of cleaning are performed
separately. Permanent OM cleaning is done after calibration but before any reconstruction is done;

event-based hit cleaning is done together with reconstruction.
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Chapter 5

Light in ice, and event reconstruction

More than the photomultiplier tubes, glass, cables, amplifiers, pulse-shapers, readout electronics,
triggering, and other details, the most fundamental part of the detector is the ice itself. “Ice proper-
ties” is an umbrella term encompassing scattering and absorption by dust, scattering and absorption
by bubbles, index of refraction, vertical structure, and special properties of the column of re-frozen
water immediately surrounding the OM’s (“hole ice”). By exploring the underlying physics of light
propagation in ice, we will arrive in this chapter at a new reconstruction technique well-suited for

muon bundles (and with great potential for muon energy reconstruction in general).

5.1 Muon energy loss in matter

Consider a single muon of energy E. As it passes through the ice, it loses energy from a
variety of different energy loss mechanisms. Muon energy loss mechanisms can be divided into two
categories: continuous and stochastic. In general, the energy loss of the muon is described by the

equation

dE
_d—; = a(Eu) + b(Eu)Eu

where the first piece (a) is the continuous loss, and the second piece (bE,) describes the stochastic
losses.

Muons lose energy continuously along their path by ionizing the electrons from nearby atoms.
The coefficient a(E,) depends only weakly on E,, especially above E, > 10 GeV, where its value

flattens at approximately 0.002 GeV/(g cm?) [2, 66], or about 2 MeV/cm in ice. A 10 GeV muon
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travels 50 meters in ice, which is reconstructible with minimum quality by AMANDA. Thus, this
approximation is valid for muons in AMANDA.

Stochastic (or “discrete”) losses can come from a variety of mechanisms. The dominant ones for
muons are bremsstrahlung, e™e™ pair production, and photonuclear (also called hadroproduction).
The loss rates from all these processes are energy-dependent. To first order, they are linear with
energy (hence the term bE, in the equation above), where the b coefficient can be expressed as
b = bprem + bepair + bhedr and each term contains some energy-dependence. Some of the components
of b flatten at high muon energies, allowing us to approximate b =~ 8 x 10~¢ g=!/cm? for pure iron
[66], b ~ 4 x 107 g=1 /cm? for standard rock [2], or b &~ 3.4 x 1076 g=!/cm? for ice [79]. At a
“critical energy” E. = a/b, stochastic losses begin to dominate over ionization (continuous) losses.
This transition occurs at E, >~ 600 GeV for muons in ice.

The muons in a muon bundle have a spectrum of energies (see Figure 3.4). However, since the
energy spectrum is steep, the bulk of the muons are below the critical energy and can be thought of as
approximately monoenergetic. This approximation is not important for the analysis to be described
later in this work; it merely provides a convenient framework for describing the general concept and

its context.

5.2 Cherenkov and shower light

Of the energy released in ionization, discussed above, a small percentage of it (around 0.05%)
goes into Cherenkov light [73]. This phenomenon is caused by the disruption of the local electromag-
netic field in matter (such as air, water, or ice) by the passage of a relativistic charged particle. It
is easily visualized and treated as an electromagnetic shock wave from a charged particle traveling
through a medium at a velocity greater than the speed of light in that medium. The light is emitted
at a fixed' Cherenkov angle of ~ 41° for ice and has a spectrum described by dn/d\ o< A=2.

The stochastic processes discussed above produce small shower-like bursts of light at the points
on the muon’s track where the interactions occur. The importance and treatment of these showers

depends on the type of event being analyzed. In v, events, the energetic electron produces one large

ITechnically, the angle depends on the index of refraction in the medium which, although a constant for all practical
purposes here, does change with the density of the ice.
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shower which is not quite spherical. A muon track, on the other hand, will produce a linear light
pattern with stochastic bursts of light at various points along its trajectory. These mini-showers
along a muon track are simulated in detail for the muons in AMANDA, but reconstructing each of
them is nearly impossible with the poor spatial resolution of the AMANDA phototubes. Instead, we

often instead treat the stochastic showers as an averaged phenomenon.

5.3 Scattering and absorption

Understanding scattering and absorption processes is crucial for operating a water or ice
Cherenkov detector. These properties determine the detector’s mode of operation, optimal design,
and strengths and weaknesses. Deep Antarctic ice, for instance, has a long absorption length (~ 100
m) compared to ocean water (=~ 20 m), making AMANDA a more efficient light collector than oceanic
competitors over large volumes. On the flipside, ice has a short effective scattering length (=~ 20 m)
compared to ocean water (& 100 m), making the exact timing of photons and the precise direction
reconstruction of tracks more difficult. Either way, to fully understand and exploit a detector, one
must describe these phenomena in greater detail, the aim of this section.

Dust is the most important contributor to absorption and scattering in deep Antarctic ice. Air
bubbles, formidable scatterers if present, at depths beyond 1400 meters have been squeezed into air
hydrate crystals which match the refractive index of ice almost perfectly and are essentially invisible.
Dust grains, about 0.04 microns in size [71], instead are the dominant cause of both absorption and
scattering effects at AMANDA depths.

Both effects can be described by a propagation length (). for effective scattering length? and
Ao for the absorption length) or a coefficient defined as one over the wavelength (b, = 1/)\. and
a = 1/)\,, respectively). These scattering and absorption coefficients as a function of frequency are
shown in Figure 5.1(a).

Which wavelengths are important for AMANDA depends also on the transmission properties

of the glass, the quantum efficiency of the glass, and the Cherenkov light spectrum, some of which

2The geometric scattering length s, the distance that a photon travels before being scattered, is actually very
small, but one must also consider the mean angle of scattering at each event, (cos0), which is about 0.8-0.9 for dust
[71]. The effective scattering length A is equal to the distance at which 1/e of photons have been isotropized in
direction, and is equal to As/(1 — (cos @)) [70], about five times larger.
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Figure 5.1: Wavelength dependence of optical properties

are shown in Figure 5.1(b). Cherenkov light peaks in blue and UV wavelengths, but the glass of the
optical modules’ pressure housings is transparent only up to about 350 nm. Thus, the wavelength

region of importance to AMANDA is from 350-500 nm.

5.4 Vertical structure (dust layers)

A YAG laser® at a frequency of 532 nm was first used to map the scattering and absorption
coefficients in detail as a function of depth [83], revealing fluctuations and structures due to dusty
layers of ice. Figure 5.2 shows the scattering coefficient b, (at 532 nm) as a function of depth in
the instrumented region of AMANDA-B10. There are dusty layers in the ice: peaks in b, at depths
of 1600 meters (z = +130 in the AMANDA coordinate system), 1750 meters (z = —20), and 1880
—150). Shallower of AMANDA-B10 depths (< 1400 meters), the ice contains air bubbles

meters (z =

which dramatically increase the scattering. Deeper (> 2000 meters) is another large scattering peak

3The physical laser is at the surface, and light is piped into fiberoptic cables which lead to isotropizers buried with
each module in the ice. Therefore each OM can be used as an emitter. This technique cannot be used at shorter
wavelengths because attenuation in the fiberoptic cables becomes too great [86]; instead we must depend on in situ
emitters such as LED’s and laser modules.
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Depth Dust
from... ...to
—inf | —240 | dusty
—240 | —180 | clear
—180 | —140 | dusty
—140 —60 | clear
—60 0 | dusty

0 70 | clear

70 180 | dusty

180 inf | clear

Table 5.1: Summary of dusty and clear depth ranges

due to another dusty layer. The peaks in scattering are correlated with known ice age epochs in the
Earth’s geological history.

Absorption at 532 nm is nearly flat as a function of depth, but this is because at this wavelength
absorption is dominated by the ice itself rather than dust. At shorter wavelengths, nearer the peak of
AMANDA sensitivity and the minimum of the absorption curve in Figure 5.1(a), the ice contribution
has dropped and the dust contribution becomes dominant in absorption as well as scattering. Thus,
the same peaks and valleys as a function of depth appear in the absorption coefficient a. Recently,
emitters at a variety of other frequencies (470 nm with blue LED’s, 370 nm with UV LED’s, and
337 nm with a Nitrogen laser) have been used to more comprehensively map out the scattering and
absorption properties as a function of both depth and wavelength [85]. The results confirm both the
predicted wavelength dependence of b, and a, and the presence of correlated dust peaks in both b,

and a.

5.5 Effect of ice properties on AMANDA observables

A great deal of effort has gone into understanding how the timing of hits is affected by scat-
tering. Without this understanding, reconstruction of muon tracks in AMANDA is impossible. Since
the scattering length of photons is 20-30 meters, and the spacing between OM’s is 10-20 meters, all
but the closest hits in AMANDA arrive delayed relative to the arrival time of the Cherenkov cone.
The greater the distance between the OM and the muon track, the more twisted a path the photon
follows to get to the OM after multiple scatterings. As a result, both the absolute delay and the

width of the distribution of arrival times increase with distance.
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Figure 5.3: Simulated photon arrival time delay distributions for an infinite muon, at

four different distances, according to PTD simulations.

In a medium where both scattering and absorption are present, the resulting arrival time
distributions cannot be expressed in an analytical form. Instead, they must be either tabulated,
parametrized, or simulated photon by photon. The last option is too time-consuming, so AMANDA
employs both tables and parametrizations. For simulations, many photons are simulated offline and
the results tabulated by a package called PTD (Photon Transport and Detection) [87]. These tables
(often called simply the “photon tables”) allow the AMANDA detector simulation software to look up
for each OM at each distance the probability distributions of arrival times from which it then samples
hits. Figure 5.3 shows examples of such distributions simulated by PTD, for four different distances
from the track. For reconstructing events, a different approach is taken. The timing distributions are
parametrized with an analytic function (the “Pandel function”). This function and its application are
well documented, for instance in [72], [88], and [76], so I will not discuss it in detail here. Furthermore,
it is not timing but rather amplitudes that will take center stage in this work.

Understanding amplitudes is still in its infancy. To date, amplitude information from PMT’s is

only used to make corrections to the timing information to improve leading edge measurement accu-
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racy or compute a more accurate timing likelihood function. In this work, however, the distribution
of photons in the detector and the quantity of light measured by OM’s will be the key observable, to
be discussed at great enough length later that the subject deserves a detailed foundation here.

The lateral distribution of photons is controlled both by scattering and absorption. For a point

source, the shape of this lateral distribution function has the form:

1 —d/ng

€

I

hotons X
P A

where d is the perpendicular distance from the OM to the muon track, and A,z is an effective

propagation length due to the combined effects of absorption and scattering, given by:

Aeff = VAeAa/3 = 1/+/3ab.

For a line source of light, however, the flux of light at each distance is an integral over all small track

elements, and the result is a more complicated function [69]:

1
Iphotons X )\—Ko(d/)\eﬁ)

Here, K is a modified Bessel function of the second kind which, for large enough values of its argument

z, can be approximated as /2/(mwz)e *. So, the flux of photons at a distance d is approximately:

I 1 e~ e

otons X ———F——
PRt N A gy

5.5.1 Relationship between b., a, and A.g

The scattering and absorption coefficients b, and a are related differently at different wave-
lengths; we are most interested in the wavelength region between 350 and 450 nm. b, has been well
mapped out as a function of depth at 532 nm, but enough has been measured at other wavelengths
to make some simple generalizations. First of all, b, at 532 nm can be extrapolated to shorter

wavelengths using the relation:

A\ 0.84
be(N) = (532 nm> be (532 nm)

For the wavelengths of interest, b (400 nm) ~ 1.3b. (532 nm). Once at these shorter wavelengths, the

two coeflicients b, and a are correlated with each other; the equation for the absorption coefficient:

a()\) _ A€—0.48)\ +Be_6700/>‘ + CMdust)\_R
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Figure 5.4: Lateral distribution of photon intensity, according to PTD simulations.

in the wavelength region of interest becomes dominated by the third term which depends linearly on
the concentration of dust. Thus if the scattering coefficient rises, the absorption coefficient rises with
it roughly linearly [90]. The ratio between them is approximately 1/6 [85]. So, using the relations

be (400 nm) ~ 1.3b.(532 nm) and (400 nm) ~ 1/6b.(400 nm), we can approximate:

Aeft & v/ Ae(400 nm)\, (400 nm) /3 ~ 1.1\, (532 nm) = 1.1/b,

Aegr is proportional to A. of scattering only; we will use this fact to simplify the calculations. Within

one ice layer, the photon amplitude should follow this distribution:

1
Aegrd

I e~ Y Ad

photons X

This form agrees quite well with simulations of photons propagated with PTD. Figure 5.4
shows the lateral distribution of photoelectrons per OM for four different ice “groups” of different
dust concentration, as well as the average or “bulk” ice.

At small distances d, the Bessel function approximation breaks down, and PMT saturation
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effects will kick in for large events. But fortunately, a typical event will not sample this distance

region with very many modules, so the error is kept minimal.

5.5.2 A complete model of ADC behavior at all depths and distances

The “raw ADC” of an optical module is the amplitude (in millivolts) of the electrical pulse
arriving at the Analog-to-Digital Converter in the surface electronics of AMANDA. In the calibration
stage of analysis, this number is converted to an amplitude in photoelectrons (PE’s). This number
of photoelectrons seen by an OM is also referred to as the “calibrated ADC,” or simply “ADC.” 1
will be using this term in the remainder of this work to refer to OM amplitudes in units of PE’s.

A single muon traveling through a uniform layer of ice with a propagation length Ay will
produce ADC’s in AMANDA with the simple shape described above. However, we are faced with a
more complicated situation. Firstly, some fraction of the multiple muons in a muon bundle range out
as they traverse the detector. So the overall amount of light will drop between the top of the detector
and the bottom. Secondly, the ice is not uniform but structured in layers. An OM in a dusty ice
layer will receive less light than an OM in a clear layer. Figure 5.5 demonstrates the basic idea.

The first issue has been addressed already, in Chapter 3; The number of muons in an event as

a function of slant depth X is easily expressed as:

N

Hdepth

= Kl (e = 1)

Therefore the ADC at each OM should be proportional to the muon intensity:

ADC ¢gpect < N, (X)

Hdepth

where X is the slant depth of the track element nearest to the OM.

Since the SPASE/AMANDA coincidence events we will study in this work have a zenith angle
of only 12°, an OM is likely to receive its photons in the same ice layer as it was emitted, if the
distance traveled is small enough. Ice layers are about 50 meters thick, so a photon traveling 100
meters away from a 12° track will travel 20 meters if it travels directly perpendicular. But of course
at these distances photons are sure to have scattered several times en route and in reality photons

begin to cross across different ice layers at distances more like 80 meters. Past this distance, the
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Figure 5.5: Schematic of the light intensity field surrounding a muon bundle. The
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and lower for OM’s in dust layers (dust layer correction).
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propagation behavior observed by the OM more resembles bulk ice properties rather than that of
the OM’s resident ice layer; the “bulk” ice has its own propagation length Acg(bulk). So here the
exponential shape of the ADC changes slope from A.g(z) to Aeg(bulk). The lateral distribution
function is best described, therefore, by a split function with Acg(z) below a transition point D and

Aegr (bulk) above it:

NN.u’depth (X) )\leﬁded/AEﬁ“(ZOM) ,d < D
ADCeypect = N'Ny o (X) Al ded/Agﬁ(bulk) d>D
eff

The normalization of the two curves must match at the transition point:

N’ = Ne—(D/Xe(2)=D/Xegy (bulk))

5.5.3 Testing the theory with data

The distribution of light relative to a track is difficult to measure experimentally in AMANDA,
because the track itself must be reconstructed using only information from the same light. However,
SPASE coincidences can be used as a sample of reliable tracks or a calibration beam. A very accurate
track can be reconstructed by anchoring the track at shower core on the surface and varying only the
zenith and azimuth in AMANDA using the timing of OM hits (this will be discussed in more detail
in the next sections). Once the ADC average behavior has been tested using timing only, we will use
ADC’s for more specialized reconstruction on an event-by-event basis.

Figure 5.6 shows the average ADC as a function of OM depth, for several different regions of
distance. The expectation from the theory matches the data particularly well in the range of 50-80
meters, but matches reasonably well at all distances. Figure 5.8 shows the ADC as a function of
distance, for several different regions of depth. Here we can see the shape of the lateral distribution
function within each icelayer.

At small distances (such as 25 meters), the measured ADC’s appear to follow the bumps and
wiggles of the icelayers with a “phase shift” in depth of about 20-30 meters, which disappears for
farther distances. The explanation for this effect is: photons at short distances arrive unscattered
from muons which are traveling downward. Therefore the OM is sampling light primarily from the
ice directly above it. At farther distances, photons have been scattered and isotropized by the time

they reach the OM, so the OM samples more equally from the ice both above and below it.



98 Data

50 meers
L ]

w L

E L 25 meters . ° P
~ 000 L)

O - ®e ° Q ® e
a D ® o0 o0 0®

< * % ®
ol

&

o

>

<

o b b b b b b by \M AN I
-250 -200 -150 -100 -50 O 50 100 150 ZOZO( 2)50
m
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The dotted curve is the theoretical expectation presented in this chapter (with an
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5.6 Reconstructions

5.6.1 General AMANDA reconstruction philosophy: maximum-likelihood

Hits in AMANDA are not only few in number and sparse in their geometry, but also often
resulting from light which has been scattered en route. Thus, a geometric fit of a perfect Cherenkov
cone to the timing of hits (similarly to what is done in SPASE for instance) does not work very well
in AMANDA. Scattering being a probabilistic process, AMANDA’s reconstruction technique must
also be probabilistic.

AMANDA’s reconstruction software package, recoos, has a likelihood maximizer at its core.
The user inputs an event (with its pattern of hits, amplitudes, and times) and a hypothesis track
with some number of free parameters (for instance, vertex position (zg, yo, 20) and track direction
(0,)). recoos then iterates through different values of the free parameters, for each one computing
the total likelihood £ of the event having arisen from the test hypothesis:

L = P(obs.event|hypothesis) = H Loum
OM's

—log(L) = Z —log(Lom)

OM's

The minimizer adjusts the free parameters until £ is maximized. (In practice, the “negative log
likelihood” —log(L£) is more easily manipulated, and it is this quantity which is minimized by recoos,
hence the confusing nomenclature.)

The heart of the question, of course, is how to compute Lo ? This quantity is the probability
of observing a certain hit (or hit pattern) given a hypothesis (most simply, an infinite muon track).
But Loy is difficult to compute; one must incorporate the physics of scattering and absorption into
non-trivial probability distributions.

Standard muon reconstructions in AMANDA use only the arrival time information from the
first hit in OM’s. Given a track hypothesis, the probability distribution function of arrival times
for a hit are expressed by the “Pandel function” [72]. The distribution function depends on the

perpendicular distance of the OM from the track d, and its orientation angle to the Cherenkov light
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from the track. A parametrization of this function, including some extra features and corrections such
as PMT jitter time, has been implemented in AMANDA as a likelihood function called “Upandel.”

Its use and accuracy in reconstructing muon tracks has been well documented elsewhere [88, 76].

5.6.2 SPASE, AMANDA, and Combined fits

Between the two detectors, each event can be reconstructed in a plethora of different ways.
SPASE fits the event using only SPASE hit information, independently of AMANDA (this will be
called the “SPASE fit” in this work, described already in Chapters 3 and 4). Similarlyy, AMANDA
reconstructs the same events using only AMANDA hit information, independently of SPASE (the
“AMANDA fit”). There is a great diversity of techniques for doing this as well; the one used here
is a “Upandel” fit with inverted Bayesian weighting?. Thirdly, information from the two detectors
can be used together. Techniques for doing this have not been adequately explored, however there
is one straightforward method that I call “core-anchoring.” The location of the shower core is very
well-measured by SPASE, and the center of AMANDA is 1750 meters away. If the track is “anchored”
or fixed at the point of the core at the surface, then the hit information from AMANDA can fine-
tune the track’s direction with a long lever arm. The combined fit is implemented by assigning the
track vertex (zg, Yo, 20) to the SPASE core at the surface, and allowing AMANDA’s reconstruction
program recoos to fit the track using its standard Upandel maximum-likelihood method but with

only 6, ¢, and time ty as free parameters.

5.6.3 An ADC-based maximum-likelihood reconstruction

The focus of this work is the calorimetry of muon-produced light. The amount of light can be
measured primitively with the number of hit channels, but a better estimate can be measured using
amplitude information from hit modules, and also the “no-hit” information (effectively, amplitude=0)
from modules which are not hit.

As with any maximum-likelihood method, we must input a hypothesis track. Here, the hy-

pothesis is a tight muon bundle surrounded by an exponentially-falling intensity of photons. As

4This is a likelihood-weighting technique used in AMANDA to pick out neutrino-induced muons out of the over-
whelming background of cosmic ray muons. Since the technique discriminates between upward and downward tracks,
the weighting must be inverted if one wants to study downgoing muons of the same quality as upgoing neutrino
candidates. More details on the technique itself can be found in [93].
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shown earlier in this chapter, the photon intensity as a function of distance d is parametrized as split
exponential, with terms representing the intensity of muons as a function of slant depth X, and the
effective attenuation length of both scattering and absorption as a function of OM depth zpy. We
will now use this to reconstruct muon bundles, by finding the hypothesis which best matches the
ADC data.

For each OM, we must compute ADCgpect from the position of the OM relative to the track,
the surface, and the layered ice properties. First of all, the slant depth X of the OM is defined as
the distance between the track vertex at the surface and the point on the track where the OM’s

perpendicular intersects, shown in Figure 5.9. From X we compute N,

waepn 38 described in previous

sections. The normalization constant is redefined such that this quantity is equal to one at a reference
depth of 1750 meters (which, for a zenith angle of 12°, is approximately the center of AMANDA).
Next, Aegr (Zonr) is reexpressed as the bulk A times a correction factor accounting for scattering:

= dp—=
b (bulk) 0

e (zom) = Aer (bulk) < be(zom)

For each OM’s depth z, the scattering coefficient b, is looked up from the table of data measured

using a YAG laser in [83] (plotted in Figure 5.2), and compared to the bulk b, at this wavelength

be (bulk)
be(zom)

(which is 0.042), to obtain a the correction factor c;ce = . Meanwhile, all the normalizations
(including the total number of muons) are lumped together into a single overall normalization A.

Putting it all together then, the expected ADC is then computed as:

ADC — ANMdepth (X) Olciceded/(docice) ’ d<D
et AN“depm (X)e_(D dOCiCC)_D/dO)ﬁed/do ,d>D

where A and dj are left as free parameters; one measuring the shape of the light’s lateral distribution
function (in the absence of dust), and the other measuring the total intensity of muons in the bundle.
The complete track is parametrized, therefore, by eight parameters: (zo, yo, 20, to, 8, ¢, A, do), where
A and dj are the intercept and inverse-negative-slope of the underlying photon distribution.

The likelihood of an event under this scheme is computed in the following way for each OM:
EOM = P(ADCmeasuTed|ADCezpect)

where P is a Poisson probability. Then, the total —log L for the event is simply the sum of the

—log Loa’s for all OM’s, both hit and not hit.
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Figure 5.9: Coordinates used by ADC reconstruction.
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Fit number Fit Type
1-3 SPASE fit (all identical) SPASE

4 Line fit | AMANDA

5 Full fit (inv. Bayes) | AMANDA

6 Full fit (std. Bayes) | AMANDA

7 Tensor fit | AMANDA

8 Iterative full fit | AMANDA

9 Core anchoring + Full fit | Combined
10-12 (First iteration of new fits) | (Not used)
13 Core anchoring + Full fit + ADC | Combined

14 SPASE + ADC | Combined

15 | Core anchoring + ADC (track free) | Combined

Table 5.2: Summary of fits performed on SPASE/AMANDA coincidences.

Figure 5.10 demonstrates the fit for a single event; large enough that one can see the lateral
distribution function of ADC’s by eye. The curve is the theoretical function (for bulk ice, at 1750
meters slant depth) according to the fit results for A and dy. The fit is well-constrained by the data.

Three different fits using this likelihood formulation were performed:
e Combined fit (SPASE core + AMANDA timing) track fixed, A and dp fit as free parameters.
e SPASE track fixed, A and dj fit as free parameters.
e SPASE core position fixed, A, dy, and track direction (6, ¢) fit as free parameters.

These are the last three fits in Table 5.2, which contains a summary of all the fits used in this work.

5.7 Performance of the fits

Which is the most accurate track? This question can only be answered in Monte Carlo, where
the true primary track is known.

The three contenders are: the original SPASE track, and the two core-anchored combined
fits (one based on timing and the other on ADC’s). The combined fits would logically have an
advantage; with the 1750-meter lever arm between the two detectors, using information from both
can pin down the track very accurately. The core position in SPASE is a very well-measured quantity
and a reliable “anchor” for the combined fit; all that remains is to reconstruct the direction angles

(0, ¢) for which there is already a good first guess. However, AMANDA tends to reconstruct events
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Figure 5.11: Mean angular resolution (in Monte Carlo) as a function of cylindrical
proximity, for the SPASE track and combined fits.

better if the track is within its physical volume. Thus, SPASE tracks which pass outside AMANDA
tend to get inadvertently pulled ¢n by both the combined fits, distorting their accuracy. The original
SPASE track itself, of course, suffers from no such bias, but is less precise of a fit. This can be seen
in Figure 5.11, which plots the angular resolution vs. cylindrical proximity® to AMANDA for the
three candidate tracks. For tracks that penetrate the physical volume of AMANDA (C < 1.0), the
combined tracks excel. But for tracks passing outside this volume, the resolution of combined tracks
suffer.

As the shower energy rises, the SPASE detector alone can fit the event more and more ac-
curately. With higher particle counts in the scintillators, both the core location and the direction
are better known. This can be seen in Figure 5.12, which shows the angular resolution of our fits
vs. S(30). At very high energies, the SPASE track’s accuracy becomes comparable or better than
the combined fits. However, in this work many more events inhabit the low-S5(30) ranges where the

combined fits are preferred.

5This quantity, a measure of how close a track comes to the physical volume of AMANDA, will be defined and
discussed in more detail in Chapter 6 and Appendix A.
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Figure 5.12: Mean angular resolution (in Monte Carlo) as a function of 5(30), for the
SPASE track and combined fits cut to C' < 1.0.

Thus, to use the combined fit tracks, we restrict the data set to those events passing inside
AMANDA’s physical volume (C' < 1.0). This greatly reduces the number of events at our disposal,

but provides a high-resolution sample.
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Chapter 6

Cuts

6.1 SPASE cuts

If we are to fully take advantage of the SPASE detector as a “calibration beam” of muons
or use SPASE’s measurements of them in a composition analysis, then we must ensure that this
beam is of the highest precision possible. SPASE reconstructions vary in both direction and energy
accuracy. To choose a “starting set” of SPASE events for which these measurements from SPASE
can be considered reliable, we will impose some quality cuts on the SPASE events which comprise

our data and Monte Carlo sets, following similar methods as are used by other experiments.

6.1.1 Angle of SPASE direction toward AMANDA

The SPASE-AMANDA data set contains all SPASE triggers and the AMANDA events asso-
ciated with them, even if the shower goes nowhere near AMANDA. Tracks which miss AMANDA
completely will have no real hits and will not make it to later stages of analysis; eliminating these
events early on reduces the data set, reduces contamination by accidental triggers (from, for instance,
a coincident muon in AMANDA from another direction), and allows us to better directly compare
data and Monte Carlo (which is generated only in a fixed zenith angle region of 0° to 32° and an
azimuth angle region of 205° to 290°).

Thus, a simple initial cut requires that the space angle difference ¥ between the SPASE track
and a line connecting the center of SPASE to the center of AMANDA (6 = 12°,¢ = 247°) must be

less than 20°. Reducing the solid angle acceptance from 27 to roughly 6% of that (in a particular
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the cut ¥ < 20°.
nearly-vertical and high-efficiency direction) results in a reduction of raw data events by a factor of
three. This cut is designed to be loose enough to pass any event that might be useful later in the
analysis; it covers a wide enough swath of zenith and azimuth angles that we are in no danger of

losing good events (see Figure 6.1). The cut is done by hand for 1997 data, but is performed in a

“pre-analysis” stage for 1998 data.

6.1.2 SPASE core position

Although in theory an air shower detector can fit a lateral distribution function to find the core
position even if it is outside the array, these fits are less reliable than if the core is inside the physical
array. So we will include only events whose core is within the physical area of the SPASE detector
at the surface. Almost all air shower experiments make a cut like this to ensure event quality.

A “surface map” of core locations for data events is shown in Figure 6.2, and the equivalent
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Figure 6.2: Surface core position coordinates of coincidence data events (no other pro-
cessing or cuts). The same behavior is also found in Monte Carlo.
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the center of SPASE) on the distribution of S(30). Solid curves: before the cut. Dashed
curves: after the cut.



80

map for Monte Carlo looks similar. In both data and Monte Carlo, the bulk of events land within the
SPASE detector itself, but there is a “haze” of events outside the detector. The events in this haze
are responsible for the long tail of very high S(30) values, a result which is clearly unphysical and
due to lateral distribution fits gone wrong. We can make a simple circular cut on the core position

(defined as z¢ and yy), as follows:

\/(l‘O - l‘center)2 + (yO - ycenter)2 < 60 m

Cutting these events away leaves a much more sensible distribution of S(30). The effect of the cut
on the S(30) distributions of data and Monte Carlo is shown in Figure 6.3. The cut removes about
10% of the data, almost all of it from the unusual high-S(30) tail. After the cut, there is still a
discrepancy between data and Monte Carlo at high values of S(30). This will be addressed later, in

Chapter 9.

6.1.3 Cuts on S(30)

The attentive reader has probably noticed the discontinuity in Figure 6.3 at S(30) = 4, and
the strange behavior of both Monte Carlo and data below this size in other figures thusfar. The
reason for the change in behavior is a break in the analysis technique. A primitive estimate of S(30)
is always made first, extrapolated from the 3rd and 4th highest-intensity stations. If this estimated
S5(30) is less than four, the software concludes that the event is too small for a full-likelihood S(30)
fit to be effective and it records the estimate as-is. If the estimated S(30) is larger than four, the
software proceeds to the full-likelihood (and more accurate) reconstruction of S(30). When this is
performed, some events will now reconstruct with a small S(30), and will supplement the bins less
than four. To avoid this strange mix of events all with likely-misestimated shower parameters, all
events with S(30) less than five are discarded in this analysis.

Above S(30) = 5, the angular resolution of SPASE (Figure 4.4(a)) and also of combined
SPASE/AMANDA fits (Figure 5.12) improves steadily with increasing shower size. Above S(30)
values of about 10, the resolution is stable and better than a degree. However, low-S(30) events (in
the range 5 < S(30) < 10) will be important for this work; they comprise over half of the events above

S5(30) = 5, and we will not throw them away just yet. Instead, we will address angular resolution
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“quality control” is a more efficient way a little later in this chapter.

6.2 AMANDA cuts

AMANDA is a sparse array, deployed in a natural medium, under uncontrolled conditions.
For many events, there is simply not enough information contained in the hits (and their times and
amplitudes) to uniquely characterize the event. If the hit pattern is an ambiguous splash of light and
is not sampled adequately by the array (such as for instance stray light from a large bremsstrahlung
outside of the array) reconstruction algorithms are easily confused. Therefore AMANDA analyses
depend more heavily on quality cuts than other experiments. To do neutrino physics, they are
essential for the separation of signal and background. To do cosmic ray physics, they are essential to
evaluate the reliability of a reconstruction.

Many different manifestations of quality cuts are used in AMANDA and will be referred to
in this work; they require a brief overview. Some were designed for neutrino signal separation, used
commonly by the entire collaboration. Others are unique to this work and designed for composition

studies.

6.2.1 Convergence in recoos

To constrain five free parameters (which define a track direction), an event needs a minimum
of five hits!. To successfully converge on a maximum likelihood in a multidimensional likelihood
space requires quite a bit more; the hits must be consistent with some preferential track. To put it
simply, the event must have five or more hits that make some kind of sense. This condition preserves
only about 4% of events from the data set, removing all the very low energy events and events which
pass so far outside of AMANDA that AMANDA does not respond. The efficiency of this process will

be discussed in further detail in Chapter 7.

6.2.2 The Inverted LBL Filter

To processes a complete year’s data set in detail searching for a few neutrinos out of the

overwhelming downgoing background is CPU-impractical; instead, a fast filter for upgoing events is

1 After hit cleaning
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applied to bring the data to a more manageable size first. A linefit (a simple x? fit to the time flow

of hits in the detector) is performed, and only events which pass the following cut:
elineﬁt > 50°

are kept in the data set. Then, a slower maximum-likelihood fit or “full fit” is performed on the

remaining events. Only events which pass the next cut:
gfullﬁt > 80° AND Ndir Bpfie > 2

are kept. Here “NdirB” is the number of unscattered (or “direct” hits).
These cuts are designed to initially determine the track’s direction (is it upgoing?) and quality
(does it have a few nice hits?). Since the fits and cuts are performed at Lawrence Berkeley Laboratory,
it is known as the “LBL Filter.” All further neutrino analyses are done downstream of this procedure.
To apply this filter to SPASE events, we must invert the zenith angle requirements of the cut.
So, requiring an upgoing hypothesis to have 8 > 50° is equivalent to requiring a downgoing hypothesis
to have 6 < 130°. Thus, the “Inverted LBL Filter” which will will use on downgoing events consists

of the following cuts:

elmeﬁt < 130° AND efu”ﬁt < 100° AND Ndir B > 2

6.2.3 UW Neutrino Cuts for 1997 neutrino analysis

After the LBL Filter, the data set is still overwhelmed by cosmic ray background compared
to neutrino-induced signal. Further reconstructions and quality cuts are necessary to separate the
two. Exact techniques for this vary from analysis to analysis (there are too many to describe), but
we will choose one as an example: the atmospheric neutrino analysis performed at UW-Madison on
1997 data [79]. Six quality cut parameters were used in this analysis: the likelihood of the fit, the
number of unscattered hits, the sphericity of the hits, the track length, the difference between line
fit and full fit, and the uniformity in time (or “smoothness”) of the hits along the track length.

The important thing to remember here is that these cuts were developed to separate upgoing
muon events of high enough quality to be confident of their upgoing direction. In this work, all the

muons of interest are already downgoing; we do not need to separate them from anything. Thus the
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only reason to apply cuts such as these are to create a high-statistics event sample of downgoing muons
which resemble the neutrino-induced upgoing sample. Thus these cuts are used only for calibrating

AMANDA’s response to upgoing muons; they will not be used for composition analysis.
6.3 Specialized cuts for combined SPASE/AMANDA analyses

6.3.1 Cylindrical proximity

Unlike underground detectors, AMANDA can be sensitive to tracks that pass outside its
physical volume. The efficiency is higher for a particle traveling through the center of the detector
than past the edges, of course, but even particles that travel completely outside the detector can
trigger AMANDA if they produce enough light.

We would like to parametrize the proximity of a track to the detector, but since AMANDA is
cylindrical in shape, a simple impact parameter to the center of AMANDA is not a good measure
of this. Instead we define a cylinder of radius R and height =£H which is proportional by a constant
to the physical size of AMANDA-B10; the cylinder’s proportionality constant is its “size.” In other
words, a cylinder of the exact same size, shape, and position of AMANDA-B10, is defined as “size
1.0.” A cylinder of “size 1.5” has the same center position, but has 1.5 times the radius, and is 1.5
times taller both up and down. The “cylindrical proximity” C of a track is defined as the size of
the cylinder of closest approach, shown in Figure 6.4. A detailed derivation of how C' is computed is
given in Appendix A.

The distribution of C' for data and Monte Carlo (after recoos) is shown in Figure 6.5. Although
the statistics available drops fast when one cuts strictly on this parameter, requiring the track to
pass through the physical volume of AMANDA (in other words, requiring C' < 1.0) results in a very
pure, reliable, and robust set of events. Relaxing this cut out to 1.5 doubles the number of events in

the sample, but sacrifices quality.

6.3.2 2-D cut on cylindrical proximity and S(30)

As discussed earlier in this chapter, angular resolution of reconstructed tracks declines with

increasing cylindrical proximity and with decreasing S(30). Unfortunately, the number of event
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Figure 6.6: Contours of angular resolution, in the two-dimensional parameter space of

S5(30) and C. The two-dimensional cut is also shown.
statistics also declines rapidly as these two cuts are tightened.

However, angular resolution can be preserved while still retaining events by making a two-
dimensional cut in these two parameters. At small S(30), the worse events are those which skim
the edges of the detector (C' ~ 1.0), while those that go through the center are still reconstructed
well. Contours of constant angular resolution as a function of S(30) and C' are shown in Figure 6.6,
together with a two-dimensional cut which preserves events with an average angular resolution of a

half a degree or less.

6.3.3 Quality of N, fit slope

The negative-inverse-slope of the lateral distribution function (dp) is determined by the ice

properties; it should be equal to the effective attenuation length of blue light, about 26 meters.
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Figure 6.7: Distribution of reconstructed “length” parameter dy.

However, we reconstruct this attenuation length rather than assume it. If dy is reconstructed as a
negative or very large number, this means that the lateral distribution function did not reconstruct
well (for instance, if the minimizer couldn’t find a reasonable minimum), and the resulting calorimetric
measurement is unreliable. We therefore use dy as a cut parameter for the composition analysis,
throwing out any event for which dy is not between zero and 100 (see Figure 6.7 for distributions of
this parameter). This cut does not have a large impact on the event statistics, it merely removes the

most egregious outliers.

6.4 Event set for AMANDA calibration

To calibrate AMANDA for neutrino work, we duplicate the standard neutrino analysis chain

on this data set, and also duplicate their cuts.
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Cut Neyents total | S(30) <5 | 5—10 | 10 - 25 | 25 — 50 | 50 — 100 > 100
none 4,119,206 | 3,316,767 | 324,124 | 226,552 73,083 31,201 | 147,479
\\ 1,318,475 | 1,071,940 | 103,496 72,502 22,450 9,367 | 38,720
W+-core 1,181,105 | 1,032,709 | 86,337 46,747 10,752 3,663 897
core+recoos 43,082 34,422 4,403 2,957 871 348 81
coret+recoos+C1.5 18,627 14,016 2,320 1,639 445 173 34
core+recoos+C1.0 9,609 7,236 1,192 848 223 96 14

Table 6.1: Efficiencies (event numbers) for some cuts.

® recoos convergence

LBL filter

(varied)

SPASE core cut

Neutrino cuts (varied)

Loose cylindrical proximity cut (such as C' < 2.0) or simple directional cut (such as ¥ < 20°)

Other cuts can be applied later to these events for particular studies of calibration (see Chapters 7).

6.5 Event set for composition studies

Neutrino cuts must be very tight, because the signal is peeking out under a large background

which much be rejected. For studying composition, however, we do not need the same standards of

quality. Our only major requirement is a reliable track. Thus, the “composition event set” consists

of all events which pass these cuts:

® recoos convergence

SPASE core cut

2-dimensional cut on S(30) and cylindrical proximity C'

ADC lateral distribution quality cut (0 < dog < 100)

These cuts were developed using approximately 55 days’ worth from 1997; the event rates for the

various cuts on this data sample are given in Table 6.1.
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Chapter 7

Calibrating AMANDA with SPASE

Most telescopes can be calibrated either by pointing them at bright, well-understood objects in the
sky (such as Vega in visible light or the Crab Nebula in x-rays), or by shining a calibration beam
into the detector. AMANDA has neither kind of calibration source for high-energy neutrinos. But
SPASE coincidences can provide such a calibration beam of downgoing muons. And although SPASE
events have their limitations (they are muon bundles rather than single muons, downgoing rather
than upgoing, and available only from one zenith angle), we can use them to measure some of the

basic response properties of AMANDA.

7.1 Efficiency

The efficiency of the AMANDA detector is a complex function of zenith angle, particle energy,
location in the detector, and a host of other factors. Characterizing the efficiency depends on accurate
Monte Carlo which predicts the number of events with the potential to trigger, and the percentage
of them that do.

However, the SPASE detector gives us an opportunity to measure and characterize certain
efficiencies without depending on Monte Carlo. AMANDA data is taken whenever SPASE triggers,
regardless of whether AMANDA triggers itself. Many of the coincidence events have few hits in
AMANDA (and some have none). The efficiency (or “survival rate”) of events can be plotted as the
ratio between number of events which fulfill a condition and the total number of SPASE events.

To study the dependence of efficiency on energy and proximity, we have divided the param-

eter space into two coordinates: S(30) and cylindrical proximity, C, and will examine AMANDA’s
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efficiency as a function of these two quantities. The data set is all 1997 SPASE coincidences which

pass the SPASE “core cut” (described in the previous chapter).

7.1.1 Trigger efficiency

In normal operation, AMANDA reads out an event if more than 16 hits arrive within two
microseconds. Understanding the properties of this multiplicity trigger is difficult, because it precedes
any hit cleaning. Hits due to noise, crosstalk, afterpulsing, or other instrumental effects which are
difficult to simulate can all participate in the trigger and effect the “turn-on” curve of AMANDA.

For SPASE coincidences, however, the trigger mechanism is completely different; the event is
read out for every SPASE trigger at the surface. Within each SPASE coincidence event, we can count
the number of hits which were read out, and estimate whether AMANDA would have triggered on
its own'. The efficiency of SPASE events which have 16 hits or more in the event (before cleaning)
is shown in Figure 7.1.

It should be warned that the actual operation of the 16-hit multiplicity trigger is not equivalent
to this method (which merely counts up all hits within 32 microseconds). By including both true

and accidental triggers, this method will overestimate the trigger efficiency.

7.1.2 recoos efficiency

All events are put through AMANDA hit cleaning and reconstruction (a process which requires
a minimum of five good hits and convergence to a minimum). After this process, only 4% of events
survive, most of which passed through or very near AMANDA. The efficiency as a function of S(30)

and C' is shown in Figure 7.2; it reaches 100% at high energies and near proximities.

7.1.3 Cut efficiency for some typical AMANDA cuts

AMANDA analyses use a variety of quality cuts, some of which were described in the previous
chapter. One can play a similar game with these cuts, testing the efficiency of the cut as a function of

proximity and energy. Here we show as an example AMANDA'’s efficiency for the two cuts described

LAll events are tagged, often with multiple triggers (such as “SPASE-2 and AMANDA-B10”). Ordinarily, this
information is kept in the data stream, and events which also triggered AMANDA could be easily separated. However,
in this sample of matched-up 1997 coincidence data, this information was somehow lost. It could be recovered by
reprocessing all the data.
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Figure 7.3: LBL Level 2 efficiency as a function of S(30) and C.

previously: the Inverted LBL Filter (Figure 7.3) and the UW neutrino quality cuts (Figure 7.4).
There are no “standard” AMANDA quality cuts; they vary from analysis to analysis. Cuts are

different for specialized searches (i.e. for point sources or gamma ray bursts), and are always subject

to improvement and change. This measurement is meant as a guideline; it gives us an indication of

the sensitivity of our instrument to tracks outside the physical volume.

7.2 Pointing and angular resolution

Without any calibration sources of high-energy neutrinos in the sky, AMANDA is forced to
measure its pointing accuracy and angular resolution with Monte Carlo simulations. However, the
presence of SPASE on the surface allows for an independent measurement of these quantities. In
fact, in 1997 there were not one but three surface detectors operating in coincidence with AMANDA:
SPASE-2, SPASE-1, and GASP. The three detectors, operated completely independently and visible
by AMANDA at two different zenith angles, increase our confidence that the result is not due to any

surface-detector systematics.
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Figure 7.4: Neutrino cut efficiency as a function of S(30) and C.

For each coincidence event, SPASE-22 reconstructs the shower direction and core location
on the surface from the arrival times of the scintillator hits; the resulting track is described by
both the core location coordinates and the direction: (zg,ys, 2s,0s, ¢s). Completely independently,
AMANDA reconstructs the same event from the arrival times of the hits in the ice using the Upandel
maximum-likelihood method (described in Chapter 5), and provides its own hypothesized track,
described similarly by a vertex location and direction: (z4,ya,24,04,04). We then compare the
AMANDA direction (04, ¢4) to the SPASE direction (6s, ¢s). By comparing directions only, and by
comparing two completely independent measurements, we avoid seeing offsets that could be artificially
introduced by an uncertainty in the absolute relative positioning® of the two detectors.

Since the angular resolution of the surface detectors (a degree or less for all three detectors
SPASE-1, SPASE-2, and GASP) is much better than AMANDA’s (about 3-4 degrees), the surface

direction can be used as an estimate of the true shower direction. We then examine AMANDA'’s

2] will describe the technique for SPASE-2 coincidences, but of course the same procedure is followed for SPASE-1
and GASP.

3The relative positioning of SPASE and AMANDA has been calibrated independently, in [95] and [78].



94

Cut color code
WU < 20°, tight v, all energies black
¥ < 20°, tight v, S(30) > 10 red
WU < 20°, loose v, all energies green
C < 1.0, loose v, all energies blue
C < 1.0, tight v, all energies magenta
C < 0.7, tight v, all energies cyan

Table 7.1: Variety of cuts used to measure pointing offset in AMANDA

angular deviation from this estimate in zenith: A = 04 —0s and in azimuth: A¢ = (¢4 —¢g)/sinbs.
Distributions of these variables are plotted for all events which pass certain quality cuts, and the
resulting curve is fit to a Gaussian. Figure 7.5 shows some examples of the Af distributions (which
show some interesting features). Six different cut combinations of varying stringency were tried,
summarized in Table 7.1.

Looking at Figure 7.5, we see that the zenith pointing is offset from zero by about 2 degrees on
average. This means that AMANDA systematically reconstructs tracks about 2 degrees steeper than
the SPASE track. The shape of the distribution is not a perfectly symmetrical Gaussian; there is a
tail at negative values (steeper AMANDA angles). The greater the asymmetry, the more the mean
of the Gaussian is pulled to the negative. The magnitude of the effect varies with cut level; more
constrained tracks exhibit more asymmetry, and SPASE-1 data is less asymmetric than SPASE-2.
The causes of the asymmetry and of the overall shift are unknown.

The mean of the Af distribution is the “pointing offset” in zenith, and the mean of A¢ is
the “pointing offset” in azimuth. Measurements of the pointing offsets (in both zenith and azimuth)
for the three detectors are summarized in Figure 7.6. The center of the “crosshairs” in this plot
represents a pointing error of zero (in other words, a reconstruction which on average points in the
exact direction of the source). However, measurements from all three detectors lie at negative zenith
offset of 1-2 degrees. This means that AMANDA reconstructs events on average 1-2 degrees steeper
zenith than the direction of the source. There is a small negative offset in azimuth pointing, but is
is negligible.

This is not the first discovery of a pointing offset in AMANDA it has been noticed in AMANDA

Monte Carlo for some time that reconstructed zeniths are 1-2 degrees steeper than the true track [81].
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Figure 7.5: Pointing offset in zenith (Af) relative to SPASE-2, for the six different sets
of cuts listed in Table 7.1.
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[81].
Although the exact magnitude of the effect depends on what cuts you employ and the zenith angle of
the track, the existence of an effect is agreed upon by three independent surface detectors (SPASE-1,
SPASE-2, and GASP), and AMANDA'’s own Monte Carlo. Thus it is not a strange systematic of

one particular analysis; it is a real effect.

7.2.1 Dependence on zenith angle

We expect the magnitude of the zenith pointing offset to depend on zenith angle. At 8 = 12°,
reconstructed tracks are 1-2 degrees steeper downgoing. But at § = 0°, this cannot still be true (a
track cannot get any steeper than 0°!). Likewise, at # = 90°, there is symmetry between up and down
(both directions are “steeper”), and so the offset should be zero. At § = 168° (12 ° from straight up),
we expect an offset of positive 1-2 degrees if tracks are now pulled steeper upgoing. The expectation
is confirmed by high-energy neutrino signal Monte Carlo, which is generated at all zenith angles (see

Figure 7.7).

7.2.2 Impact on point source searches

Having a pointing offset is equivalent to having a misaligned telescope. Hence it is only
important when looking at point sources in the sky. However, several point source searches have
been conducted [81, 79], and this misalignment will result in some loss of signal.

The 5-degree radius circle in Figure 7.6 represents a typical point source search bin of size ~ 1.6



98

Absolute Painting Offset

= !

g !

= |

M | 0.016

a :

[al

<z

<

= 0.014

(0]

N

A

3

S 0.012

<

=

=

fley

T 0.01

(0]

N

0.008

I 0.006
—{ 0.004
— 0.002

-5 —4 -3 -2 -1 0 1 2 3 4 5
azimuth(AMANDA)—azimuth(SPASE) (deg)

Figure 7.8: Events from a hypothetical point source which is offset with Af = 1.5°.

times the angular resolution of the detector of about 3 degrees. Different specific searches employ
different binsizes; this example is meant merely to guide the eye. If a point source is located at the
center of the “crosshairs” in the sky, signal events in AMANDA will be measured at zenith angles
1.5 degrees steeper. The distribution of signal events from such a point source is shown in Figure 7.8

The number of events which fall off the edge of the search bin due to the offset is easily
computable (see Table 7.2). At Af = 1.5°, 6% of the source events are lost. At Af = 2.0°, 10% of
the source events are lost.

The missing events can be recovered by re-aligning the telescope when searching for point
sources. Instead of centering the search bin on the crosshairs, the bin should be aimed off-center in

zenith for better signal gathering. Figure 7.7 can guide our choice of this correction.



Offset | Fraction of signal | Fraction of events
events within bin | lost due to offset

0.0 0.7511 0
0.5 0.7463 1%
1.0 0.7321 3%
1.5 0.7087 6%
2.0 0.6768 10%
2.5 0.6374 15%
3.0 0.5915 21%

Table 7.2: Events lost due to a zenith offset, for a 2-D Gaussian distributed source of

events with 3° resolution and a 5° binsize.
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Chapter 8

Light calorimetry with ADC lateral distributions

8.1 Why calorimetry?

The concept of light calorimetry is used already in AMANDA analyses. For instance, the
number of channels which are hit in an event (a parameter called nch) is used as an estimator of
muon (and therefore neutrino) energy in diffuse limit analyses [94], and despite its simplicity is one
of the most robust and powerful energy estimators in use in AMANDA. AMANDA is a fully active
calorimeter; its entire volume is radiative. The amount of light in the detector is proportional to the
energy loss of the muons passing through it, and our task is to reconstruct the muons using only the
information in this light.

The nch estimator works especially well for events which are low-energy and pass through the
physical volume of the detector. However, the principle does not work efficiently for large events or
for tracks which pass outside the physical array. In this class of events, an unknown fraction of the
total light is sampled by the phototubes, while the rest is lost into uninstrumented ice.

However, with our understanding of how light is emitted and propagates in ice, we can do
better than just counting channels. Rather, we need only to sample the shape and structure of the
photon field in the ice to reconstruct the properties of the emitter, even if most of the light ends up

undetected.
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8.2 K50

An air shower is symmetric about its own axis, and the light or particles observed in a detector
will also follow a cylindrically-symmetric pattern around the primary track axis. Thus, many air
shower experiments explore the shower’s properties by fitting the lateral distribution of something
(for instance an exponentially-falling Cherenkov light amplitude, or a scintillator particle density).
Furthermore, since the lateral distribution is theorized to have a particular shape, the measured
distribution is often parametrized by one number representing the value of the distribution at a
particular constant distance from the primary track axis. Even the naming conventions for these

parameters follow a kind of industry standard. For instance,

e Lgy: AIROBICC Cherenkov light density at 90 meters from the core [48]

S5(30): SPASE particle density at 30 meters from the core [110]

C'(100): VULCAN Cherenkov light density at 100 meters from the core [111]

e p(600): Haverah Park particle density at 600 meters [58]

S0(600): AGASA particle density at 600 meters [55]

Ci20: BLANCA photon density at 120 meters [33]
e (Q(100): Mt. Liang Wang Cherenkov light intensity at 100 meters [61]

Each experiment has its own formulae for extracting the primary energy or composition from
its selected parameter. These formulae depend not only on the size and type of detector but also
the altitude and location of the site, or zenith angle of the event. The energy resolution of the
measurement can be checked against the various air shower models and Monte Carlo simulations.

In AMANDA, we will apply the same philosophy and introduce our own parameter for the

deep muon component of the air shower:

e K50, the average AMANDA PMT amplitude measured at 50 meters from the reconstructed

track axis, for bulk ice at a slant depth of 1750 meters,

= A——1 (50 m)/do
(50 m)do
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Figure 8.2: Distribution of distances from the track, per event, for all modules (above)
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Here, A and dj are the two free parameters of the ADC-based reconstruction, introduced in Chapter 5.
Figure 8.1 demonstrates the success of this parameter as an estimator of muon number. Ac-
cording to these simulations, the relationship between the two parameters is composition-independent

(a fact which is crucial to the robustness of the measurement).
8.3 Why 50 meters?

8.3.1 The arguments for far distances

The ADC reconstruction is a global fit to all 302 OM’s. But there are few (if any) OM’s at

10 meters from the track, or at 150 meters. Most of them OM’s participating in the fit lie in a
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range of distances between 50 and 110 meters, as shown in Figure 8.2. The modules in this range of
distances dominate the determination of the lateral distribution function which is extrapolated to all
other distances.

Although our muon bundle track resolution is quite good (see Figures 5.11, 5.12; and 6.6 for
instance), it is not perfect. If the track is off from the true track by an angle of a degree, this
corresponds to a mislocation of the track by 30 meters at AMANDA depth. How does this affect
the lateral distribution? To one side of the error, OM’s will be assigned too small of a perpendicular
distance, and their ADC’s will be shifted into a smaller bin. On the other side of the error, OM’s will
be assigned too large of a perpendicular distance, and their ADC’s will land in a larger bin. The end
result is a “smearing” of ADC’s across distance bins and a flattening of the ADC slope, especially at
small distances on the order of the track error itself. The larger the distance, the more the shape of

the ADC distribution becomes immune to changes in the central track.

8.3.2 The arguments for near distances

As we go out in distance, although many OM’s participate in the fit, a greater percentage
of them have zero hits. Not-hit modules at far distances will have a low probability of receiving
a hit, and so their Poisson likelihood P(0|small) is close to one. This doesn’t provide very useful
information about the hypothesis; the information is not very constraining of the fit. Hit modules,
on the other hand, are very constraining; more effort must go into adjusting the hypothesis to bring
it into agreement with the hits. Hit modules are most commonly found at a distance of around
30 meters (see again Figure 8.2).

Near OM’s are also more likely to have linear ADC behavior. At OM’s far from the track,
photons will arrive scattered and delayed in time (see Figure 5.3). Pulses from the PMT are further
smeared in time and integrated by both the electrical cable and the SWAMP amplifier at the surface,
with a time constant of a few hundred nanoseconds. Although a “late” photon is just as good as an
early one in this ADC analysis, if multiple late photons arrive at a faraway OM, separated by more
than a few hundred nanoseconds, the peak-ADC will only measure the shaped charge of one of them
and will underestimate the number of photons. If multiple photons arrive together, as they would for

a nearby OM, then they are integrated together into a single shaped pulse that is correctly measured
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Figure 8.3: The fitted ADC lateral distribution functions relative to many different
anchored tracks.

by the peak-ADC. (See Appendix D for more on the subject of ADC linearity.)
8.3.3 The most stable compromise

Figure 8.3 shows the fitted ADC lateral distribution functions for the “best” track fit to an
individual event, and a collection of alternative tracks artificially moved in zenith and azimuth short
distances (up to 1.5 degrees total) away from the best-fit track. The slope and intercept is re-
reconstructed for each alternative track. At very large and very small distances, small changes in
fitted slope produce large variations in amplitude. There is a region in the middle, however, between

40 and 60 meters, where the variation is the smallest. At these distances, the fit amplitude is the
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most robust under errors in the track position. Thus, 50 meters offers the most stable measurement
of this rather finicky quantity, the best compromise between modules contributing to the fit, modules

hit, track resolution issues, and ADC linearity.

8.4 Interpreting the measurement: single muons vs. muon bundles

Light from a single muon of energy E comes from a superposition of continuous emission
(Cherenkov light), and stochastic emission (intermittent showers). Two extremes of muon energy
can be approximated: a minimum-ionizing muon can be described by Cherenkov light alone, and
a very high-energy muon can be described by averaged “shower light” proportional to the muon’s
energy. This distinction is important when interpreting a measurement of the total amount of light
emitted in an AMANDA event. If the event is a single high-energy muon, then the light is roughly
proportional to the energy of the muon. If the event is a muon bundle dominated by minimum-
ionizing muons, then the light is roughly proportional to the number of muons. Of course events in
general are neither extreme, as muons (be they cosmic ray-induced or neutrino-induced) come in a
spectrum of energies. So K50, which is really a measure of total energy loss, is sometimes compared
to the “number of muons” in this work. But it is important to keep in mind that although the idea
of “muon counting” may help us to visualize some of the physical processes at work, K50 measures

something else unique.
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Chapter 9

Systematics and model dependencies

K50, a measurement of light amplitude, is the culmination of many successive processes: hadronic
interaction, propagation of particles in the atmosphere, propagation of muons in ice, emission of
light, and reception of the light by AMANDA’s photomultipliers. A simulation of these events
has uncertainties at each step in the process, any of which could contribute or conspire to produce a
discrepancy in K50 between Monte Carlo and experimental data. How, then, can we draw conclusions
about cosmic ray composition from the measurement? Fortunately, the energy threshold of the
SPASE/AMANDA coincidence detector is low enough that we can calibrate K50 against a known
composition at low energies, a technique that will be described in the next chapter. In essence, we
will anchor or renormalize K50 at low energies and watch whether its properties change as energy
increases!.

This philosophy is only sound if K50’s behavior as a function of energy does not itself change
with different models. In other words, we can renormalize away the uncertainties only if models differ
from each other by a constant factor in K50 over all energies such as the example in Figure 9.1. In
this chapter we investigate whether this is true, whether variation between models is “renormaliz-
able.” In the following chapter, we will introduce the composition analysis itself and put each model
independently through a renormalization procedure to measure systematic shifts in the answer after

all is done.
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log10(K50)

"Renormalization factor" for models:
= a constant offset in the log

log10(S30)

Figure 9.1: Toy model example of the principle of “renormalization:” models 1 and
2 differ from each other by a constant factor in K50 (a constant offset in log(K50)).
Model 3, on the other hand, is not “renormalizable” because its relative behavior
changes with energy.
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9.1 Effect of hadronic interaction model

QGSJET is a favorite among hadronic interaction models, but we should not assume that it is
the most correct at simulating the high-energy muons that reach AMANDA. In fact, the number of
muons is one of the variables that varies between hadronic interaction models. SIBYLL, for instance,
is known to produce fewer muons than other models [29]. So we will use SIBYLL to estimate the
uncertainty due to interaction model. Figure 9.2 compares QGSJET and SIBYLL in their K50
reconstruction. With fewer muons, the SIBYLL model has lower average ADC’s, as expected. In
general, differences between models can produce uncertainties in electron number N, or muon number
N, of as much as 50% [28]. But the relative offset in the normalization of K50 between the two models

changes by only about 5% between S(30) = 10 and S(30) = 100.

9.2 Effect of muon propagator

Different muon propagators produce different muon multiplicities, leading to differences in
K50. A behavior comparison of two muon propagators (PROPMU and MMC) is shown in Figure 9.3.
Although the curves look similar, there are systematic shifts at low energies. In fact, the normalization

of the two models differs by up to 15-20% from S(30) = 10 to S(30) = 100.

9.3 Effect of light propagation models in AMANDA ice

Our model of the propagation of light in ice is crucial to the measurement of K50. In Chap-
ter 5, we developed a simple model of ADC’s as a function of distance and depth which matched
well to experimental data. Monte Carlo simulations, however, match the expectation less well (see
Figure 5.7).

By comparing the lateral distributions of amplitudes between data and Monte Carlo, as is
shown in Figure 9.4, we see discrepancies in the amount of light as a function of distance. In
other words, the slope of the lateral distribution of amplitudes is not being simulated correctly. By
measuring amplitudes at one reference distance (in this case, 50 meters), we hope to render this

slope discrepancy irrelevant, but to justify this choice we must show that the method is robust under

IWe will deal primarily with the log of the quantities K50 and S(30) from this point forward. Therefore I will
occasionally describe a plot as “S(30)-K50 parameter space,” even though it is really a log-log plot.
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changes in ice properties and light propagation.

Three ice models are readily available. The default model is a “layered ice” model in which
the instrumented region of ice is divided into 16 layers, each having its own set of photon tables
defined by its absorption and scattering lengths. The photon density at each OM is computed from
the tables of that OM’s particular ice layer. Secondly, the “bulk ice” model treats the entire ice
as homogeneous, with a single scattering and absorption length. In addition, there is a third ice
model available by accident; a bug in the photon propagation code was discovered which altered the
slope of the ADC lateral distribution, but not before a substantial number of air showers had been
processed. Lateral distribution functions for this “buggy” ice are also included in Figure 9.4. An
alternative light propagation code (“Photonics” [80]) will be available in the near future. This will
provide another useful cross-check.

Changing the ice properties from layered to bulk makes little difference, as seen in Figure 9.5;
the renormalization changes by on the order of 5% from S(30) = 10 to S(30) = 100. In the “buggy”
ice, however, the renormalization wanders by as much as 30%. Although the bug itself has been
fixed, this suggests that the analysis could be vulnerable to changes in the slope of the ADC lateral

distribution. Carrying the buggy ice model to the final stages of the analysis will tell us more.

9.4 Effect of angular and absolute OM sensitivity

Recent measurements and analyses have cast doubt on previous measurements of the trans-
missivity of the OM’s glass housing [91] and of the angular sensitivity of the OM’s [92]. While these
uncertainties greatly affect measurements of absolute flux or of zenith angle dependence, this analysis
is relatively insensitive. We are not measuring absolute fluxes, and have an event sample confined to
a narrow range of zenith angles around 12°. Changes in the absolute sensitivity affect all amplitudes
equally. Changes in the angular sensitivity could be important for close distances (< 30 m) where
hits are unscattered and directional, but these modules are few compared to farther-away modules
for which light has been isotropized by scattering. Thus, I will claim without further proof that these

uncertainties have a negligible effect on this analysis.
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Figure 9.6: S(30)-K50 parameter space, for different ADC gates and ADC treatment.

9.5 Effect of different ADC gates

Data from 1997 and 1998 had very different ADC gate settings. In 1997, the gate was narrow
and ill-aligned; as a result many ADC’s from the bottom modules in the detector arrived too late and
were lost. In 1998, on the other hand, the ADC gate was wide enough to record all pulses, even from
deep modules. Appendix C describes this issue in more detail, and the measures taken to account for
this behavior. To summarize the situation: a variety of Monte Carlos were generated with different
ADC gate settings: a “default” version, a “97-like” version, and a “98-like” version. In addition, a
variety of data sets exist: 97 data analyzed as-is, 97 data with many bottom modules removed from
the analysis (to account for the ADC problem), and 98 data which requires no special treatment.
The effect of different ADC gates on the K50 reconstruction can be estimated by comparing both the
different Monte Carlos and the different data treatments; this is shown in Figure 9.6. As one would
expect, the removal of ADC’s from the bottom of the detector is equivalent to a reduction in the

absolute sensitivity of the detector, and its effect on renormalization is less than 5% over the S(30)
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range of 10 to 100.

9.6 Systematics in the S(30) measurement due to electronics saturation

In Chapter 6, we applied cuts to SPASE events in order to “fix” some strange features in the
spectrum of S(30). After the cuts were applied, the strange lobes of very large S(30)’s were removed
from both data and Monte Carlo so that they agreed more closely (see Figure 6.3). However, even
after the cut is applied, the data and Monte Carlo still do not agree in shape at 5(30) past about 100.
While the Monte Carlo smoothly continues to high 5(30)’s with a smooth power-law spectrum, the
data cuts off rapidly. The cause of this cutoff has been traced to saturation behavior in the SPASE
scintillators.

Each of the SPASE detector’s thirty stations consists of four scintillator modules; three of
them operate in normal “high-gain” mode, while the fourth runs in “low-gain” mode. The purpose
of the low-gain module is to extend the dynamic range of the station when particle densities are so
high that the high-gain modules saturate. The charge-ADC’s which read out the signals from the
modules saturate at 2048 mV. The reconstruction program SPV (which fits an S(30) to each event)
recognizes this effect; when it sees that the raw amplitude of a high-gain module in a station has hit
this saturation point, it uses the low-gain module for that station instead.

However, a detailed examination of the raw ADC’s from low-gain and high-gain modules [115]
reveals that the true saturation point of modules is less than 2048; it is more like 1300. This is
most likely due not to the ADC but to saturation of the signal splitter that precedes the ADC. As a
result, SPV switches its attention to the low-gain modules too late. Without its knowledge, high-gain
modules hitting only 1300 mV are saturating, the station amplitudes come out too low, and S(30) is
underestimated.

Tests on small sets of data have been performed [115] to see how changes in saturation treat-
ment by SPV can affect the S(30) spectrum. The “cutoff” behavior appears at close distances such as
30 meters, but disappears at farther distances where amplitudes are smaller. Removing any high-gain
module exceeding 2048 does not change the cutoff behavior, indicating that saturation is occurring
earlier. Using only low-gain modules in the analysis smoothes the spectrum at high energies; no

cutoff behavior is observed. Measurements in situ by winter-overs support the theory as well, finding
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Figure 9.7: The effect of correcting the S(30) measurement in experimental data, so

that the spectrum of S(30) better matches the Monte Carlo expectation.
a pileup of high-gain amplitudes at approximately 1.3 Volts.

The solution to the problem is to alter SPV so that it switches to low-gain modules earlier,
at a saturation point of 1300 rather than 2048. This corrected reconstruction procedure has been
performed on most of the 1998 data set. The correction recovers the S(30) spectrum up to much
higher energies, up to log .S(30) = 2.4 — 2.5, as shown in Figure 9.7. At this point, even the low-gain
modules begin to saturate, and SPV has no recourse to extend the dynamic range further.

This effect is not really a “systematic error” in the same sense as the other effects presented
in this chapter. Unlike the different hadronic models or muon propagators, there is no question as

to which data set should be used for the analysis. The uncorrected data is wrong; the corrected
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data is better. But a discussion of the effect helps us evaluate the vulnerability of this analysis to
these kinds of pitfalls. Figure 9.8 compares the two 1998 data sets (corrected and uncorrected) in the
now-familiar S(30)-K50 parameter space. The largest systematic effect occurs at high S(30), where

the uncorrected data are shifted and have depleted statistics.
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Chapter 10

Composition

As shown in Chapter 3, protons and iron can be separated by plotting the muon component of
a shower vs. the electron component. Here, S(30) measured by SPASE is used for the electronic
axis. K50 measured by AMANDA (described in Chapter 8) is used for the muonic axis. The two
parameters plotted against each other on a log scale (for both Monte Carlo and data) is shown
in Figure 10.1. This two-dimensional parameter space will be the focus of this chapter and the
culmination of this work.

The absolute scale of K50 suffers from systematic uncertainties from a variety of sources. We
know, for instance, that the Monte Carlo overestimates the amount of light at large distances from
the track, resulting in K50 values which may be too high by a constant factor. In addition, the
absolute number of muons could be over or underestimated by the hadronic interaction model or the
muon propagation simulation, again by a constant factor. These uncertainties affect the absolute
normalization of the K50 parameter, but not its properties or shape. Its behavior is always linear
with the underlying muon physics.

The systematic shifts in the absolute scale of K50 preclude an absolute composition measure-
ment from these data and Monte Carlo alone. However, cosmic ray composition is known at low
energies from other experiments; if we renormalize our measurement at low energies to agree with

the known composition, we can then investigate whether the composition changes as energy rises.’

1This philosophy has precedent, as problems with absolute normalization are not uncommon in cosmic ray physics.
Using the parameter X,,q; for instance, has its systematics dangers. However, the rate of change of X4, with energy
(dXmaz/dIn E, called the “elongation rate”) is often used instead as a composition-sensitive parameter, because it is
independent of absolute normalization.
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So the analysis involves two distinct steps: 1) Calibrating the data to a known composition at

low energies, and 2) Measuring the composition at higher energies.

10.1 Calibrating on low energies

To calibrate K50, we will use a vertical slice of Figure 10.1 with S(30) = 5 — 10. This
corresponds to energies of 200-350 TeV for protons and 400-650 TeV for iron. S(30) of 5 is the
threshold shower size at which SPASE reconstructions can be reliable, and S(30) of 10 is where the
energy for iron extends beyond where direct measurements are available.

At energies of hundreds of TeV, cosmic rays are neither pure protons nor pure iron, but rather
a mixture of protons, iron, and intermediate nuclei (He, C, N, O, Si, Ne, etc.) which can be described
together by a mean log mass (In A). The most recent results from direct measurements and the
consensus for low-energy air shower experiments indicate that the composition at 500 TeV has a
mean mass of (In A) ~ 2.0 (see, for instance, Figure 1.4).

Since in this work we are comparing data only to the two extremes of protons and iron, we
will describe composition in general as an admixture of the two with a mean log mass (In A). The

fraction of iron fr. for a given (In A) is given by solving the equation:
(InA) = (1 — fre) X In(1) 4+ fre x In(56) = fr. x In(56)

This way, our composition (derived from protons and iron only) can still be directly compared to
other experiments which might measure four or more groups of nuclei. Our low-energy “calibration
mixture”, therefore, is the admixture of protons and iron which yields a mean log mass (In A) = 2,
or fr. =~ 0.50.

Figure 10.2(a) shows the distribution of log(X50) for data and for the known proton/iron
mixture described above. Although the shapes of the distributions match well, the data is offset. To
find the amount of the offset, we hypothesize potential offsets between —0.1 and 0.3 and perform
a Kolmogorov-Smirnov test on each hypothesis. The K-S statistic for each hypothesis is shown in
Figure 10.2(b), and the best fit offset is a log(K50) of 0.14. From this point onward in the analysis,
therefore, the log(K50) of the data will be renormalized to the Monte Carlo by adding a constant

factor of 0.14; this is equivalent to multiplying all K50’s by a uniform factor of 1.38.
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Figure 10.2: Procedure for calibrating the composition at low energy.
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10.2 Two-dimensional calibration using fluctuations and shape

Within a slice of S(30), the K50 curves of protons and iron differ not only in mean but also
in shape; proton events have larger fluctuations and are more widely distributed in K50 than iron
events. Thus, if the data and Monte Carlo are of high enough quality and statistics, it is possible
to calibrate the data at low energy without having to declare a calibration mixture a priori, but
rather by scanning through both normalization constant and calibration mixture and finding the best
combination. The basic technique is the same as described above: compute the K-S statistic between
data and hypothesis, and find the minimum. This time the minimum lies in a two-dimensional
parameter space, and represents both the proton/iron mixture which best matches the data, and
the renormalization factor necessary to get us there. Figure 10.3 shows a contour plot of the K-S
statistic in this two-dimensional space and slices of the K50 distribution at some sample points in
the space. The best-fitting mixture (of about 60% iron) matches reasonably to the mixture quoted

in the literature for these energies, giving us confidence to proceed to the next step.

10.3 Higher energies: a change of coordinates

Once done, we turn our attention to composition. In Figure 10.1, we have created a two-
dimensional parameter space described by S(30) and K50. The placement of an event in this space
depends on both the event’s mass A and its energy FE, giving rise to the two slanted “bands” of
events in this plot. However, we can turn this statement around and measure an event’s A and F
from its S(30) and K50; we merely execute a coordinate transformation between the S(30) and K50
variables and a new set of axes which I will call A* and E*.

The new axes can be found by overlaying contours of constant energy over the Monte Carlo
events plotted in S(30)-K50 space, as shown in Figure 10.4. Contours of constant energy are approx-
imately parallel, and can be approximated by straight lines. The seven slanted straight lines drawn
represent the constant energies of log(E/GeV) = 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, and 6.8. They form six
bins of constant energy, and they also define the angle of the A* axis along which only composition
changes. The E* axis, along which only energy changes, is perpendicular to these lines.

Figure 10.5 shows the same Monte Carlo events plotted relative to the new transformed axes
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A* and E*. In this new parameter space, points of a constant composition (such as protons only)
form a horizontal band of increasing energy?, and the six bins of constant energy are vertical. We

have succeeded in disentangling the two variables.

10.4 Measuring energy

The E* axis is constructed in order to be linear with the log of the true primary energy.
Figure 10.6 shows whether this is actually true using Monte Carlo. E* is an excellent estimator of
log(E), and is composition-independent.

A simple linefit yields this relationship:
log(Eprimary/GeV) = 4.944 + 0.7168 x E*

The value of E* for each event, converted by this formula, gives the reconstructed primary energy.
In Monte Carlo, the resolution of this energy measurement is easily measured. A scatterplot of
reconstructed and true primary energy is shown in Figure 10.6. The distribution and measured
width of the reconstructed primary energy is shown in Figure 10.7 for six different energy ranges.
Alog E = 0.12 at energies just above 100 TeV, and improves to 0.057 at the highest simulated
energies of 100 PeV.

One can see in Figure 10.6 that although Ep imary and E* are proportional at most energies,
the proton and iron curves do diverge from the ideal line at high and low energies. This indicates
that the true “energy axis” is not a perfect straight line, as the E* axis is. This slight divergence
is the reason for the offset in the curves of Figure 10.7. A more sophisticated set of transformed
axes (which are oblique and curved) could improve performance. Since protons and iron also begin
to diverge from each other, the Gaussian resolution measured in this figure is the most conservative

measurement (a possible 50/50 mixture).

2The astute reader will notice that the proton and iron bands are not precisely flat. This indicates that the best
energy and mass axes are not truly perpendicular in the S(30)-K50 parameter space, but rather they are slightly
oblique. A more advanced analysis should perform a coordinate transformation to these oblique axes, but since each
energy bin will be considered independently, it does not much matter in this analysis.
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10.5 Measuring composition

In each bin of constant energy (constant E*), the A* of an event is a composition estimator.
So to measure composition at a certain energy, we merely compare the A* distributions of the data
and the Monte Carlo. The proton and iron Monte Carlo events can be mized with a certain relative
proportion to produce a certain average cosmic ray mass. Some example mixtures (light, medium,
and heavy) are shown for all six energy bins in Figure 10.8. The best mixture is found by testing
hypothesis mixtures and measuring the probability of the data matching each hypothesis mixture.

This probability can be found in many different ways; two techniques have been used here:
the K-S test (which computes the probability that two distributions, in this case data and Monte
Carlo, were both drawn from the same underlying distribution [68]), and a maximum-likelihood test
(which takes the Monte Carlo as the underlying distribution and computes the likelihood that the
data events were drawn from it). The advantages of the K-S test are that it takes unbinned events
as input, and that it correctly treats the fluctuations in the Monte Carlo events. The maximum-
likelihood test assumes that the Monte Carlo is a perfectly smooth distribution (and thus our choice
of binning can affect the outcome), but has the advantage that error bars are easily computed from
it.

Hypothesis compositions every 5% between 0% and 100% iron were tested using both tech-
niques (K-S and maximum-likelihood) for each of the six constant-energy bins, and the results are
shown in Figure 10.9. The two techniques give the same most likely composition mixture, increasing
our confidence in the method and the result.

The A* parameter is sensitive enough to cosmic ray mass that the data do not fit perfectly
to mixtures of protons and iron only. In Figure 10.8, for instance, one can see that at high energies
a 50/50 mixture of the two extremes produces a flat (or even double-peaked) distribution of A*,
while the data is single-peaked between the extremes. Real cosmic rays also contain intermediate
nuclei (such as He and CNO). Although this technique finds the mean mass well, by simulating and
including these intermediate masses in this analysis we could improve the fits between Monte Carlo

and data, and explore finer structure in cosmic ray mass.
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10.5.1 Error bars

The most likely mixture is the peak of the likelihood curve; error bars can be computed from
the shape of the likelihood curve. We have mapped out the likelihood space In £ as a function of a
parameter x (in this case, the percent iron in the mixture). If £ is Gaussian in this space, then lo
is the distance from the mean within which 68% of the the likelihood curve is contained. In other

words, given:

the 1o error bar is the x at which:

2
L(%15)) = Lomas €XP <— (1o) > = Lomaze Y2

202

InL(z1,) =InLypee — 0.5
The 20 error bars can be computed using the same procedure:
In L(z25) =In Loy — 2.0

Using our plot of In £ as a function of iron fraction, the end of the error bar is the iron fraction at
which In £ has dropped 0.5 (or 2.0) from its maximum [65].

With a large number of data points, the best mixture is more tightly constrained (the proba-
bility distribution has a narrow peak) while with few data points, different mixtures all have a higher
chance of being consistent with the data, resulting in a flatter and more uncertain distribution of

probabilities.

10.6 Systematics

We are faced with a choice of different models (hadronic interaction models, muon propagators,
etc.) each with a different absolute normalization. However, renormalizing data to Monte Carlo in
a low-energy calibration bin is a technique adaptable to any model. By treating each model as an
independent test of normalization and composition, we can gauge the stability of this technique under

changing models, and measure the systematic error on the final measurement.
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Model baseline | bulk | buggy | SIBYLL | 98 gate | MMC
Mult.factor 1.38 | 1.15 1.02 1.02 1.38 1.45
Const.offset 0.14 | 0.06 0.01 0.01 0.14 0.16

log (E/GeV) InA+10(20) | InA

5.6-5.8 | 1.98 &+ 0.06 (0.13) | 2.09 1.86 2.08 1.99 2.21

5.8-6.0 | 2.00 £+ 0.07 (0.14) | 2.05 191 1.86 2.00 2.15

6.0-6.2 | 2.03 &+ 0.10 (0.21) | 2.22 2.21 1.92 2.03 2.36

6.2-6.4 | 2.13 £ 0.13 (0.26) | 2.11 2.22 2.13 2.15 2.24

6.4-6.6 | 2.62 £+ 0.22 (0.45) | 2.53 2.23 3.05 2.56 2.67

6.6-6.8 | 2.83 £ 0.39 (0.78) | 2.87 2.47 217 2.83 3.2

Table 10.1: Summary of composition results from different Monte Carlo models.

For each of six independent models, a renormalization constant was computed using a 50/50
calibration mixture in the calibration bin S(30) = 5 — 10. Then an identical analysis was performed;
the experimental data was compared to the model in A*, and the mean log mass and error bars were
computed from the likelihood curve. Figure 10.10 shows the composition results for all six models;
while there are systematic shifts in the absolute {In A), all of the composition measurements follow a

similar trend. The numerical results from the six models are summarized in Table 10.1.

10.7 Conclusions

Figure 10.11 summarizes the findings of this work: the mean log mass as a function of energy.
Data points indicate the best mixtures from the baseline model, with 1o and 20 statistical error bars
computed from the likelihood curve. The band indicates the range of results from the use of different
models, a measure of the systematic error.

The data show a robust trend of an unchanging composition between 500 TeV and 1.2 PeV
of (In Ay = 2.0, after which it starts to become heavier. In the knee region (3 PeV), the composition
continues to get heavier, up to (In A) = 2.8 at 6 PeV, although the size of the error bars in these last
bins allow our data to be consistent with a range of masses. The data are not consistent, however,

with mass becoming lighter through the knee.

10.7.1 Comparison with other experiments

Figure 10.12 superimposes our results over a collection of results from other experiments

of various types (including Cherenkov telescopes, scintillators, and coincidence experiments). Our



In(A)

3.5

2.5

15

0.5

e SPASE/AMANDA

R systematic error

o
ol

Figure 10.11: Final results: mass composition as a function of energy. Thick and thin
error bars represent 1o and 20 statistical errors, respectively. Shaded region indicates

systematic errors.

L ‘ L
5.5 6 6.5

v

7.5

log(ener gy,GeV)

137



% L % HEGRA/AIRCBICC & SPASEMAULCAN
= 4 [ e CASA/DICE Comb, ¥ EAS-TOPMAZRO
- m DICE
- & HLANCA
3.5 - O KASCADE(multiv.) s
- & KASCADE(h.)
- @ MSU B il ull
- * Chacaltaya e g
. B Fales Bt ee
23 - —r— : :’3:’;5 [l
2 -'-'.;:- | __ _
1.5 C ' | —ik . TL' |¢ # E 3
1 n _ __+__+_ ﬁ
0.5 - o SPASE/AMANDA
n:llllIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
5 55 o 6.5 7 7.5
log(energy,GeV)

Figure 10.12: SPASE/AMANDA composition results compared to other experiments.
Other experiments’ data taken from [1]. HEGRA/AIROBICC data adapted from [48],
SPASE/VULCAN data adapted from [114], and EAS-TOP/MACRO data adapted
from [41]. Error bars for other experiments are statistical only.

138



139

results are consistent with those of some other experiments, but not others. In particular, the results
of BLANCA and DICE (both Cherenkov telescopes which show the mass becoming lighter in this
energy region) are in conflict with those of SPASE/AMANDA.

Of particular interest are SPASE/VULCAN (with which we have a detector in common) and
EAS-TOP/MACRO (another deep underground muon coincidence experiment). SPASE/VULCAN’s
results are similar to ours, but share the “dip-and-then-rise” shape of the BLANCA results. EAS-
TOP/MACRO has a high energy threshold and large error bars; it is difficult to say at this stage
whether their results are comparable to ours.

Although each experiment alone has small statistical error bars (as can be seen in Figure 10.12),
systematic errors are large and are not shown in this plot (except for ours). Each experiment suffers
from different sources of systematics, and the ability of an experiment to understand and control its
systematic effects determines the reliability of its result. It’s a crowded room with a lot of shouting.
But SPASE/AMANDA’s technique was developed to be adaptable to any model and stable under

systematics; we believe our results are a competitive voice.
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Appendix A

Derivation: Cylindrical proximity cut

First we must define the physical size and placement of AMANDA-B10. On the surface, the strings
are arranged in concentric rings, and the outer edge of B10 lies at a radius of approximately 60 meters
(see Fig. 4.1(b)). The height and position of the cylinder is determined by the distribution of depths
of the optical modules in B10 (see Fig. A.1). From this figure, we see that the actual center of the
array is not at zero but at about +45 meters in the AMANDA coordinate system, and that most of
the modules lie within +175 meters from this central depth.

For every SPASE track with coordinates (zo, yo, 20,0, @), there is exactly one smallest cylinder
of a fixed height/radius ratio and fixed center position which the track intersects. There are two
possible ways that the track could intersect the cylinder: by clipping the rim of the top or bottom
circle, or by grazing the side of the cylinder (see in Figure A.2). We discuss the two possibilities

separately.

A.1 Top/bottom-clippers

The cylinder is defined by its fixed radius-to-height ratio R/H. So all the possible points that
could lie on the edge of the top or bottom of the cylinder are defined by a cone of aspect ratio R/H
(see Figure A.2(a)) A track which nicks the top or bottom must intersect the cone at some point
(z,y,z). We solve for the size of the cone by finding this point.

We describe the cone with the equation: \/x2 4 y2 = k2’ where k = R/H is a fixed number

and 2z’ = z — Zeenter 18 a coordinate relative to the center of the array (rather than of the coordinate
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Figure A.l: Distribution of depth of all OM’s in AMANDA-B10, in the AMANDA
coordinate system. The dotted “boundary” indicates the depth range which contains
most of the 302 modules (strings 1-4 are a bit deeper, but contain fewer modules, than
strings 5-10). The center of this range is at a depth of +45 meters.
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Figure A.2: Two possible cylinder-of-closest-approach algorithms

system). The track can be described by the equations

T =x9+ dcos¢sind = zg + dp,
Yy = Yo +dsin¢sind = yo + dp,
z=1zy+dcosf = zy + dp,

By combining these sets of equations one can solve for the distance d:

22 + yz _ k2z'2
(:UO + dpw)Q + (yO + dpy)2 = kQ(ZO + dpz - Zcenter)2
m(Q) + 2w0pmd + d2p§ + yg + 2y0pyd + d2p§ = kQ((ZO - Zcenter)2 + 2(ZO - Zcenter)pzd + d2pz)

d2(p§ + p22l - k2p§) + 2d(x0pw + yOpy - k?2(20 - Zcenter)pz + x(z) + yg - k?2(20 - Zcentm’)z =0

The equation to be solved is quadratic in d. Therefore there can be one, two, or zero solutions. If
there are two solutions than the one which yields the smallest size is chosen. If there are no solutions,
then the track must intersect the side of the cylinder rather than the top or bottom.

If a solution for d exists, then it can be used to find the intersection point (z,y,z). The size

of the cylinder is then: C = 2'/H = (20 + dp, — Zcenter)/H.
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A.2 Cylinder side-clippers

Similarly to above, again we find the intersection point (z,y, z), this time between the track

(described by the same equations as above) and a cylinder (see Figure A.2(b)), described by the

equation z2 4 y? = r2.

(zo + dpe)? + (o + dpy)* = 7°
@y + 2xoped + d’py +yi + 2yopyd + d’py, = 1’
d2(p§ +p§) + 2d($0p$ + yopy) + mg + yg _ 7'2 I

Again, combining these two equations leads to a quadratic formula for d. However, the smallest
cylinder which has an intersection point is the one where this quadratic formula has exactly one root,

requiring:

A(wops + yopy)® — 4(p3 + py) (g +y5 —r*) =0

(zopa + Yopy)® = (P2 + p) (x5 + v — %)

2 2 2 (zops + yopy)2
r“=(xyt+vY)— —5— 5 —
(5 + o) (P2 + p2)

This condition imposed, the resulting size is: C' = r/R, but only if the corresponding z’ to this
intersection point

Z, =20+ dpz — Zcenter — 20 — Zcenter — Pz (ﬂ?opz + yOpy)/(pi +p12/)

is less than C' x H.
Both the top/bottom-clipping and side-clipping solutions are computed, and whichever com-

putation gives the smallest size C' is the final result.
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Appendix B

A muon bundle likelihood function for recoos

B.1 Motivation and general theory

At the heart of recoos is the “likelihood function.” Given a hypothesis, this function returns
the probability that that hypothesis could have given rise to the observed hit pattern in the detector.
The hypothesis is passed to the function as a “track,” a set of parameters describing the position,
direction (and sometimes length or energy) of either an infinite muon from a v, or a cascade from
a V.. To find the best track, recoos calls this function repeatedly with different hypothesis tracks
until it finds the most likely one.

The AMANDA collaboration has written many likelihood functions. Most of them perform
a of loop through all optical modules, for each one computing the probability that the hit on the
module (or lack of a hit) could have come from the current track hypothesis. Hit and not-hit modules
must be treated differently; if a module is not hit, the likelihood is P,opi- If it is hit, the likelihood is
P (time, ADC, etc.), which is often more complicated. The total likelihood for the event as a whole
is then the product of the individual OM likelihoods, as discussed in Chapter 5.

What if, however, we want to hypothesize a more complicated phenomenon (such as a stopping
or starting muon) or two phenomena at once in the detector (for instance, two coincident muons or a
muon plus a burst of bremsstrahlung light)? This necessitates a “multiple hypothesis.” Let’s consider

first a simple double-hypothesis case. For the modules which are not hit, the probability is:

Pnohit = Pnohithyp] AND Pnohithypg
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= Lnohityy,, X Pnohithw,g

For modules which are hit, the probability is:

Py (time, ADC) = Py, , (time, ADC) OR. Py, ,(time, ADC)

=1—-{(NOT Puiy,,, (time, ADC)) AND (NOT Py, (time, ADC))}

=1- {(1 — Phithym (time, ADC)) X (1 — Phithypg (time, ADC))}

This philosophy can be extended to any number of hypotheses; for instance, a bundle of NV

muons, or a muon with IV bremsstrahlung bursts.

B.2 The Muon-Bundle Hypothesis

The infrastructure of recoos is not yet capable of handling multiple hypotheses, although work
on this is in progress. However, with some mathematical inventiveness, one particular application
can be carried out within the existing infrastructure: muon bundles.

Depending on the energy and composition of the cosmic ray primary, bundles of from a few to
hundreds of muons trigger AMANDA as downgoing events. These events currently are analyzed and
reconstructed as though they were single muons, despite the fact that their bundle nature disturbs
the delicate timing of hits that is of crucial importance to the reconstruction.

The bundle hypothesis does not attempt to treat tens or hundreds of muons as individual
tracks; this would be far to involved. Rather, we treat the bundle as a mathematical distribution of

muons with certain assumed properties. Specifically, we assume:

e The center of the muon bundle is the “primary track,” or the incidence direction of the cosmic
ray primary particle. At AMANDA depth, all muons are approximately parallel to the primary

track at distances R away from it.

e Muons are distributed spatially around the center of the bundle according to a radially-

symmetric density function p,(R) where R is the distance from the bundle center and p,
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has units of number of muons per square meter. The integral of p,(R) over the whole plane is

the total number of muons N, at some reference slant depth (such as 1750 meters).

e The energy per muon is also described by a radially-symmetric function E(R). In general,

muons closer to the center of the bundle have higher energy than outliers.

Given these basic assumptions, we now compute a likelihood function. As has been done
before, the total likelihood of an event given a hypothesis is the product of the likelihoods from all
individual OM’s:

—log(L) = Z —log(Lom)
OM's

So now we must ask what the bundle hypothesis “looks like” from the point of view of an optical
module.

The OM is a distance D from the center of the bundle, and so there is a distribution of muons
at a variety of distances. The probability of the OM being hit (or not) from a particular muon
depends on the distance r from that muon to the OM and its energy E. For a module which is not
hit, the likelihood is Ppopnit (7, E). For a module which is hit, the likelihood is Pt (r, E) Lupandel (7 t)
where Lypander(r,t) is the “U-pandel” probability of observing the hit at the expected time. These
functions are already available in recoosfor single muons, and we will adapt them to muon bundles.

Each muon in the bundle hypothesis has its own probability for the OM. From the OM’s point
of view, the probability of being hit by a muon with certain properties must be weighted by the
number of muons in the bundle that have those properties. For instance, if an OM has a hit which
arrives early in time, it may be 100 times more likely that it came from an “outlier” muon close to
the OM but far from the center of the bundle. However, there may be 100 times as many muons in
the center of the bundle than outlying; each probability must be weighted by the number of muons
contributing.

To do this correctly, we divide the space around the OM into small bins of r» and 8, shown in
Figure B.1. Each bin contains a number of muons n; equal to p,(r,8)rdrdf, where p, is the muon
density function, re-expressed in terms of the variables r and 6 (relative to the OM) instead of R

(relative to the bundle center).
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Figure B.1: Coordinates used in the bundle-likelihood reconstruction.

B.2.1 If the OM is not hit

Consider a single small bin 7, which is at a radius r from the OM. If there is one muon in this

bin with energy E, then:
ﬁi = Pnohit (’I", E)
If there are two muons in this bin with energy E, then:

‘Ci - Pnohit (7', E) X Pnohit (7', E)

= Pnohit (T’, E)2
In general, if there are n; muons with energy E in this bin, then:
Ei = Pnohit (T’, E)nl

Now consider muons from different bins 7 = 1,2, 3.... The OM has not been hit by any of the
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muons in any of the bins. Therefore,

EOM = £1X£2X£3X...

= Puonit(r1, E1)™ X Poonit(re, E2)"™ X Pronit(rs, E3)™ X ...

log(Lowm) 11108(Pronit(r1, E1)) + n2 108(Pronit (72, F2)) + n310g(Prohit (13, E3)) + ...

= Z 1 108(Pronit (i, Es))

bins,i

= Z pu(r, 0)rdrdflog(Prohit (1, E;))

bins,r,0

00 27
/ / Pu (ra 9) IOg(Pnohit (7', E("', 9)))7‘de9
0 0

This last step transforms a sum over all bins surrounding the OM into a two dimensional integral

over r and 6.

B.2.2 If the OM is hit at time ¢

We follow the same general procedure as above: consider first a single bin i. If there is one

muon in this bin with energy E, then:
Ei = Phit (ra E)Eupandel(ra 97 t)
If there are two muons in this bin with energy E, then:

Ei = 1- {]- - Phit (7", E)Eupandel(ra 07 t)} X {]- - Phit(ra E)Eupandel(ra 67 t)}

= 1 {1 — Phit (7", E)Eupandel(r7 07 t)}2
In general, if there are n; muons with energy E in this bin, then:
L;=1-— {1 — P (7’, E)Cupa/n,del(r7 0, t)}nl

Now consider muons from different bins ¢ = 1,2, 3.... The OM has could have been hit by any
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of the muons in any of the bins. Therefore,

Loy = 1-[1—-L1)x(1=Lsy)x(1=L3)x..]
= 1—[{1— Prit(r1, E1)Lupander(r1, 01,8} X
{1 = Prit(r2, B2) Lupandel (T2, 02, )} X
{1 = Prit(r3, E3) Lupandet (73, 03, 1) }** x ..]
log(1—Lom) = nilog{l — Puit(r1, E1)Lupander(r1,61,t)} +
nglog{l — Phit(r2, B2)Lupander(r2, 02,t) } +
nglog{l — P (73, E3)Lupander(r3,03,t)} + ...

= Z n; log{l - Phit (Tia Ei)Lupandel(ri; eia t)}

bins,i

= Y pulr,0)rdrdflog{l — Pu(r, E(r,0)) Lupander(r, 0,1)}

bins,r,0

o] 27
_ / / p1a(r,6) Log{L — Paus(ry E(r, 6)) L upanded (1 0, €) }rdrd8
0 0

B.3 Functions

Both functions p,, and E depend on the physical model we assume for the muon bundles, but
each one is radially symmetric in R and can be reexpressed as a function of r and 6 through this

relationship:

R= \/7“2 + D2 — 2rDcosf
The energy function has not been well-studied, and so for now is assumed to be flat:
E =200 GeV

but this can be easily modified as long as it remains radially symmetric with respect to R. For the

lateral distribution of the muons p,, we choose a functional form from [2]:

1

T rro where C' = (a—1)(a— 2)/7'(()2_0‘)

pu(r) = NuC
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From examination of MOCCA-QGSJET Monte Carlo, this form fits quite well (see, for instance,
Figure 3.6) The parameter « is always close to five, while the characteristic radius ry depends on
the composition; for protons, ry &~ 8 m, while for iron it is double that. This means that r¢ alone, if

measured well, could measure cosmic ray composition.

B.4 Computation

For the single muon hypothesis, the likelihood function had to make a single function call for
each OM. Now, for the muon bundle hypothesis, for each OM the function must perform a two-
dimensional integral! The computationally-expensive U-pandel function must be called for each bin
in the numerical integral.

Thus, we must make use of as many approximations and timesavers as we can in the execution
of this two-dimensional integral. For instance, for small numbers using the approximation log(1+z) ~
x can improve computation speed.

What improves the speed the most, however, is reducing the number of function calls to the
functions Ppopits Phrit, and Lypander- This can be done first of all by removing the #-dependence
from these functions, integrating with respect to 6 first, and reducing the two-dimensional integral
to a one-dimensional integral in r only. #-dependence in these functions in generally embedded in a
dependence on the orientation angle n of the PMT.

Although the U-Pandel function strictly addresses timing only, and one might not expect that
it would depend on the PMT orientation at all, it does depend on this variable. But the orientation is
used only in the parametrization of the variables 7 and A, through the computation of the “effective

distance” [88]:
degr = 3.1 — 3.9cos(n) + 4.6 cos®(n) + 0.84d,,

For most regions of our integration space, d,, will be the dominant part of this expression, and small
changes to n will not greatly affect the outcome. Therefore, we will assume that the value of the

U-Pandel function is nearly constant in 7 (and therefore also 6), and depends only on r:

£upandel (7‘; 07 t) ~ ‘Cupandel (7‘, t) where N = Nprimary
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The Pp;; and Pyopit functions, however, will depend strongly on 6 because of the changing
sensitivity of the PMT to different incidence angles. However, the n-dependence can be separated

out.
Pnohit = (]- - P}?n (T, E))6
= (1= PRy(r, B))ruree(®)onm)

10g(Prohit) = lepmren(B)eori(E,n)]log(l — Py (r, E))

Here, eppr is a constant (the sensitivity of the PMT), eg(E) scales the efficiency by the
amount of muon light, and €,.;(E,n) corrects the efficiency according to the PMT’s orientation
relative to the light.

The quantity PP, (r, E) does not depend strongly on the energy E, but rather a dependence
on E is buried deeply into the calculation of the “effective distance” d.g. This distance is computed
differently for the Pponis and Lypander functions, but as above, we will assume that varying E is only

a higher-order correction, and approximate:
P (r,E) = PP, (r) where E =200 GeV
The next step is to translate a dependence on 7 into a dependence on r and 6:

cosn = — o080, cosbqacr — Sin b sin Oger[cos O cos @, — sinfsin @}, i ]

= COSTprimary COS O + €08 0 COS Otrae (1 — €08 ) + Sin O, Sin Otrgep, SIn @0 SIn O

where ¢} . is relative to a transformed z-axis.

Now to insert all these expressions into the integral likelihood: For modules not hit:

oo 2T
10g(£0M) = / / Pu ('f', 9) 1Og(Pnohit (Ta E(T’, 9)))T‘d7"d9
0 0

[e’s} 2
= / / pp(r70)EPMTEE'(E)6oTi(E7n) log(1 — Pf?it(r))rdrde
0o Jo
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_ /0 b < /0 ” epMTpM(r,G)EE(T,G)EOT,-(T,0)d9> log(1 — PO (r))rdr

The integral in parentheses is relatively fast to compute, leaving only the one-dimensional integral
with the time-consuming function calls.

For modules which are hit:

[e%9) 2
log(1— Lowm) = / / pu(r,0)log{l — Ppit(r, E(r,0))Lupander }rdrdd
o Jo
[e’s) 27
~ / / pu(10){ = Pais (ry E(r, 0)) Lopander}rdrdf
o Jo
[es) 2
= / / Pu(ry ) {(Pronit(ry E(r,8)) — 1) Lupander yrdrdf
o Jo

0o 2
= / </ Pu (Tv 9) (Pnohit (Ta E(T, 0)) - 1)d0> Eupandelrdr
0 0

...which unfortunately doesn’t reduce any further. Since the Pj;; function must be called in both
integrals, this computation is slower. But since there are fewer hit modules than not-hit modules in

general, the routine as a whole does not suffer too much.

B.5 Implementation

The likelihood function is now written down completely in terms of existing functions and
existing variables, with the addition of only two extra parameters: the number of muons IV, and the
characteristic radius of the bundle rg. Fortunately, in addition to the free parameters (z,y, 2,0, ¢),
a track also has available the parameters energy E and length L, which are part of the software’s
existing infrastructure. So, we implement this function by assigning IV, to the track’s “energy” and

ro to its “length” and asking recoos to fit them both as free parameters.

B.6 Results

I attempted to implement this function in recoos. The resulting reconstruction takes approx-
imately two minutes per event, making debugging extremely difficult.
Although all the “parts” of the code seem to be in working order, the reconstruction does not

perform well. There is almost no correlation between N, . and N, when run on Monte Carlo,

co Hirue

nor is there any separation between protons and iron in the characteristic radius parameter rg.
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The problem could lie in the Pp;; and P,,pi; functions, since doubt has been cast on their
validity by the recent discovery of a bug in the photon tracking package PTD. However, the recon-
struction doesn’t work even on Monte Carlo for which “model in” should yield “model out.” Since
AMANDA is a sparse array, it could simply be that there is not enough information contained in the
hits to distinguish between different hypothesis bundle-shapes. After all, ry is typically less than the
spacing between OM’s. But even without resolution in ro, IV, should at least scale with the number
of muons and this, too, fails. A coding problem could still be lurking undiscovered.

Despite the failures so far, it is this author’s fervent hope that this technique might someday

function correctly and fulfill its potential for mapping out muon bundles.
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Appendix C

ADC gates in 1997 and 1998

Data from the AMANDA-B10 array in 1997 is the most closely scrutinized data set of the experiment
to date. It has been the subject of low-level hardware and software checks, and the focus of published
analyses [77].

In the 1997/98 Antarctic summer season, three new strings were deployed supplementing the
existing ten. Strings 11-13 operate quite differently, running the PMT’s current pulses through an
LED inside the optical module and transmitting the signal to the surface via a fiberoptic cable. The
optical pulses from these modules (which are much narrower than the B10 pulses) are read out by
an optical receiver board and passed along through TDC’s and ADC’s similar to the rest of the
array. But as a result of this upgrade, the 13-string array is a hybrid of electronic and fiberoptic
transmission technology. To analyze data from the full array presents new challenges in calibration,
reconstruction, and simulation. In particular, the three newer strings participate in the triggering
of the detector and the multiplicity trigger threshold in 1998 was changed. The change in trigger
behavior has not been simulated, and because of its unknown systematic effects, the entire year’s
data set has been left largely unexplored and unused.

SPASE coincidences, however, are different. To simplify data analysis and avoid unforeseen
problems with the new strings, we can simply disregard Strings 11-13 and treat the 10-string “subar-
ray” identically to 1997 data. Where a standard AMANDA analysis would suffer from trigger-related
systematics in doing this, SPASE coincidence analysis remains immune because the trigger itself
comes externally.

Although greater study has already been invested in 1997 data than in 1998 data, this appendix
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attempts to justify the use of 1998 data preferentially. There is a compelling reason to do this: a
difference in the relative settings of the SPASE trigger and ADC gate, causing hits deep in the

detector to be lost in 1997.

C.1 Raw ADC vs. TDC in 1997

The TDC gates in AMANDA-B10 can record up to 16 edges (leading or trailing). Thus it
can record the arrival time of up to 8 threshold-crossing pulses. The TDC gate width is large (32
microseconds) to ensure that all pulses are captured. The peak-sensing ADC, on the other hand, only
records one value: the maximum pulse amplitude which arrives within its gate. The ADC recorded
for a module in an event can not be identified to a particular hit, so to avoid recording spurious ADC’s
from noise, the ADC gate width is set as narrow as possible, and aligned in time with the expected
arrival times of pulses from real muons. Ideally, the gate should open when the first muon-induced
signals arrive at the surface electronics, and close when the last of them arrive.

It takes 2-3 microseconds for the muon to traverse the detector, but there are additional delay
times introduced by the lengths of the cables. Signals from the deepest modules in the array must
travel a farther distance and will take longer to arrive at the surface. Signals from an upgoing
muon (in which the bottom modules are hit first and the top modules last) all arrive within about 4
microseconds. So the ADC gate was set to be 4 microseconds wide in 1997.

A downgoing muon, however will fire the top modules (with the shortest signal transit time)
first, and the bottom modules (with the longer transit time) last. Depending on the geometry of the
event, the last hits can come from up to 5 microseconds after the first hits; the 4-microsecond-wide
ADC gate is not wide enough to catch them all. Although the gate catches the ADC’s from the first
hits well, the last hits from the bottom of the detector are recorded in TDC’s only. SPASE events
are especially prone to this problem, as they are not only steep in angle but also externally triggered.
The relative time of the trigger and the opening of the ADC gate for SPASE coincidences was set
in 1997 such that the first muon-induced pulses arrive one microsecond after the opening of the gate
[110]. This wasted microsecond shrinks the effective width of the ADC gate from 4 microseconds
down to 3.

This effect can be verified by looking at distributions of hits in individual modules. Figure C.1
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Figure C.1: Some sample raw TDC/ADC distributions for 97 data. The ADC gate is

indicated by the vertical lines. No ADC’s outside of this gate are recorded. Module

158 is the bottom of one string, and module 159 is the top of the next string.
shows the distribution of leading edge arrival times (uncalibrated) for some deep modules. The peak
in each distribution represents real hits from real muons; these are the hits we want to measure. The
ADC recorded for each module is assigned to the first hit, and only the first hit is included in this
distribution. The small dots overlaid on the TDC distribution are the raw ADC vs. the raw TDC
for this same set of hits; where there is a dot present a hit arrived successfully within the ADC gate.
But for deep modules, one can clearly see a TDC time after which there are no ADC’s recorded;
these are hits which arrived after the ADC gate had closed. This gate cut-off time should be the
same for all modules, since it is fixed in the DAQ. Sure enough, in the raw data the ADC information
disappears at the same raw time (shown as a vertical line) for all modules. The deeper the module,
the more seriously the closing gate cuts into the distribution of hits. Some modules such as OM 158

are almost cut out entirely.

C.2 Raw ADC vs. TDC in 1998

Strings 11-13 each contained some optical modules at very shallow (1200-1500 meters) and

very deep (2000-2400 meters) depths (see Figure 4.1(a)). To capture signals from these far-flung
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Figure C.2: Some sample raw TDC/ADC distributions for 98 data. The old 97 gate is
indicated by the vertical lines. ADC’s are successfully recorded for all real hits.
modules, the width of the ADC gate for the 1998 season was expanded from 4 microseconds to 9
microseconds [104]. As a result, 1998 data does not exhibit the same ADC problem as 1997. An
examination of the raw TDC and ADC distributions for 1998 data (shown in Figure C.2) shows that

ADC’s are being successfully recorded for very late pulses.

C.3 The impact of the problem

Starting at a depth of around zpp; = —40, the outer six strings (which contain a greater density
of modules and therefore contribute the most information) become systematically less sensitive.

This problem is unique to downgoing muons. The severity depends on the track geometry.
Steeper downgoing tracks are in general worse than shallow downgoing tracks, but the details are
complex. The outer six strings in AMANDA-B10 are connected to the surface electronics by longer
cables (even though they are shallower in the ice overall), so the worst-affected tracks are those which
enter the array at the top of the inner four strings and exit at the bottom of the outer six. The effect
is especially exacerbated in SPASE data by the less-than-ideal choice of time delay between trigger

and gate opening (the “wasted” microsecond). Regular AMANDA triggers, which are triggered by
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Figure C.3: Average ADC at 50 meters from the track, as a function of OM depth,

comparing 97 and 98 data.
hit multiplicity at a relatively later time, are less affected but the effect can be found in downgoing
muon data as well [103].

Any hit which does not contain an ADC is thrown out in the hit cleaning process, since leading
edge time calibration requires amplitude information. Having “missing” hits in an analysis will have
an effect that depends on the analysis. A Upandel timing reconstruction, for instance, uses only
information from recorded hits, and so it will still work correctly but with reduced accuracy (as if
only two-thirds of the detector were operating). The ADC reconstruction in this work, however, takes
both hit and not hit modules into account; if the track hypothesis expects hits deep in the detector
and finds none, it will adjust the hypothesis accordingly and get systematically the wrong answer.
The only solution to the problem is to remove the worst deep modules from the analysis a priori, as

if they were “dead” modules, and suffer the reduction in sensitivity.
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Figure C.3 shows the average ADC (a fundamental observable in this work) as a function of
OM depth, for a fixed perpendicular distance of 50 meters. Below Z = —40, there is a clear deficit of
ADC’s relative to the expectation for 1997 data. Hit cleaning of the deepest and most problematic
modules alleviates the problem and brings the curve closer to the expectation, but does not solve the

problem completely. 1998 data on the other hand behaves well without any special cleaning.

C.4 Differences in treatment of 97 and 98 data in this work

In this work, a composition analysis was performed for both 1997 and 1998 data (Strings 1-10
only). Although most features of the analysis are identical, there are a few important differences

necessary because of the differing detector configurations of the two years.

C.4.1 Gate simulation

Simulated events output by PROPMU were put through two nearly-identical but distinct
versions of the detector simulation package amasim. Both used the SPASE (external) trigger option
in the package, but with different ADC gate start times and duration. For 97-like settings, the ADC
gate was set to 4400 microseconds (which is standard for AMANDA-B10 mass production Monte
Carlo) and the position of the gate was aligned as well as possible with the observed cutoff times in
the 1997 data. A second set of Monte Carlo was run with 98-like settings: the length of the gate was
set to 8 microseconds, more than enough to capture all the muon-induced hits. Both sets of simulated
events were derived from the same air shower events, but were passed through amasim with different
random number seeds; thus, events from the two Monte Carlo sets cannot be compared to each other
directly. For the final analysis of composition, 97 data is compared only to 97-like Monte Carlo,
and 98 data is compared only to 98-like Monte Carlo. A study of the systematic effects due to this

problem is investigated in Chapter 9.

C.4.2 Hit cleaning

The details of event-by-event hit cleaning (such as event time window, isolation cleaning,
crosstalk cleaning, etc.) was kept identical in the two analyses. However, the two data sets require

different “bad-channel lists,” both because different modules were dead or alive in the two years, and
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Year Bad Modules | ADC gate problems | Total removed

97 28, 32, 34, 39, 40, 47, 49, | 19, 20, 114, 116-122, 51 + 46
50, 57, 62, 78, 81-86, 150-158, 187-194, =97

96, 102, 143, 167, 172, 221-230, 263-266,

181, 182, 184, 186, 190, 293, 295-302

195, 197, 199, 215, 219, 227
231-235, 252, 255, 257, 259, 260
261, 267, 289, 290, 291, 292,
299, 301

98 3, 18, 28, 32, 34, 39, 40, 41, 42, 47
50, 57, 61, 62, 74, 75, 78, 81-86,

94, 96, 117, 143, 167, 172,

186, 188, 189, 190,

194, 195, 197, 198, 199,

201, 215, 216, 224, 225, 227, 234,
235, 249, 258, 263, 264, 267, 280, 290

53

Table C.1: Bad module lists for 97 and 98 data

also because in 97 we are forced to remove deep modules which suffer from the ADC gate problem.

A table of permanently-cleaned “bad channels” for the two years which was used in this analysis is

given in Table C.1.
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Appendix D

Linearity of peak-ADC’s

D.1 Motivation

Amplitudes play a crucial role in this work, and in other developments in energy reconstruction
in AMANDA. However, the hardware which reads out amplitudes for the AMANDA-B10 array suffers
from some fundamental drawbacks. The inner 10 strings are read out with electrical cables rather
than fiberoptics, so the signals must be amplified at the surface. In particular, the SWAMP amplifier
creates a “fast” output for timing and a “delayed” output for measuring amplitude. The delayed
signal is put through an additional amplifier and also an integrator. This means that the peak voltage
of the delayed signal is proportional to the integrated charge carried by the signal, and this peak
voltage is read out by a peak-sensing ADC (PADC).

This scheme works well for single photons or multiple photons are all arriving at once; the
integrator in the SWAMP will respond correctly and produce an output pulse with a correspondingly
large voltage. But if photons arrive staggered, the peak voltage output by the integrator will fall
short of the correct value, and the number of photoelectrons will be underestimated. This becomes
more of a risk at larger distances, where a greater proportion of photons arrive scattered and delayed.
In any case, the linear response of the ADC’s must be checked before an analysis based on them can

continue.



169

30
T PADC 87 IntQfx 778.55
20 - TDC 22776 IntQ 646.206
10 E 70T 210 — =
: | ‘ | | ‘ | | ‘ | | ‘ | | | ‘ | | | ‘ | | |
2600 2800 3000 3200 3400 3600
Figure D.1: A typical single-PE pulse waveform
182
200 |- PaDC 1515 IntQfx 8984.05
[ Tbc 22487 IntQ 8684.55
100 = 1ot 496
= T T \ I TR N T e B e S
2600 2800 3000 3200 3400 3600

Figure D.2: A multi-PE waveform, where all the photoelectrons are arriving more or
less simultaneously

D.2 Direct Measurement: Waveform Data from the Pole

In the Antarctic summer season of 2000/2001, one Flash-ADC (FADC) was installed at the
South Pole, with its own DAQ which was kludged together with the AMANDA Main DAQ. A
detailed description of the experimental setup and the data taken can be found in [100]. Using this
waveform setup, one can directly measure the relationship between integrated charge (measured from
the waveform) and the peak-ADC (measured by the DAQ). This allows us to evaluate how reliable
PADC’s are as a measure of the total number of photoelectrons.

There are different ways of measuring the integrated charge, because waveforms have structure.
(Some examples of waveforms are shown in Figures D.1, D.2; and D.3.) Even a simple single-PE
waveform has a positive pulse and a negative overshoot, making the concept of “integrated charge”
not straightforward. To make sense of it, we will define not just one but two different types of

integrated charge.

e IntQ ("Integrated Charge”) is the integral under the curve of the waveform between the time
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Figure D.3: A two-PE waveform, where the photoelectrons are staggered in time

when the waveform first crosses a small threshold (the first line in Figures D.1, D.2, and D.3)
and the time when it drops below the threshold again (the second line). Thus, if several pulses

arrive well-spaced in time, this integrates only the first pulse, as in Figure D.3.

e IntQfx ("Fixed Gate Integrated Charge”) is the total integral of positive charge between the
first threshold-crossing and a fixed time 6 microseconds later (the third line). We count only
the positive charge because large negative overshoots can often bring the integral misleadingly

close to zero.

The relationship between uncalibrated peak-ADC (PADC) vs. integrated charge (IntQ) is
shown in Figure D.4. There is a clear difference between strings 1-4 and strings 5-10, due to different
cables. The longer integration time of the coax cables on 1-4 causes pulses to be wider and integrated
charges to be greater for the equivalent peak amplitude. But an important initial conclusion is that
both sets of strings are remarkably linear up until saturation of the peak-ADC.

To study this in greater detail we must express the x and y axes in terms of photoelectrons,
rather than voltages or charge. For peak-ADC’s, this is trivial: simply divide by the ADC “3”
from the Optical Module DataBase (OMDB) (this is the number used by the calibration program to
translate peak-ADC voltage into photoelectrons, unique to each OM). Integrated charge from module
to module should also scale by this number.

To put the x-axis in units of photoelectrons rather than charge, we assume that the PADC
responds linearly to charge in the small-amplitude region surrounding 1 PE. We can then use 1-PE

events to calibrate one axis to the other. Strings 1-4 and 5-10 must be calibrated separately because
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of the difference in cable integration time discussed above. To ensure that the events we are looking

at truly are one photoelectron, we can impose a cut that the number of hits seen by the DAQ is

exactly one. Although a powerful cut, it does not get rid of all the strange-looking events. The

remaining strange-looking things can be removed by demanding that the fized-gate integrated charge

(IntQfx) be within 1.5 of the first-hit-only integrated charge (IntQ); a discrepancy larger than that

between the two numbers would mean that strange multi-PE things are going on.

After these 1-PE cuts are applied, the plot of PADC vs. IntQ looks nicely linear and undis-

turbed by outlying points, and can be fit to a linear function, as shown in Figure D.5. The slope of

the linear fits (0.13048 for 1-4 and 0.18983 for 5-10) can then be used as a multiplicative factor to
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Figure D.6: Peak-ADC vs. integrated charge (calibrated, in photoelectrons). Black:
strings 1-4. Red: strings 5-10. The line represents perfect one-to-one linearity
adjust IntQ so that it is in units of photoelectrons.
After making this calibration, the PADC vs. IntQ plot (in units of PE’s) looks like Figure D.6.
Again, the PMT response is remarkably linear, but with different slopes for 1-4 and 5-10. This

supports the contention that K50 is a linear quantity as well.

D.2.1 A word about saturation

In this set of data, the peak-ADC itself saturates at 2.5 Volts before the PMT shows signs
of saturation. This 2.5 Volt saturation point will translate into a different number of PE’s for each

OM, depending on its gain and its calibration. Therefore, there is no single calibrated amplitude at
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which saturation occurs; any analysis which incorporates saturation effects must either account for it
before calibration while the amplitude is still in Volts, or know the saturation point in PE’s for each

individual module.
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Appendix E

Dark Noise in PMT’s: Evidence for Glass

Radioactivity

E.1 Motivation

There is a dramatic difference between the dark noise rates of optical modules in strings
1-4 of the AMANDA detector, strings 5-13, and strings 14-19. Modules in 1-4 measure rates of
approximately 300 Hz in the ice, whereas modules in 5-13 measure rates of around 1100 Hz and
14-19 measure around 800 Hz. The presence of noise creates problems for identification of neutrino
events; a single chance noise hit can throw off a computer’s reconstruction of an event, and prevent
the event from passing cuts. Thus, it is important to understand why the noise rates are so much
higher in later strings, so that the problem can be reduced in the future!.

The first task is to isolate the source of the noise: does it come from the cables, from the glass
housing of the module, from the gel which couples the glass to the photomultiplier tube (PMT), or
is it coming from within the PMT itself? Fortunately, our lab was equipped with several sample
modules from the different batches, as well as some bare PMT’s which were known to be low-noise
(~300 Hz). Thus, by rearranging the various components of the modules (PMT, gel, glass, and

cables), we could isolate the source of the high noise.

1This work was done and this chapter written in 1999. It was presented at a collaboration meeting but was never
published. I include it here for reference and for posterity, even though the language is a bit archaic and the conclusions
have been part of AMANDA collective knowledge for several years now.
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E.2 Experimental setup and techniques

A PMT or module to be tested was placed in a light-tight freezer (capable of temperatures
of -40°C). High voltage to the PMT was supplied into the freezer through an HV splitter box. The
output signal (a negative pulse of typically 100-150 mV) was sent simultaneously to an oscilloscope
and to a 30 mV discriminator. The discriminator’s output was sent through a gate generator and
then a scaler, which sent the count rate (counts per second) to a PC where it was histogrammed (see

Figure E.1).

HV Splitter

HV » Scope

Discriminator

Gate
Generator

Figure E.1: Experimental setup of noise measurements.

Freezer

E.2.1 Afterpulse Suppression

Occasionally, accelerated photoelectrons in the PMT will liberate a positively charged particle
at the anode, which is accelerated back by the high voltage and will produce an extra photoelec-
tron when it strikes a surface. This “after-pulse” can arrive up to a microsecond after the original
photoelectron. When these experiments first began, our discriminator’s gate was so short (tens of
nanoseconds), that many of these after-pulses were being recorded as independent pulses. To circum-
vent this problem, we lengthened the gate to 8 microseconds. All the final results presented here use
this longer gate, unless specified otherwise. Noise rates using the short gate are noticeably higher

and should be considered with caution.
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E.2.2 Solid and liquid gel

At first, PMT’s and their gels could be swapped in and out of glass hemispheres simply using
one’s hands. The solidified gel could be kept in one piece and transported between spheres. But the
quality of the gel dropped the more it was handled; bubbles formed, or the gel broke into pieces. So
for later experiments we used uncured, or “liquid”, gel for optical coupling. The PMT was suspended
above an open glass hemisphere and held in place, and the liquid gel could be poured between it and
the glass. This allowed us to swap PMT’s in and out of different spheres without worrying about

degrading the quality of the gel.

E.2.3 Simulating ice with an “absorber”

In the Antarctic ice, the lowest-noise spheres (Billings spheres, on strings 1-4) run at near
300 Hz. Although we measured bare PMT’s with this noise rate, none of the modules we tested,
including the Billings, had noise this low. The discrepancy between the deep ice measurements and
lab measurements is partly due to the good optical coupling between the outside of the sphere and
the ice; some of the photons created in the glass can easily escape into the ice through this interface.
Whereas, in the lab, the outside of the sphere is open to air; more photons can reflect off this interface
and can be seen by the PMT. We tested this theory by surrounding the outside of the sphere with
something of similar refractive index to glass, or something that would absorb photons exiting the
glass rather than reflect them back: an “absorber.” For the absorber, first we tried resting the glass
hemisphere in a “bed” of solid gel resting inside a black plastic bag. Then we tried covering the
outside of the module with black electrical tape. Both gave similar results: a lower noise rate as

expected, closer what is measured in the ice (but still not perfectly efficient).

E.3 All the numbers

The following is a table of all the noise measurements made, describing the type of glass, the
PMT, and the conditions of the experiment. I list each PMT by its serial number. Since glass spheres
do not have serial numbers themselves, I have labeled each sphere (or hemisphere) according to the
type of glass (“Benth” for Benthos, “Bill” for Billings, etc) followed by the serial number of the PMT

which was originally housed in that sphere. Test spheres sent to us by glass companies (such as
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McLane) contained no PMT’s originally, and so they are labeled by an arbitrary number (such as
#1 and #2).

I have organized the table by glass sample, so that patterns of variation from glass to glass
can be easily picked out.

All noise numbers rounded to the nearest ten, since there is enough variation in measurements
from run to run to make that last digit useless. Experiments with an absorber on the outside are

labeled either “gel outside” or “black tape.”

Date PMT# | Glass# Gel Temp. | Comments | Noise
1/11/99 | bb6814 | none none | -40 short gate | 350
1/12/99 | bb6657 | none none | -40 230
1/13/99 | bb6814 | none solid | -30 gel only 280
1/14/99 | bb6814 | none solid | -40 gel only 310
1/16/99 | bb6437 | none none | -30 210
1/21/99 | bb6437 | none none | -40 240
1/27/99 | bb6814 | none none | -30 350
1/28/99 | bb6814 | none none | -30 330
2/2/99 | bb6814 | none none | -30 300
2/4/99 | bb6814 | none none | -30 310
2/8/99 | bb6814 | none none | -30 310
2/22/99 | bb6814 | none none | -30 280
3/2/99 | bb6814 | none none | -30 320
3/8/99 bb6814 | none none | -30 250
4/21/99 | bb6657 | none none | -30 310
4/22/99 | bb6657 | none none | -30 290

1/11/99 | bb6657 | Benth6657 solid | -40 short gate | 3320
1/12/99 | bb6814 | Benth6657 solid | -40 1620
1/13/99 | bb6657 | Benth6657 | none | -30 glass only | 740
1/14/99 | bb6657 | Benth6657 | none | -40 glass only | 900

1/16/99 | bb6657 | Benth6657 solid | -30 1790
1/21/99 | bb6657 | Benth6657 solid | -40 1970
1/27/99 | bb6657 | Benth6657 liquid | -30 2130

2/2/99 | bb6657 | Benth6657 | liquid | -30 gel outside | 1880

1/11/99 | bb6771 | Benth6771 solid | -40 short gate | 3260

1/16/99 | bb6717 | Benth6717 | solid | -30 2080
1/21/99 | bb6717 | Benth6717 | solid | -40 2390
1/12/99 | bb6314 | Bill6314 solid | -40 740
2/22/99 | bb6314 | Bill6314 solid | -30 black tape | 510
1/13/99 | bb6330 | Bill6330 solid | -30 580

1/14/99 | bb6330 | Bill6330 solid | -40 680
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1/13/99 | bb6437 | Bill6437 solid | -30 690
1/14/99 | bb6437 | Bill6437 solid | -40 790
1/16/99 | bb6814 | Bill6437 solid | -30 810
1/21/99 | bb6814 | Bill6437 solid | -40 830
1/27/99 | bb6437 | Bill6437 liquid | -30 670
1/28/99 | bb6437 | Bill6437 liquid | -30 gel outside | 540
4/21/99 | bb6437 | Bill6347 liquid | -30 660
2/4/99 bb6437 | McLanel liquid | -30 940
2/8/99 | bb6437 | McLane2 liquid | -30 960

4/22/99 | bb6437 | McLane2 liquid | -30 black tape | 660

2/22/99 | bb6657 | 17”Benth liquid | -30 2360
3/2/99 | bb6657 | 17”Benth liquid | -30 black tape | 1400

2/22/99 | bb6437 | 17’Nautilus | liquid | -30 1450
3/2/99 | bb6437 | 17"Nautilus | liquid | -30 black tape | 780

4/21/99 | bb6814 | Benth302 liquid | -30 1860
4/22/99 | bb6814 | Benth301 liquid | -30 black tape | 1160

E.4 Easy conclusions

1) As all measurements were done using the same sets of cables, the cables are not the source
of the noise.

2) All PMT’s alone measures low noise (200-400 Hz). Cosmic rays may be the source of some
of this noise, and the rest we assume is due to thermal liberation of photoelectrons from the PMT.

3) Any PMT when placed in a ’96 Benthos sphere becomes high-noise (1600-2400 Hz). The
only exception to this result occurred when there was no gel between the glass and the PMT; we
believe that the lack of good optical coupling caused many of the noise photons from the glass to
never reach the PMT.

4) Any PMT when placed in a Billings sphere becomes low- noise (600-850 Hz).

5) A low-noise PMT in only gel (no glass) measures noise as low as if it were bare. Therefore,
the gel does not contribute to the noise.

6) Putting gel or black tape on the outside of a sphere of any type reduces its noise, as expected.
However, our techniques are not totally efficient at doing this.

7) After-pulses contribute significantly to the apparent count rate, if long-gate precautions are

not taken.
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8) McLane spheres, although quiet relative to Benthos (~950 Hz), are not as quiet as their
predecessors.

9) 17" spheres in general have much higher noise rates, because of their greater thickness and
volume. Conclusions about these samples require some more in-depth analysis (see below).

10) Liquid gel will “go bad” if left exposed to the air for a long time. All the liquid gel
measurements above used the same sample of gel, which was simply poured from sphere to sphere.
But after a long break in time between measurements, I found that the gel suddenly was producing
almost 1000 Hz of excess noise in all measurements. It had been exposed to air for several months.
On close inspection, I found small filamentary-looking reddish particles floating in the gel, and it had
turned a slightly orange color. The “bad” gel was replaced with a sample from the same year, but
which had been sitting on the shelf, not exposed to air or used. This solved the problem and previous

measurements could be repeated.

E.5 Radioactivity

If the excess noise is coming from the glass, the most likely cause is radioactive material in the
glass. Samples of all the glass types were sent to LBL for further testing. They measured the rates of
beta decay from potassium (40K), uranium, and thorium using a high-purity germanium gamma-ray
spectrometer. LBL’s results clearly suggest that radioactive potassium is responsible for most of the
noise, with uranium and thorium contributing small amounts as well. In addition, they were able to
measure the percentage of potassium in each sample. [101]

Alerted about the potassium levels in their glass, Benthos agreed to do a self-test for potassium
for their old glass (strings 5-13) and their new glass (strings 14-19) for comparison. The found 1.0%

in the 5-13 sample and 0.5% in the 14-19 sample.

E.6 Geometric Effects

For a better analysis, one must take into account the differing sizes and thicknesses of the

samples in these tests.

Dimensions:
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177 diameter Benthos: thickness 1.6 cm
177 diameter Nautilus: thickness 1.4 cm
13” diameter Benthos: thickness 1.2 cm

12” diameter Billings: thickness 0.9 cm

We must also understand the mechanism for the noise. Assume that 300 Hz is inherent within
the PMT itself and cannot be avoided, even if the sphere is low in potassium. The remainder of the
noise which is due to radioactivity will scale either by volume or by thickness (or a combination of the
two) depending on how photons behave in glass. If most photons reflect off the glass/air interface,
then photons generated anywhere inside the volume of the hemisphere will arrive eventually at the
PMT, and the count rate should scale by the volume. However, if most photons escape the glass
when they hit the glass/air interface, then any photons reaching the PMT must have come from a

fixed solid angle “below” it, and the count rate should scale by thickness. (See Figure E.2.)

Figure E.2: Photon behavior a) with reflections b) with absorption.

It is difficult to actually do the scaling, since we are probably dealing with a combination of
both effects. However, gel or black tape on the outside of a sphere should reduce the importance of
volume and give us primarily a thickness dependence. We can make a very simple assumption that
only the photons immediately “below” the PMT are seen by the PMT, and that all other photons

escape through the absorber.
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E.7 Putting it all together

Here is a table showing the noise rates for all kinds and sizes of spheres. (If multiple mea-
surements were made, the most reliable one was chosen.) The first column is measured noise rate.
The second is after subtracting 300 Hz of noise inherent to the PMT, unrelated to radioactivity.
The third column is the second column scaled by thickness to the thickness of 13” Benthos. (This
is done only for “absorber” measurements, for which our simple assumption may be valid). I have
also included for comparison the percentage potassium as measured by LBL, and as measured by

Benthos’s self-test.

Type of Noise | -300 | Thickness | 40K 40K
glass Rate | PMT | Scaled LBL Benthos
13” old Benthos | 2100 | 1800

with absorber 1800 | 1500 | 1500 0.75-1.2 | 1.0

in ice 1100

13” new Benthos | 1860 1560
with abs. 1160 | 860 860 0.32 0.5
in ice 800

17” new Benthos | 2360 2060
with abs. 1400 | 1100 | 825 0.23

12” old Billings 700 400
with abs. 540 240 320 0.04
in ice 300

12” new McLane | 950 650

with abs. 660 360 480 0.08
177 Nautilus 1500 | 1200
with abs. 780 480 410 0.01

As the “absorber” technique is obviously not as efficient as real Antarctic ice, as the noise
rates of modules in the ice are consistently lower in the ice than in the lab. There is consistency in

the behavior of the three batches of glass; this aspect of the noise appears to be well-understood.
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Appendix F

A Fourier Analysis of Supernova Data from 1997

F.1 The Supernova Data Acquisition System

The AMANDA detector has two separate data acquisition systems: the “muon” DAQ, which
records muon- or shower-induced events which trigger the detector, and the “supernova” DAQ, which
monitors the count rates of all the detector’s optical modules and operates continuously. The purpose
of the supernova DAQ is to detect the low-energy electron-neutrinos from events such as supernovae.
A flooding of such low-energy particles may not produce any triggered events in AMANDA, but
would instead raise the ambient light level in the ice, and raise the singles count rate of all optical
modules.

Data from this specialized DAQ can also be used to search for weak periodic signals. Per-
forming a Fast Fourier Transform on this time series data allows us to search frequency space for
periodicities. This technique is sensitive to very weak signals which would not cause AMANDA to
trigger or be detectable in the muon data, and allow us to search for low-energy neutrinos from soft
gamma repeaters, pulsars, or x-ray binaries.

Like muon data, supernova data is organized into runs. Each run contains a continuous
recording of all optical modules’ count rate binned every 0.5 seconds. This report will address a
study of all such data from 1997: 65 runs varying in length from 1300 seconds to 7 days, covering

176.2 total days of live time!.

1This work was published as an AMANDA internal report, #20010401 (not an April Fool!). I have reproduced it
here basically unmodified.
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F.2 Fast Fourier Transforms: A Review

We take the average count rate for all modules as a continuous time series x; which is sampled
every At seconds, thus, ty = At x k. The series has a total number of bins N and total duration T'.
First the mean value of zj, is calculated and subtracted from every time bin, giving the time series a
zero mean. Then a Fourier transform of the time series is calculated, yielding coeflicients a; for each

bin of frequency f; = j/T:
N
a; = Z(mk — ) exp(2mi fitx)
k=1
Such a transform can be easily calculated with an FFT algorithm if N is a power of two. This means
that some data at the end of a run was simply neglected and left out of the analysis.
The a; coeflicients are complex numbers, and cover both positive and negative frequencies up

to the Nyquist frequency fn, = 1/2(At). A physically meaningful quantity is the power contained

in each frequency bin:
P; =2 x |aj*/No>.

The factor of 2 comes from the fact that positive and negative frequencies are symmetric and redun-
dant; this also implies that the number of bins in our power spectrum is half the number of bins in the
original time series. The normalization factor No? is different from what one finds in most literature
(N, or the total number of photons, equal to NC where C is the mean number of total counts per
time bin). The reason for this difference has to do with the Gaussian behavior of the distribution
of noise rates. In a purely Poissonian process with many photons, the distribution of noise rates

2 is equal to the mean C. Although the noise in this

approximates a Gaussian, where the variance o
data is Gaussian, its variance is larger than what one would expect for a purely Poissonian process.

The reason for this is not understood yet, but the effect has been observed before, for instance in

[117]. For this analysis, then, No?, computed for each series as:

N
No? = Z(wk - 7)?
k=1

gives the correct normalization for each resulting power spectrum. The total normalized power over

all bins is 2.
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The maximum frequency that this analysis is sensitive to (the Nyquist frequency) is determined
by the minimum time binning of the data (A¢ = 0.5 seconds — fn, = 1 Hz). The longer in total
duration the series, the finer the binning of frequencies. But in a search for weak signals, signal to
noise is more important than fine frequency binning. Chopping a set of data into M smaller segments
and adding together the power spectra of all the separate segments will enhance any real feature in

the power spectrum relative to the random fluctuations.

F.3 Removing problematic modules

Removing bad modules from the analysis is very important; individual bad modules can in
fact produce significant spikes in a Fourier power spectrum. The raw (0.5-second time series) data
from all 302 AMANDA-B10 optical modules were Fourier transformed individually, for three runs
(one at the beginning of the year’s data, one in the middle, and one at the end). Modules were
rejected from the entire 1997 analysis if they were suspicious in any of the three inspected runs, in

any of the following respects:
e High noise rate
e Low or zero noise rate (dead modules)
e “Glitchy” noise rate
e Strange features in Fourier spectrum (see below)

Examples of some cases are shown in Figure F.1. The top module is a normal one, with no
strange features either in time-series or frequency-space. The middle module (module 5) appears
normal in all respects looking at the time series. It does not appear on any “bad module” list
in AMANDA. And yet it produces a strange 23-second feature and harmonics in frequency-space.
Modules 5, 6, 17, and 18 have this property which is not understood and not found in any other
modules. The bottom module in Figure F.1 (module 186) is on several “bad module” lists for obvious
reasons; it is high noise and glitchy, sometimes saturating the supernova DAQ. Three bad modules

of this type produce a 1.3-second feature in the Fourier transform. A list of all removed modules can

be found in Table F.1.
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Module | Reason

5 Produces 23-second Fourier feature
6 Produces 23-second Fourier feature
17 Produces 23-second Fourier feature
18 Produces 23-second Fourier feature
28 Dead

32 Dead

34 Dead

39 Dead

40 Dead

47 Dead

o0 Dead

o7 Dead

62 Dead

78 Dead

81-86 Not in use

96 Very low noise rate

106 Low oscillating noise rate

143 Dead

167 Very low noise rate

172 Dead

186 High noise, glitchy, produces 1.3-second Fourier feature
190 Very low noise rate

195 Very low noise rate

197 Very low noise rate

199 Very low noise rate

215 Very low noise rate

227 Dead

229 High noise, “screwy”

231 Dead

232 Dead

233 High noise, glitchy, produces 1.3-second Fourier feature
234 High noise, saturating

235 Very low noise rate

255 High noise, saturating

257 Glitchy

259 High noise, saturating

260 High noise, glitchy, produces 1.3-second Fourier feature
261 Somewhat high noise

262 Somewhat high noise

263 Glitchy

264 Dead

267 Dead

Table F.1: Removed optical modules from B10 for FFT analysis
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F.4 Slicing each run into 34-minute “segments”

For a first search for very weak signals, there are advantages to dividing a long series of data
into many shorter segments, transforming each segment separately, and then summing the transforms
of each segment together into one total power spectrum.

There are some logistical advantages to this technique. For one thing, it allows us to combine
data from runs of various sizes (some are as short as 1300 seconds and others as long as 7 days)
by chopping all runs into segments each of equal duration and equal importance. Secondly, as the
duration of each segment is arbitrary, we are free to choose one which conveniently contains a number
of bins which is a power of two (making the Fourier transform algorithm easy to implement). Thirdly,
if a glitch or spike or other undesirable event occurs in a segment, that segment can be discarded
without affecting the other segments or having to throw out the entire run.

But most importantly, if the Fourier transform is dominated by white noise (as we believe it
is), then by summing together many independent spectra of independent segments of time, we can
smooth out the fluctuations in the noise while enhancing any existing signal. In effect, we sacrifice
frequency resolution for sensitivity.

The segment duration was arbitrarily chosen to be 2'2 bins, or 2! seconds, which is about
34 minutes. The resulting power spectra then contain 2'! bins of frequency from 0 Hz to the Nyquist

frequency of 1 Hz. The frequency bin size is then 4.9 x 10~* Hz.

F.5 Rejecting spikes and glitches

As mentioned above, one of the advantages of splitting the data into segments is that one
misbehaving segment can be thrown out without throwing away the entire run of data.
A segment is identified as containing a spike or a glitch if it meets either of the following

criteria:

e Spike: The highest or lowest count rate lies outside 100 from the average count rate (where o

is computed as in the discussion of normalization above)

e Glitch: The maximum or minimum “sliding mean” (that is, mean count rate in a sliding window

of 100 time bins) lies outside 2% of the overall average count rate.
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Run 46, File 1 contains examples of problematic spikes. Run 43, File 1 contains an example
of a glitch in the noise rate down and then back up again (see Fig. F.2). These discontinuities cause
problems in the Fourier spectrum. Notice, however, that we do not throw out the data in between
the two glitches, where the noise rate is lower than normal. This is because we are sensitive only to
changes in noise rate and not the absolute noise rate.

The causes of spikes and glitches is not well-studied. Many of them are believed to be at-
tributable to hardware-related events at the South Pole (such as laser runs, loss of high voltage to
modules, crashing or re-starting of the DAQ, etc., see [117] for a more in-depth discussion). In the

meantime, these untrustworthy events are simply thrown out of the analysis and we proceed.

F.6 The Distribution of Powers

Performing this segmentation of the data and summing of the transforms affects the statistical
properties of the resulting power spectrum. If M is the number of independently-transformed Fourier
power spectra from independent time-series segments, then distribution of powers in the summed
power spectrum is expected to follow a x? distribution with 2M degrees of freedom [122, 123].

Data from a sample run agree with this expectation. Figure F.3 shows the output Fourier
spectrum of one segment (M = 1) and its x? distribution of powers. For M = 1, the distribution
reduces to an exponential. Figure F.4 shows the same thing but for M = 25 summed spectra. The
shape of the curve is now more complicated, but for very high values of M it will approach a Gaussian.
A theoretical x3,, curve (computed with no free parameters) matches very well to the data.

With confidence that the method is working as expected, we can now proceed with a search

for very weak signals, using the combined data from all of 1997.
F.7 Sensitivity and Upper Limit Statistics

F.7.1 Theoretical detection threshold

For a x? distribution with a large number of degrees of freedom, approximations exist [116]

for computing not only the probability curve itself but also the power P, such that:

probability(ngM > Py) =Q(Py) =C
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where C' is a confidence level for power exceeding Fj.

Without looking at the data, but theorizing a xZ,, distribution of noise powers and the absence
of any signal, one can compute a detection threshold power for a confidence level C' (say, 90%, or
C = 0.90). This is defined (following the terminology of [123]) as the power which will be randomly
exceeded by noise in only (1—C') of experiments. For just one bin of frequency, the detection threshold

is merely the solution to:
probability(Pyz > Pget) = Q(Paet) =1-C

A power spectrum, however, has /Ny independent bins of frequency, any of which could by chance
have a high power. A detection threshold for a power spectrum, therefore, must be computed from

the probability that any of the bins exceed the threshold:
probability(Pyz > Paer) =1 — (1 — Q(Pget))N =1-C
If the confidence level is high and Q(Pge:) is small, we can apply a binomial expansion here and get:

1-C=1—(1—-Q(Puet))N" =1— (1 — NyQ(Paet) + O(Q(Pger)?)...

C=(1-N;Q(Paet))

1-C
Pe = —
Q(Pget) N;

F.7.2 Signal power upper limit from data

What if a signal is present? Although it is tempting to treat the background and signal simply
as additive, [123] warns that this is not correct. In the presence of both signal Ps;, and a white noise
background, which together add up to a total power P, the probability distribution of P, in any

single bin is derived in [119] and given by:

pM(Ptot; Psig) = (Ptot/Psig)(Mil)/z exp(f(Ptot + Psig)/z)IM—l(\/ PtotPsig)

where Ip;_1 is a modified Bessel function. Although a complicated expression, at high values of M

this can be approximated by a Gaussian with mean 2M + P, and a variance 4M + 4P,;,. This can
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be seen in Figure F.5, in which this complicated function is computed for M = 10 and a variety of
different Pj;4.

Notice that even at high M, the result is still not simply additive; if it were, the variance
would be 4M + 2Pg;,.

Now that we know how the probability distribution depends on Ps;4, we can compute an upper
limit on P, for all independent bins of frequency. Assuming that the signal will produce a power
excess in only one frequency bin, we strive to ensure that our upper limit power is very likely (with
confidence C' of, say, 90%) to be visible above even the highest power level present in the noise P, ;.

Thus, the upper limit signal power is the solution Py, to:
probability(Piot > Praz) = C

where P, is the largest observed power of all frequency bins in the data. In this equation, C is
given, as is Ppuq,. The unknown in the equation, Py, is embedded in the shape of the probability
function in a complex way, making it difficult to solve for. Fortunately, if we can approximate the
function by a Gaussian (with mean p and variance o2 that depend on P,;, as described above), it is

possible to disentangle Pj;, in the following way:

probability(Piot > Praz) = C
Qc, > (Pmaz) =C
Qa, . (C) = Pras

Vo?Qg! (C) + 1= Pra

VAM + 4P,;Q5;  (C) + 2M + Pyig = Prnas

which is quadratic in 4/Ps;, and can be solved as a function of C', M, and Qail(C). This last
quantity is the inverse of Q(P), the power which will be exceeded (C)% of the time, for a Gaussian

distribution with unit mean and unit variance, which is easily computed from the tables in [116]



M | Threshold Pg.; | Sensitivity Py | Psig/M

1 19.83
25 98.87 74.43 2.98
100 287.57 126.12 1.26
1000 2255.80 349.98 0.350
7435 15550.99 915.23 0.123
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Table F.2: Sensitivities for different M’s

F.7.3 Theoretical signal sensitivity

To compute an expected signal sensitivity from theory only (rather than an upper limit from
data), apply the same method only use the detection threshold Pye; instead of P4, [123]. Computing
the theoretical sensitivities for different values of M (Table F.2), it becomes evident why there is an
advantage to summing the power spectra of many independent segments: the signal power sensitivity

per segment becomes much more constraining.

F.8 Signal power and amplitude

To convert a Fourier power upper limit into upper limit on a signal amplitude, it is necessary
first to make some assumptions about what the signal would look like. In the case of pulsed or
oscillating neutrino emission from astrophysical sources, no good model for pulse shape exists, so we

shall assume for simplicity (following [122]) a sinusoidal pulse shape:
r(t) = ro + Asin(wt + 9)

where ry is the mean count rate of the noise (in units of PE’s/OM/sec), and A is the amplitude (also in
units of PE’s/OM/sec) of a sinusoidal modulation. A real pulsing source would not produce positive
and negative photoelectrons, of course, but rather would oscillate between 0 and 2A. This differs
from the above formula only by the addition of A, which for weak signals is very small compared to
ro and can be ignored. The average number of PE’s contained in the pulsations, therefore, is also A.

Leahy et al. ([122]) go through the derivation of how this signal is manifested in a Fourier
transform; it is not as simple as one might expect. The sinusoidal shape is contorted by binning
effects, a “diffraction term” appears in the Fourier power in the signal’s frequency bin j, and the final

answer (re-derived for our definitions and normalization) is frequency-dependent:

(AT)2 sin” (ij /2fNyq)

< P; >=0.7T73M
! 2No? (7 fj/2fnyq)?
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So when we find an upper limit power P, which is valid for all frequency bins, we can transform this

into an amplitude upper limit by inverting this equation:

) PNo® 1 (nfj/2fNyqg)
A= 1.61\/7T sin(7f;/2fnyq)

Figure F.6 demonstrates these equations for “fake” data: an artificial sinusoidal signal is

introduced into otherwise normal data, and the Fourier peak appears at the correct place with the

correct amplitude.

F.9 Results and Discussion

All available data from 1997, excluding segments containing glitches and spikes, and “leftover”
sections of data at the end of a run not fitting nicely into 2'2 bins, consists of 7435 segments of
2! seconds each, a total of 176.2 days. Each segment was Fourier-transformed, and all transforms
summed together. The resulting power spectrum is shown in Figure F.7. It is not ideal white noise:
there is both a steep delta-function-type structure at very low frequencies (due to non-zero mean
effects) and a gentle exponential component, the cause of which is not known.

To search for periodic signals (appearing as spikes in the Fourier spectrum), we must first
remove the delta-function and gentle-exponential components of the spectrum, even though their
origins may not be fully understood yet. A constant plus two exponentials (one gentle, one steep)
are fit to the total power spectrum (the smooth curve in Figure F.7). The two exponential fits can
then be subtracted to give the white noise component only. The distribution of powers of this white-
noise-only power spectrum (adjusted for the change in overall normalization when subtracting the
exponentials) is compared in Figure F.8 to the expectation of a x? distribution with 2 x 7435 degrees
of freedom.

A periodic signal, if it existed, would produce a spike in Fourier space, and a frequency bin with
an unusually high power. In the data, the highest power appearing in any bin is 14652.5 (renormalized
slightly to 15421.0 in the removal of the exponential component). So, a 90% confidence level signal
power upper limit Py, is the power that (when combined with the noise) would produce a total
power greater than P,,,; in 90% of experiments. For this data, Py is computed to be 783.415

(un-renormalized to 744.37).
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Figure F.6: Upper plot: Fourier spectrum of a normal run. (102 summed segments:
average count rate 896.7 Hz, 7" = 2048 seconds, and normalization No? = 92000 for
each segment.) Lower plot: the identical run, but with an artificial sinusoidal signal
added, with amplitude A = 0.5 at a frequency of 0.1938 Hz. The resulting signal
amplitude is as predicted by the equations.

198



20000

19000

18000

17000

16000

15000

14000

13000

12000

11000

10000

199

r Entries 141312
a Mean 0.4872
g RMS 0.2925
E x'/ndf 4240. / 2022
- P 2309.
s P2 63.72
x p3 1481.
i P4 2,342

P5 0.1413E+05
I
\
N
L'l |
: i W”‘ "F""I ‘\U\H ‘
[ Il " W" flillln l‘\‘h“‘.l il ‘
E , L SR il el

i g G T RS
: i A i 1 “‘H ‘H“. I "“hxll\l‘m .‘u‘\‘d"lh‘” \‘nlw‘ur““l‘h‘_““l”‘lw‘ il
7\ L1 ‘ I | ‘ I ‘ I | ‘ I | ‘ I | ‘ I | ‘ I | ‘ I | ‘ I |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Summed FFT Power

Figure F.7: Summed power spectrum of all 1997 data
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To translate this power upper limit into a sinusoidal signal amplitude upper limit, we apply
the equations in Section 8 to each bin of frequency. At the Nyquist frequency, the diffraction term
approaches 7/2, and at low frequencies it approaches 1. Therefore, the amplitude upper limit for all
of 1997 (Pyr = 744.37, ro = 880.5, No? = 91220) is:

Amplitude (PE/OM/s)
low frequencies 0.0751
high frequencies 0.118

This limit, of course, assumes that the neutrino signal is a purely sinusoidal one, and is constant
in amplitude over all of 1997.

The next step is to convert photoelectrons per module per second into a limit on the flux of
low-energy neutrinos from a pulsing source in the sky. This is difficult, however, since there are no
models for neutrino pulsations and no known neutrino point sources. However, just to put the limit

in perspective, we can take a few guesses.
F.9.1 Supernova-like source

A single supernova explosion at the center of the galaxy, emitting neutrinos with energy of
a few MeV, is expected to produce 100 PE’s/OM/10 seconds in AMANDA [121]. Though no such
objects exist, consider a hypothetical pulsing source with the same supernova-like neutrino spectrum.
Further suppose that the total neutrinos produced by the source (which produce 100 PE’s/OM total)
are spread uniformly over 170 days (1.5E7 seconds) instead of 10 seconds. Such a source would
produce 0.0000067 PE’s/OM/sec in pulsations. This is four orders of magnitude below our upper
limit.
F.9.2 Gamma-ray signal from a pulsar-like source

Pulsations have been found in some objects in x-rays and even gamma-rays. This analysis
could be sensitive not only to excess photons from neutrinos, but also from high energy gamma-ray
showers. The Vela Pulsar, for instance, is expected to produce 100000 muons from gamma rays which
penetrate to AMANDA depth per year in a km®-size detector.[120] Rescaling this to AMANDA-B10
size, this is approximately 1000 muons per year. Assuming each muon produces an 25-hit event

(0.1 PE’s/OM), this causes a net excess over all modules of 100 PE’s/OM /year, a number similar to
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the expectation for the “supernova-like” source above. Again, this is four orders of magnitude below

the upper limit.
F.9.3 Weird Stuff (cosmic strings, extraterrestrial communications, etc.)

In this regime, of course, there are very few rules and absolutely no data. So consider, just
for fun, an alien civilization capable of producing a beam of neutrinos with a flux such as we can
achieve in the present day from a muon collider. [118] predicts a charged-current event rate of 10°
events/kton/year for a detector 10000 km downstream of a 200-GeV muon collider. The neutrinos
would have energies of tens of GeV. Rescaled to AMANDA-B10, this is about 20 events/sec, each
of which causes 0.01 PE’s/OM, resulting in a signal of 0.2 PE/OM/sec. Further suppose that this
beam was expectantly aimed at Earth, from a distance away D; we need to correct for the distance
by a factor of (10000 km)?/D?. A neutrino signal from the nearest star would need 20 orders of
magnitude greater intensity to reach our upper limit.

If, however, we disregard the dispersion of the neutrinos across the vastness of space and
consider a perfectly-collimated neutrino beam of similar amplitude, then the signal is on the same
order as our upper limit. Perhaps with further refinement in the analysis, this model can be ruled

out.



