IceCube Overview

IceCube Upgrade Rebaseline Review April 26-28, 2022 Kael Hanson – IceCube Upgrade Principal Investigator

Brief Bio – Kael Hanson

Education University of Michigan (2000) PhD Physics MACRO detector at Gran Sasso

- Joined IceCube @ UPenn in 2000 when it was still AMANDA.
- Began with UW-Madison in 2002 shortly after IceCube MREFC started as postdoc.
- Led In-Ice Devices (2003-2006) and Instrumentation (2006-2008)
- Spent 6 years as faculty at Université Libre de Bruxelles (2008-2014)
- Rejoined UW-Madison as faculty / IceCube Director (2014)
- PI of Upgrade project.

IceCube: The Detector Array

IceCube Detector Element: The Digital Optical Module

CUBE

PGRADE

04 - 26 - 2022

Upgrade Rebaseline Review

Detecting Neutrinos in the Ice

IceCube is a "water" Cherenkov detector: we detect the charged ultra-relativistic secondaries which are produced in neutrino scattering in ice or detect CR muons and their stochastic secondaries.

Ice is a good calorimetric medium.

Angular resolution for tracks is now < 0.5°, for cascades with DNN techniques can be as good as 5° : significant progress in the last 4-5 years.

How does IceCube work?

When a neutrino interacts with the Antarctic ice, it creates other particles. In this event graphic, a muon was created that traveled through the detector almost at the speed of light. The pattern and the amount of light recorded by the lceCube sensors indicate the particle's direction and energy.

The IceCube Upgrade

Infill array for neutrino physics and precision characterization of the ice.

				SCIENCE OF	JECTIVES - THE ICECU	BE UPGRADE				-				
		Tau Neutrino Appearance and the Unitarity of the PMNS Matrix (2.1)	Neutrino Oscillations (2.2)	Sterile Neutrinos (2.2)	Indirect Dark Matter (2.2)	Ice Characterization for better LE & HE flavor physics (2.3)				С	har	ge C	lues	tion ST1
AENTS	Event Energy Range	few to 100 GeV	few to 100 GeV			TeV to >PeV								
EQUIREN	Expected Detectable Event Rate	Measurement in 2-3 years	5-10% tau measurement	Any detection/improved limit	Any detection/improved limit	100s / year						7		
ENCE R	Desired Angular Resolution	<5 deg at O(20 GeV)									_			
RY SCII	Time Resolution Within Event	2-5 ns	2-5ns											
PRIMA	Absolute Time Accuracy					50 ns								
	Instrumented Ice Volume	About 2 million cubic meters								\checkmark	V	\checkmark	\checkmark	
~	Array Shape	Compact								\checkmark	V	\checkmark	\checkmark	
ometr	Effective Volume	Varies with energy level and event orientation (derived from other properties)								\checkmark	V	\checkmark	\checkmark	
y Ge	Number of Strings	7								\checkmark	V	\checkmark	\checkmark	
r Arra	multi-PMT Digital Optical Modules (mDOM) per String	108 (90 in the dense physics region, others above and below for primarily calibration purposes) - 46 mDOMs, 38 D-Eggs, & 6 pDOMs								\checkmark	V	\checkmark	\checkmark	
enso	Total Number of mDOM	~750 (photocathode area is key parameter here)								\checkmark	V	V	\checkmark	
lce S	mDOM Spacing - Horizontal	22 meters (compromise between closer and drill constraints)								\checkmark	V	V	\checkmark	
-	mDOM Spacing - Vertical	A Spacing - Vertical 3.0 m							\checkmark	V	\checkmark	\checkmark		
	Detector Depth		I	Physics region: 2150-2425r	m Upper region: 1450-215	0 Deep region: 2425-2600	n			\checkmark	V	\checkmark	\checkmark	
9	Sensitivity of mDOM	Single Photo Electron (SPE)								\checkmark	\checkmark	V	\checkmark	
manc	mDOM Photon Event Dynamic	OM Photon Event Dynamic SPE to >200 PE / 15 ns								\checkmark	V	1	\checkmark	
berfor	mDOM Field of View	e Spherical with <10% variation, except for cable shaddowing. zation Rate 300 megasamples / second							V	V	V	\checkmark		
MO	Digitization Rate								\checkmark		V	\checkmark		
C C	Digitization Rate	ation Rate 400 ms						V		√	\checkmark			
ividus	Absolute Amplitude Calibration				< 5 %					V	1	~		
P	Accuracy Timing Accuracy				< 5 ns					\checkmark	V	√		
	mDOM Noise Rate	OM Noise Rate O(10kHz) total noise rate. <850 Hz per PMT									\checkmark	1		
	mDOM Data Processing	Initial waveform capture and digitization in DOM, context sensitive compression of data prior to transfer								\checkmark		\checkmark		
n / Backgrou Isorimination Isa Raductio	Local Coincidence Function	In mDOMs, might require N of 24 PMTs hit within time window to suppress noise.								V		V		
	Event Trigger Function	gger Function Global (surface) trigger logic to package event data and discriminate noise							V	V	\checkmark	\checkmark		
	Veto Function	Surface Array (IceTop) allows identification and discrimination of downgoing background							\checkmark	\checkmark	\checkmark	\checkmark		
ge	Incoming Data Stream from	m 150 Gig / day								\checkmark	V	\checkmark	\checkmark	
Stora	Non-Volatile Storage at South		1-2 Day Buffer / Archive Capacity & Full Redundancy Requirements											
and	South Pole High Priority	Priority At all times, it must be possible to complete a minimum 10KB transfer to the Northern Hemisphere within 10 minute period. (SNEWS and GRB Reporting)						RB Reporting)						
sport	South Pole Medium Priority				500 MB / day		•	- *						
Tran	South Pole High Volume Data				>30 GB / day							\checkmark		
Data	Northern Hemisphere Data			Fully Buffered / A	chive Capacity & Redunda	ancy Requirements			V			V		

Warehouse

Scientific Goals \rightarrow Technical Requirements

- Module design (segmented PMT) + array geometry (photocathode density) determine reconstruction accuracy in function of E
- Array geometry (instrumented volume) determines event rate
- IceCube provides surrounding veto for background elimination
- New calibration instruments (cameras, flashers, POCAM, Pencil Beam) probe ice properties on baselines shorter than 1 scattering length and with enhanced precision.
- Increased instrumentation density → more modules per wire pair → power + B/W constraints
- Upgrade array must interoperate seamlessly with IceCube ("just another string or set of strings") – module communication standardized by ICM ("all devices speak DOM")

Project Objectives (Unchanged Since 2016)

- 1. Neutrino Properties
- 2. Recalibration and Reanalysis of IceCube Data
- 3. IceCube-Gen2 Research and Development

GRADE

The Four Pillars of the Upgrade

	National Science Foundation	MPS/PHY Funded (\$22.983M GEO/OPP provides logistics su fuel, on-ice field work and pop costed in Project budget.	original TPC) Ipport including cargo, ulation support not				
	IceCube Upgrade Project	IceCube M&O	IceCube Collaboration				
• • • • • •	Project Management Drilling & Installation Sensors Cable Systems Calibration M&O Data Systems Integration	Supports integration of Upgrade Project into IceCube Detector and Software Systems- much of M&O Data Systems labor resources are supported by the M&O program. Upgrade will transition into mature operations program at little additional cost.	Collaboration in-kind contributions of instrumentation: D-Eggs, mDOMs, calibration devices, and downhole raw cable – approx. \$14M. Collaboration labor and computing resources coordinated through M&O structures.				

Markalia University of Adelaide

BELGIUM

Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

E CANADA

SNOLAB University of Alberta-Edmonton

DENMARK University of Copenhagen

GERMANY

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt–Universität zu Berlin Karlsruhe Institute of Technology Ruhr-Universität Bochum RWTH Aachen University Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

THE ICECUBE COLLABORATION

JAPAN Chiba University

REW ZEALAND University of Canterbury

REPUBLIC OF KOREA Sungkyunkwan University

SWEDEN Stockholms universitet Uppsala universitet

SWITZERLAND Université de Genève **UNITED KINGDOM** University of Oxford

UNITED STATES

Clark Atlanta University Drexel University Georgia Institute of Technology Harvard University Lawrence Berkeley National Lab Loyola University Chicago Marguette University Massachusetts Institute of Technology Mercer University Michigan State University **Ohio State University** Pennsylvania State University

South Dakota School of Mines and Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland

University of Rochester University of Texas at Arlington University of Utah University of Wisconsin–Madison University of Wisconsin–River Falls Yale University

11

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds-Wetenschappelijk Onderzoek-Vlaanderen (FWO-Viaanderen)

FUNDING AGENCIES

Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)

Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Charge Question M1

Following talks by L2 managers will go into further detail on major deliverable areas. WBS deliverables defined through WBS Dictionary to L4 and under change control.

WBS Tree structured functionally not by institution.

Charge Question C5

Cost (vs Time)

Increased On-Project Cost

2018 Initial Cooperative Agreement Budget \$20.1M Base \$2.8M Contingency Add PO & technical staff Surface cables COVID Loss of 3 field seasons 60 months \rightarrow 91 months

Additional in-kind contribution of PMTs from KIT *Reuse EHWD Generators instead of MicroTurbines* 2022 Rebaseline \$32.2M Base \$3.7M Contingency

Simplified Project Timeline – Baseline Plan

Upgrade Rebaseline Review

Simplified Project Timeline – Rebaseline 2022

JPGRADE

Hand-Off To IceCube Operations

- Handoff to IceCube M&O following FY26 drilling, installation, commissioning of strings : Milestone date is 04/06/2026 this is within the first week of the next M&O cycle.
- Project complete 04/30/2026.

04 - 26 - 2022

- Drill equipment packed during FY26 season, ready to retro.
- Retro to occur with small field team under M&O following season, or, alternatively equipment could remain on site for IceCube-Gen2 activities.

Considerations for the Next 2 Days

- Upgrade scientific objectives and technical scope remain unchanged 5 years after original proposal.
- The project has made significant progress: 300 of the 700 DOMs are completed; drill has completed recon and repair seasons; over \$2.5M in major equipment purchases.
- Three-year delay principally due to COVID the project has matured as a result and developed the rigor not only to complete the Upgrade scope, but also to transition to future larger-scale endeavors.

04 - 26 - 2022

