Steamshovel: A New lceCube event viewer

Steve Jackson

12/19/12

1/16



Motivation W

IceCube has developed at least two event viewers: glshovel and the python
event viewer.

e Both semi-abandoned, barely maintained

e Consensus in Madison and Aachen: it's worth starting over

Steve started at IceCube in September; prototyping began in October.

2/16



Steamshovel W

A scriptable graphical tool for visualizing lceCube data on OS X and Linux.

e Primary user: physicist seeking insight on data, or preparing graphics
for presentation
e Secondary users:

Student learning about the .i3 data file format and lceCube detector
data
Professor giving a demonstration

3/16



Steamshovel Technology W

Steamshovel is a C++ application with an embedded python interpreter.
Required:

e icetray for data interchange

e OpenGL for 3D graphics

e boost::python for application scripting
e Qt (4.6+) for GUI and utilities

Essentially the same requirements as glshovel.
Optional:

e [Python for better scripting interaction
e PyQt4 to use IPython's embedded Qt GUI widget

4/16



What About a Scene Graph Library? \/

Evaluated three possibilities in detail: Panda3D, OpenSceneGraph, and
visualizationlibrary.org.
Some disadvantages:

Heavyweight libraries can create dependency issues

Complex APIs are difficult to learn (OpenSceneGraph)
e Omni-competent libraries require you to fit their world (Panda3D)

VL looked promising but appears to have very few actual users

Steamshovel's developer is already learning icetray and Qt as he goes

5/16



So why do we need a scene graph? Y

e Can draw with advanced/complicated graphics styles
But IceCube visualization is not graphically complex
¢ Provide robust geometry math support (vectors, matrices,
quaternions)
Qt (and icetray) provide this
e Support 3D text rendering and fonts
Qt provides this
e Scene graph gives structure to data on the screen

We will create our own, scriptable scene data types
Easier for non-experts to understand and maintain

6/16



Screenshot

Steamshovel

lceTop | 13Frame Inspector |

Thython 0.14.dev - dn erbancad Totaractive Python

~> Tntroduction and overview of IPython's faatures.

%QuukmF -> Quick reference.

help -> Python's own help systen
object?  -> Details about 'object', use ‘object??’ for extra
details.

%guiref -» A brief reference about the graphical user
interface.

In [11: app.files.openfile('../../rdata/example.i3")

In [2]: window.gl.scenario.add(t, ['I3Geonetry’, "OFflinePulses' 1)
In [3]: window.gl.scenario.add(2, ['PoleMuonLlnFit'])

In [4]:

Set event times by Default o

Event start: 0 Event end: 40000

Animation window: displayed time =15614 Reset

9035—1657E

<< I< Stop Play >

[~ Irdatajexample

% ecee

R CiGL01040)

7/16



Features working today Y

e glshovel-like rendering of 13Geometry, RecoPulseSeries, and 13Particle
(in process)

Scriptable GUI using Qt introspection

Loading of multiple, possibly compressed, .i3 files

dataio-shovel-like frame inspector

Rendered geometry is “selectable”

Selection is performed using OpenGL selection buffer
All rendered objects beneath the cursor can be detected, depth sorted
Current selection behavior is just printf

8/16



Embedded Python Y

In Steamshovel, C++ and Python communicate across three “bridges”:
e icetray: I3 data interchange between C++ and Python.

o QMeta: GUI scriptability through Qt meta-object system. QObject
slots and properties are made automatically accessible to Python.

o Artist bridge: Allow users to create new ways of rendering data in
Python.

9/16



QMeta example W

In C++, Steamshovel's MainWindow class does the following:

QMeta: :exportObject ( this );
QMeta: :addToGlobalNamespace( this, "window" );

Python may now control the window, e.g.:

window.showFullScreen()
w = window.width()
window.windowTitle = ‘Example’

No further pybindings are necessary!
IPython's tab completion makes it easy to explore the scriptable API.

10/ 16



About QMeta W

o Completely separate from PyQt.
e Only works on types which inheritent QObject.

e Return values from functions not currently supported. | don't
anticipate a need for this.

e Custom argument types must be added to a list of Qt custom
metatypes (fairly easy). This makes it is possible to pass, e.g.
I3FramePtr objects through QMeta.

11/ 16



Rendering AP provides a set of geometric primitives (spheres, lines, text).

Their properties (location, size, color) can vary according to a time
parameter, an integer count of nanoseconds.
The chief API is the Artist, which must implement three methods:

e description: e.g. “Accumulated Charge"

e requiredTypes: e.g. I3Geometry and I3RecoPulseSeriesMap

e create: given the appropriate I3FrameQObjects, return geometry
objects.

12 /16



The Artist API W

The active artists may be configured by user via scripting or GUI.
Artists persist between selected events for consistent rendering style.

Key feature: Artists may be implemented in Python.
e Visualize icetray data types not known at compile time
e Easy experimentation with visual styles

o Users can create new rendering schemes without modifying project or
recompiling

Python never drives OpenGL: more efficient, no need for PyOpenGL

Rendering system exists today; Python bridge is coming soon.

13 /16



The IPython widget

Python 2.7.3 (default, Sep 5 2012, 11:87:15)

Type "Copyf'ight",‘wts" or "license" for more information.

IPython @.14.dev -- An enhanced Interactive Python.
7 -» Introduction and overview of IPython's features.
¥quickref -» Quick reference.

help -> Python's own help system.
object? -» Details about 'cbject", use 'object??' for extra details.
%guiref -» A brief reference about the graphical user interface.

In [1]: app.files.openFile('../../rdata/bigexample.13')
In [2]: window.timeline . minTime = 108
In [3]: window.timeline.play()

In [4]:

Support for this widget currently requires an unreleased IPython feature
with an uncertain future.

We can duplicate the code if needed to work with stable IPython.

14 / 16



Approximate Timeline Y

e Early January: announce on dataclasses mailing list that early
adopters may begin alpha testing.

glshovel-like accumulated charge and particle tracks
Emphasis on getting early Ul feedback

e January-February: finish core technical features

GUI for choosing Artists and setting parameters

Python bridge for rendering system, Artists written in Python
Movement of image data from Python to C++, e.g. to display
Matplotlib graphs of DOM waveforms

e Feb-April: implementation v1.0 features
Call for beta testers and code review

e May collaboration meeting: presentation to collaboration.
Professor-proof .app bundle, user documentation, release of stable v1.0.

15/ 16



Version 1.0 features W

e Display waveforms of mouse-selected DOM(s)
e 2D IceTop visualization mode, orthographic camera modes
o Create (high-res) screenshots and movies

e Visualize surface and dust layer; show particle/surface intersection
points

e Configurable colors for I3Particles; configurable Artists in general
e Stored user preferences, style templates for various tasks

e Flag and write user-selected “interesting” frames to new file

16 / 16



