
Steamshovel: A New IceCube event viewer

Steve Jackson

12/19/12

1 / 16

Motivation

IceCube has developed at least two event viewers: glshovel and the python
event viewer.

• Both semi-abandoned, barely maintained

• Consensus in Madison and Aachen: it’s worth starting over

Steve started at IceCube in September; prototyping began in October.

2 / 16

Steamshovel

A scriptable graphical tool for visualizing IceCube data on OS X and Linux.

• Primary user: physicist seeking insight on data, or preparing graphics
for presentation

• Secondary users:
• Student learning about the .i3 data file format and IceCube detector

data
• Professor giving a demonstration

3 / 16

Steamshovel Technology

Steamshovel is a C++ application with an embedded python interpreter.
Required:

• icetray for data interchange

• OpenGL for 3D graphics

• boost::python for application scripting

• Qt (4.6+) for GUI and utilities

Essentially the same requirements as glshovel.
Optional:

• IPython for better scripting interaction

• PyQt4 to use IPython’s embedded Qt GUI widget

4 / 16

What About a Scene Graph Library?

Evaluated three possibilities in detail: Panda3D, OpenSceneGraph, and
visualizationlibrary.org.
Some disadvantages:

• Heavyweight libraries can create dependency issues

• Complex APIs are difficult to learn (OpenSceneGraph)

• Omni-competent libraries require you to fit their world (Panda3D)

• VL looked promising but appears to have very few actual users

• Steamshovel’s developer is already learning icetray and Qt as he goes

5 / 16

So why do we need a scene graph?

• Can draw with advanced/complicated graphics styles
• But IceCube visualization is not graphically complex

• Provide robust geometry math support (vectors, matrices,
quaternions)

• Qt (and icetray) provide this

• Support 3D text rendering and fonts
• Qt provides this

• Scene graph gives structure to data on the screen
• We will create our own, scriptable scene data types
• Easier for non-experts to understand and maintain

6 / 16

Screenshot

7 / 16

Features working today

• glshovel-like rendering of I3Geometry, RecoPulseSeries, and I3Particle
(in process)

• Scriptable GUI using Qt introspection

• Loading of multiple, possibly compressed, .i3 files

• dataio-shovel-like frame inspector

• Rendered geometry is “selectable”
• Selection is performed using OpenGL selection buffer
• All rendered objects beneath the cursor can be detected, depth sorted
• Current selection behavior is just printf

8 / 16

Embedded Python

In Steamshovel, C++ and Python communicate across three “bridges”:

• icetray: I3 data interchange between C++ and Python.

• QMeta: GUI scriptability through Qt meta-object system. QObject
slots and properties are made automatically accessible to Python.

• Artist bridge: Allow users to create new ways of rendering data in
Python.

9 / 16

QMeta example

In C++, Steamshovel’s MainWindow class does the following:

QMeta::exportObject(this);

QMeta::addToGlobalNamespace(this, "window");

Python may now control the window, e.g.:

window.showFullScreen()

w = window.width()

window.windowTitle = ‘Example’

No further pybindings are necessary!
IPython’s tab completion makes it easy to explore the scriptable API.

10 / 16

About QMeta

• Completely separate from PyQt.

• Only works on types which inheritent QObject.

• Return values from functions not currently supported. I don’t
anticipate a need for this.

• Custom argument types must be added to a list of Qt custom
metatypes (fairly easy). This makes it is possible to pass, e.g.
I3FramePtr objects through QMeta.

11 / 16

Rendering

Rendering API provides a set of geometric primitives (spheres, lines, text).

Their properties (location, size, color) can vary according to a time
parameter, an integer count of nanoseconds.

The chief API is the Artist, which must implement three methods:

• description: e.g. “Accumulated Charge”

• requiredTypes: e.g. I3Geometry and I3RecoPulseSeriesMap

• create: given the appropriate I3FrameObjects, return geometry
objects.

12 / 16

The Artist API

The active artists may be configured by user via scripting or GUI.

Artists persist between selected events for consistent rendering style.

Key feature: Artists may be implemented in Python.

• Visualize icetray data types not known at compile time

• Easy experimentation with visual styles

• Users can create new rendering schemes without modifying project or
recompiling

Python never drives OpenGL: more efficient, no need for PyOpenGL

Rendering system exists today; Python bridge is coming soon.

13 / 16

The IPython widget

Support for this widget currently requires an unreleased IPython feature
with an uncertain future.

We can duplicate the code if needed to work with stable IPython.

14 / 16

Approximate Timeline

• Early January: announce on dataclasses mailing list that early
adopters may begin alpha testing.

• glshovel-like accumulated charge and particle tracks
• Emphasis on getting early UI feedback

• January-February: finish core technical features
• GUI for choosing Artists and setting parameters
• Python bridge for rendering system, Artists written in Python
• Movement of image data from Python to C++, e.g. to display

Matplotlib graphs of DOM waveforms

• Feb-April: implementation v1.0 features
• Call for beta testers and code review

• May collaboration meeting: presentation to collaboration.
• Professor-proof .app bundle, user documentation, release of stable v1.0.

15 / 16

Version 1.0 features

• Display waveforms of mouse-selected DOM(s)

• 2D IceTop visualization mode, orthographic camera modes

• Create (high-res) screenshots and movies

• Visualize surface and dust layer; show particle/surface intersection
points

• Configurable colors for I3Particles; configurable Artists in general

• Stored user preferences, style templates for various tasks

• Flag and write user-selected “interesting” frames to new file

16 / 16

