
Steamshovel : an IceCube event viewer
Technical overview

Steve Jackson

”I devoted several months in privacy to the composition of a treatise on the
mysteries of Three Dimensions ... But ... I found myself sadly hampered by the
impossibility of drawing such diagrams as were necessary for my purpose ...”

from Flatland, by Edwin A. Abbott

IceCube Collaboration Meeting
6 May 2013

1/14

Steamshovel

A scriptable graphical tool for visualizing and exploring
IceCube data on OSX and Linux.

I In use today by brave early adopters

I Almost beta-ready

I Goal: be useful to normal1 IceCube people

1i.e. non-programmers, non-icetray users
2/14

Steamshovel Directory Layout
I shovelart

I Graphics library, with pybindings

I shovelio

I Random access into (compressed) I3 files, like dataio

I steamshovel

I Qt-based GUI classes

I scripting

I Utilities for bridging between C++ and Python

3/14

Steamshovel Directory Layout
I shovelart

I Graphics library, with pybindings

I shovelio
I Random access into (compressed) I3 files, like dataio

I steamshovel
I Qt-based GUI classes

I scripting
I Utilities for bridging between C++ and Python

3/14

Steamshovel Directory Layout
I shovelart

I Graphics library, with pybindings

I shovelio
I Random access into (compressed) I3 files, like dataio

I steamshovel
I Qt-based GUI classes

I scripting
I Utilities for bridging between C++ and Python

3/14

Shovelart API Classes

4/14

3D SceneObjects

I Spheres

I Lines

I Floating text
(ugly)

I Cylinders,
cones
(uncapped)

5/14

3D SceneObjects

I Spheres

I Lines

I Floating text
(ugly)

I Cylinders,
cones
(uncapped)

5/14

2D (Overlay) SceneObjects

I Text

I Lines

I Images

I Matplotlib
plots

6/14

2D (Overlay) SceneObjects

I Text

I Lines

I Images

I Matplotlib
plots

6/14

SceneVariants

The properties of SceneObjects (location, size, color, etc.) are
controlled by time-varying functions called SceneVariants.

C++

I SceneVariant<float>

I SceneVariant<vec3d>

I SceneVariant<QColor>

Python

I VariantFloat

I VariantVec3d

I VariantQColor

Built-in variants:

I Constant

I Step function

I Linear interplation

Variants can also be subclassed (in either language) for
custom behavior.

7/14

Artist Properties

Keys: What data to draw

I String keys for I3FrameObjects

I An Artist creates output only when all its keys are valid in
the current I3Frame

Settings: What style to draw

I Can be any type, but GUI and python bindings exists for:
I Booleans and integers
I Floating point ranges (min/max/step/value)
I QColor and shovelart’s ColorMap type
I QFont

8/14

Specifying Key Types: The Simple Way

List required key types, in order:

class MyArtist(shovelart.PyArtist):
...
requiredTypes = [dataclasses.I3Geometry,

dataclasses.I3MCTree]
...

Note that Python artists can be used with data types from any
project!

9/14

Specifying Key Types: The Flexible Way

Specify number of keys, and a key test function:

class MyArtist(shovelart.PyArtist):
...
numRequiredKeys = 2

def isValidKey(self, frame, key_idx, key):
’’’
Return True if frame[key] is valid
as this artist’s key_idx’th key,
False otherwise
’’’

...

10/14

Specifying Settings

Artist settings are stored as name / value pairs.
Created in constructor:

class MyArtist(shovelart.PyArtist):
...
def __init__(self):

self.defineSettings({’size’:12})
...

Used within create() function:

...
size = self.setting(’size’)
...

User-controlled via the GUI:

11/14

Creating SceneObjects

class PositionBubble(shovelart.PyArtist):
requiredTypes = [dataclasses.I3Position]
...
def create(self, frame, output):

12/14

Creating SceneObjects

class PositionBubble(shovelart.PyArtist):
requiredTypes = [dataclasses.I3Position]
...
def create(self, frame, output):

key = self.keys()[0]
position = frame[key]

12/14

Creating SceneObjects

class PositionBubble(shovelart.PyArtist):
requiredTypes = [dataclasses.I3Position]
...
def create(self, frame, output):

key = self.keys()[0]
position = frame[key]
bubblesize = self.setting(’size’)
bubblecolor = self.setting(’color’)

12/14

Creating SceneObjects

class PositionBubble(shovelart.PyArtist):
requiredTypes = [dataclasses.I3Position]
...
def create(self, frame, output):

key = self.keys()[0]
position = frame[key]
bubblesize = self.setting(’size’)
bubblecolor = self.setting(’color’)
s = output.addSphere(bubblesize, position)
s.setColor(bubblecolor)

12/14

Next Steps in Development
I Finish GUI overhaul

I Steamshovel.app bundle for OSX

I Documentation and (some) tests

I Code review

I Release with metaprojects; retire glshovel

A beta release can happen this month.

13/14

Thanks and questions

Many thanks to those who have tested and contributed to this
project!

14/14

Backup Slides

14/14

Scripting Features

Steamshovel is broadly scriptable with python:

I Perform CRUD operations on Artists

I Load files, select frames

I Control OpenGL camera position and drawing styles

I Control application and window objects through their Qt
properties and slots

14/14

Dependencies

Requirements (like glshovel):

I icetray

I Python

I Qt4 (4.8 recommended)

Optional:

I IPython for a better scripting experience

I matplotlib for plots

I PyQt4 for embedded IPython GUI, separate-window
matplotlib plots

14/14

About IPython

Embedded IPython GUI widget requires IPython 1.0.dev (or
certain versions of the defunct 0.14.dev branch).

IPython 1.0 to be released July 14, 2013.

14/14

	Main
	Overview
	Shovelart Features
	Creating Artists
	What needs doing

	Backup slides

