

Detection of Cascades induced by Atmospheric Neutrinos in the 79-string IceCube Detector

CIPANP 2012 Chang Hyon Ha (LBNL & UC Berkeley) for IceCube Collaboration June 1, 2012

IceCube

Outline

- The IceCube Neutrino Observatory
- High Energy Atmospheric Neutrino Production
- IceCube Low Energy Extension : DeepCore
- Cascade Analysis
 - E.-M. and Hadronic Showers produced by $\nu_{\rm e}$ and neutral current of all flavors
- Conclusion

IceCube Observatory at South Pole

Event Signatures - Cherenkov Radiation

symbols	process	signature	note
$ u_{\mu}^{CC}$	$\nu_{\mu} + N \to \mu + X$	track	Hybrid Event (track+cascade) if contained
ν_e^{CC}	$\nu_e + N \rightarrow e + X$	cascade	E.M. shower and Hadronic shower
ν_{-}^{CC}	$\nu_{\tau} + N \rightarrow \tau + X$	cascade	indistinguishable
T			I PeV tau track length is ~50m
$ u_{lpha}^{NC}$	$\nu_{\alpha} + N \rightarrow \nu_{\alpha} + X$	cascade	$lpha=\mu,e, au$

N=Target Nucleon and X = Hadronic Shower

High Energy Atmospheric Electron Neutrinos

Sources of
$$\nu_e$$
 in the atmosphere $\pi^+ \rightarrow \nu_\mu \mu^+$ $K^+ \rightarrow \pi^0 e^+ \nu_e (K_{e3}^+)$ $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ $K^+ \rightarrow \pi^0 e^+ \bar{\nu}_e (K_{e3}^+)$ $E_{\nu} < 100 \ GeV$ $E_{\nu} > 100 \ GeV$ Kaon is a dominant source
for high energy neutrinos $c\tau(\mu) = 658.7m$
 $c\tau(K) = 3.7m$ Flux Model UncertaintiesBelow 10 GeV : pion production

Above 10 GeV : kaon production (7~15%) At 1 TeV : kaon production (~35%)

Atmospheric Neutrino Production

The Atmospheric Electron Neutrino Experiments

Fiducial Volume

Rate vs Number of Events at Filter

Mean Electron Neutrino Energy in GeV

Data Reduction Cut

5 Input parameters to BDT training For example, Sphericity variable

Event Topology

BG

SG

Use simple variables (fast calculations) to reject 98.6% atmospheric muon BG

Cascade Detection Cut-Veto Principle (to remove further track events ν_{μ}^{CC})

Tighten Fiducial Volume by requiring the reconstructed vertex to be inner most region.

Then, demand better spherical light distribution pattern using quality parameters

Candidate Events

Run = 116090 Event ID = 16645709 2010/06/25 Run = 116090 Event ID = 48118343 2010/06/25

Cascade Detection Cut-Results

-To remove μ -BG and reduce ν_{μ}^{CC} -BG, we placed a set of tight cuts. -After the cut, 1029 events remained in 281 days of full data sample. -Predicted 59% neutrino-induced cascades, 41% ν_{μ}^{CC} -Contamination of μ -BG and systematic uncertainties still being evaluated.

Atmospheric ν_{μ}^{CC} Background

Conclusion

- First high energy atmospheric neutrinos detected ~15 years ago by AMANDA
 - Observing long muon tracks created by atmospheric ν_{μ} interactions
 - Detection of the atmospheric neutrino-induced cascades has been challenging -> many upper limits (Too many downgoing muon BG & No veto).
- For the first time, we have detection of atmospheric neutrino-induced cascade events in IceCube-DeepCore 79-string data with the veto technique
 - With final selections, 1029 events / 281 days are found with 59%-purity cascades prediction with <E>~100 GeV.
 - New Detection Channel with successful DeepCore design
 - Better understanding for high energy atmospheric v_e flux (Kaon production)
 - Systematic uncertainties (ice properties, cosmic ray muon contamination, DOM light collection efficiency, neutrino flux, and cross sections) are under evaluation
 - More Analyses focusing on lower energies (~30 GeV) with DeepCore are forthcoming.
 - Neutrino Oscillation Analyses $(v_{\mu} \rightarrow v_{\mu} \text{ and } v_{\mu} \rightarrow v_{\tau})$
 - Dark Matter Searches and Galactic neutrino source searches.