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Cosmic rays have been observed on Earth with energies in excess of 1020 eV. Because

cosmic rays are charged particles and are bent by galactic magnetic fields, the origin

of these particles has remained a mystery. Gamma-ray bursts are one of a few

astronomical sources containing an environment capable of accelerating charged

particles to the energies observed. In addition, gamma-ray bursts are the leading

candidate due to the fact that the total aggregate power observed in gamma-ray

bursts and ultra high energy cosmic rays are the same order of magnitude. Neutrinos

can only be created by hadronic interactions, so an observation of neutrinos in

coincidence with a gamma-ray burst would provide compelling evidence that hadrons

are accelerated in gamma-ray burst fireballs and hence the origin of cosmic rays.

Using the IceCube Neutrino Observatory in its 40 string configuration, a stacked

search was performed to look for the simultaneous occurrence of muon neutrinos

with 117 gamma-ray bursts. This analysis is optimized on the assumption that

order TeV neutrinos are produced in pγ interactions during the prompt phase of



the GRB, when gamma-rays coexist with protons that are assumed to be the source

of the observed extragalactic cosmic ray flux. With half the detector complete,

this is the first analysis sensitive to the flux predicted by fireball phenomenology

and the assumption that GRBs are the sources of the highest energy cosmic rays.

No evidence for neutrino emission was found, placing a 90% CL upper fluence of

1.1×10−3 erg cm−2 in the energy range of 37 TeV - 2.4 PeV or 82% of the predicted

fluence.
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Chapter 1

Introduction

Cosmic rays are charged particles which hit the Earth’s atmosphere and cause

large showers of secondary particles. The energy spectrum of cosmic ray primaries

approximately follows a power-law over 11 orders of magnitude, see Figure 1.1. The

cosmic ray spectrum follows dN/dE ∝ E−2.7 from below 1010 eV, where they are

modulated by the solar wind, up to a feature called the knee at about 1015 eV. At

these energies, cosmic rays are bent by galactic magnetic fields so they do not point

back to their origin. Cosmic rays up to this energy are believed result from Fermi

acceleration in supernova remnants in the galaxy. Electrons up to 1014 eV have been

observed in supernova remnant SN1006[1]. Since Fermi shock acceleration works

regardless of particle charge and mass and since electrons have more substantial

loss mechanisms than protons this implies that protons are also accelerated to at

least the same energy. Fermi acceleration produces a spectrum with an exponent

of −2 to −2.2 which is softened to −2.7 as the cosmic rays propagate though the

interstellar medium[2]. At energies beyond the knee, the spectrum softens to E−3.0.

The reasons for this are unclear: one possibility is that it could be due to galactic

accelerators reaching their maximum energy or propagation within the galaxy[3,4].
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Figure 1.1: Cosmic rays maintain an approximate power-law over 11
orders of magnitude in energy. The red points are measurements and
the green line indicates a slope of E−2.7. Figure taken from [5].
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At 1018.6 eV there is another feature called the ankle where the spectrum

hardens to E−2.6, cosmic rays with energies beyond the ankle are called Ultra High

Energy Cosmic Rays(UHECR) and are believed to be accelerated by extragalactic

sources. Above 1019.5 eV cosmic rays experience a sharp drop off[6,7], see figure 1.2.

This is known as the GZK cutoff[8,9], the energy where protons propagating through

intergalactic space become attenuated by ∆-resonance interactions with the cosmic

microwave background. UHECR are believed to be of extragalactic origin because

their Larmor radius due to interstellar magnetic fields is larger than the size of the

galaxy, such that UHECR must point back to their origin. Since their distribution

in the sky is near isotropic they cannot be of galactic origin[10,11].

In order to accelerate particles to these energies, the only plausible mecha-

nism is Fermi acceleration[12–15]. Fermi acceleration requires both a shock wave

to accelerate particles and a magnetic field to confine the particles to the accel-

eration region. According to Fermi, a particle which crosses a shock and is then

scattered back across the same shock will on average have gained energy. With

each successive cycle of scattering and crossing the shock, the particle will continue

to gain energy. If the shock front propagates for an arbitrarily long distance, then

particles on its boundary can be accelerated to arbitrarily large energies, provided

there is a sufficiently large magnetic field to confine them to the shock region. A

plot showing astrophysical objects which contain sufficient magnetic field and shock

front length are shown in figure 1.3. The two astrophysical candidate sources which

have conditions capable of accelerating protons to 1020 eV are Gamma-Ray Bursts

(GRBs)[18–20] and Active Galactic Nuclei (AGN)[21]. It has been calculated that

3
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Figure 1.2: Spectrum of the highest energy cosmic rays. Above 1018.6 eV
the cosmic ray spectrum hardens to a slope of E−2.6, which is believed
to be evidence of a different source of acceleration from the source which
dominates below 1018.6eV. Above 1019.5 eV the spectrum is cutoff by the
GZK cutoff, which is further evidence of an extragalactic origin. Figure
taken from [6].

4



Figure 1.3: The Hillas Plot (figure from [16] a modified version from
[17]) shows possible sites of astrophysical acceleration. Candidate sites
must possess sufficient magnetic field to confine the particles during ac-
celeration or sufficient size to accelerate. The solid red line represents
objects which can accelerate protons to 1 ZeV = 1021 eV, the dotted red
line represents protons accelerated to 100 EeV = 1020 eV, and the green
line represents iron accelerated to 100 EeV.
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the total power available for GRBs to create UHECR is similar to the observed

power[22–24], suggesting GRBs as a plausible source.

If protons are accelerated alongside electrons in GRBs, which would therefore

be the source of UHECRs, then those protons should interact with the observed

gamma-rays and, through the ∆-resonance, create neutrinos[25] (∆-resonance is

described in detail in section 2.6.) To reverse this logic, if neutrinos are observed to

originate from GRBs, then GRBs must be the site of hadronic interaction and thus

a source of UHECR. It is also important to note that without ∆-resonances protons

cannot escape the acceleration region and become UHECR[26,27]. For this reason,

searching for neutrinos associated with GRBs has been an active subject of study

with neutrino telescopes.

The analysis presented in this thesis is built on previous work. Several stacked

analyses correlating muon neutrinos with GRBs have been performed with Ice-

Cube[28] and its predecessor AMANDA[29–34]. There have also been analyses

which search based on a single very bright GRB[35,36], as well as search for neutri-

nos with energies high enough to be seen over the background of downward cosmic

ray muons in IceCube[37, 38]. A model-independent search was performed which

looked for neutrinos with a time offset of up to an hour from the GRB[39]. Al-

though neutrino cascades do not provide directional information, they are sensitive

to interaction of neutrinos of all flavors, thus searches correlating them with GRBs

have been performed[40, 41]. Follow-ups of IceCube events have been performed to

look for GRB afterglows in the optical[42, 43] and x-ray[44] bands. Searches have

also been performed with lower energy neutrino telescopes using Super-K[45–47],

6



Baikal Deep Underwater Neutrino Telescope[48] and ANTARES[49]. At energies

above IceCube’s range, neutrino interactions can be observed by radio emission;

searches for neutrinos from GRBs have been performed using the RICE detector

buried in the Antarctic glacier[50] and with ANITA, a balloon borne experiment

above the ice[51].

This thesis is organized as follows:

• Chapter 2 contains a brief introduction to gamma-ray bursts, a description

of the fireball model of gamma-ray emission, and a prediction for neutrino

emission within this model.

• Chapter 3 gives an overview of the experimental side of GRB detection and

a description of the gamma-ray observatories which provided triggers for this

analysis.

• Chapter 4 gives an overview of the IceCube Neutrino Observatory. It contains

a description of the hardware, the reconstruction techniques used, and an

overview of the simulation used to understand the detector.

• Chapter 5 describes the criteria used to select GRB triggers and the data

quality checks to ensure proper detector operation.

• Chapter 6 describes the criteria with which IceCube events were selected as

neutrino candidates.

7



• Chapter 7 describes the unbinned maximum likelihood analysis which was

used to correlate neutrino candidate occurrences with GRBs and the statistics

used.

• Chapter 8 contains the results of the analysis and systematic errors as well as

a discussion of the implications for Ultra High Energy Cosmic Rays.
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Chapter 2

Gamma-Ray Bursts

Gamma-ray bursts are one of the brightest and most interesting phenomena

in the Universe. GRBs are observed in all bands of the electromagnetic spectrum

from high energy gamma-rays to radio. GRBs have been hypothesized to be the

source of UHECR.

GRBs occur randomly in the sky without warning. Their locations in the sky

are completely isotropic. GRBs are bright flashes of non-thermal gamma radiation.

Typical GRBs outshine the rest of the gamma-ray sky during their prompt phase.

Their energy spectrum is non-thermal, and can almost always be characterized by a

Band function[52], shown in figure 2.1, which consists of two smoothly joined power-

laws. Sometimes a thermal component is observed with a smaller intensity than the

non-thermal component. Satellites that do not have sufficient spectral response will

only see a portion of the energy spectrum and observe a single power-law or a power-

law with an exponential cutoff. As shown in figure 2.2, the duration of GRBs has

a bimodal distribution with one peak at 30 seconds and another at 0.3 seconds[54].

Most bursts have durations between 0.1 seconds and 1000 seconds. However the

temporal light curves of GRBs are incredibly diverse[55], see figure 2.3. Most bursts

can be described as the superposition of one or many sharp peaks with a FRED

profile. FRED stands for fast rise exponential decay, where the timescale of the rise

9
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Figure 2.1: Deconvolved Spectra of GRB990123 from the Compton
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energy flux on bottom. The data is well fit by a Band function[52].
Figure from [53].
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Figure 2.2: The duration (T90) of GRBs from the 4th BATSE cata-
log[54]. A clear bimodal distribution is seen with short busts peaking at
0.3 seconds and long bursts peaking at 30 seconds.
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Figure 2.3: The observed light curves of 12 BATSE bursts. Both short
and long bursts are shown. GRBs show great diversity in their light
curves both in duration and shape. Bursts can exhibit some or all of
the following behavior: a single peak with a fast rise exponential decay,
multi-peaked, erratic behavior, and long periods of quiescence between
events. Figure taken from [56] see also [55].
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is much shorter than the timescale of the decay. However, the time between spikes

and the relative height of the peaks are extremely diverse and vary from burst to

burst.

Following the prompt gamma-ray phase of GRBs there is a prolonged after-

glow. Afterglows have been observed in all bands from x-ray to radio. The afterglows

are generally observed to have a power-law energy spectrum and also to fade as a

power-law function of time. The power-law decay of 30 afterglows is shown in fig-

ure 2.4. In the pre-Swift era most X-ray afterglow were observed to decay with a

power-law with exponent ∼ 1.2. With Swift ’s rapid followup capability more fea-

tures were observed. Many bursts have a steep decay which is consistent with the

low energy tail of the prompt gamma-ray emission. This is sometimes followed by

a phase where the decay is shallower than the normal phase with an exponent of

∼ 0.5, this is thought to be continuous injection of the fireball energy into the ISM.

There are also X-ray flares caused by continued activity of the central engine. This

generalized theory of afterglows is shown in figure 2.5.

2.1 History

GRBs were first discovered in 1967 by the Vela satellite program which was

looking for violation of the Nuclear Test Ban Treaty[59]. Several bursts of gamma-

rays were observed which did not look like nuclear events. Identical observations

were recorded by satellites on opposite sides of the Earth, providing convincing

evidence that the bursts were not coming from Earth. Since the Vela satellite
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Figure 2.4: Observed near infrared afterglow of 30 pre-Swift bursts.
The light curves have been corrected for galactic extinction and host
galaxy contribution. In the case of GRB030329 the contribution from
the associated supernova has been removed. The two lines are meant
to guide the eye, they correspond to a decay slope of α = 0.5. Note
the bump in the light curve of 990123 at early times which is used to
measure the bulk Lorentz factor (see section 2.4.) Figure from [57].
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Figure 2.5: Simplified diagram of a generalized GRB afterglow. The
horizontal axis indicates time and the vertical axis indicates luminosity.
Regions in solid lines are seen in most bursts while dotted lines are seen
occasionally. Region 0 represents the x-ray tail of the prompt GRB
emission. Region I is the steep decay phase where the x-ray tail of
the prompt emission decays rapidly after activity ceases. Region II is
the shallow decay phase thought to be caused by continuous injection
of energy into system. Region III is the classical decay caused by the
forward shock interacting with the interstellar medium. Region IV is
the steep decay phase caused by jet breaks after the shock front has
decelerated sufficiently for the observer to observe the afterglow as a
narrow jet (see section 2.5.) Region V shows x-ray flares which are
sometimes observed and thought to be caused by continued injection of
energy from the central engine. Figure taken from [58].
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program was classified, the existence of GRBs remained classified for seven years

after their initial discovery. Using timing triangulation and Earth occultation the

Earth, sun, moon and population of visible supernova were all quickly ruled out[60].

These observations were backed up by other gamma-ray detectors on board satellites

at the time[61] which were able to observe the non-thermal structure[62].

There was great debate about the nature of GRBs, with theories ranging

from extragalactic events to comet collisions in the Oort cloud. Very little was

learned until the 1990 launch of the Compton Gamma-Ray Observatory (CGRO).

The Burst and Transient Source Experiment (BATSE) on board CGRO consisted of

eight NaI(Tl) detectors on the corners of the CGRO and were sensitive to energies in

the range 15 keV - 20 MeV[56]. BATSE used timing triangulation to localize GRBs

within an error radius on order few degrees. It showed that GRBs were located

nearly isotropically in the sky eliminating all potential galactic candidates as the

source of GRBs[63], see figure 2.6. BATSE also found that the durations of GRBs

have a bimodal distribution, long GRBs with T > 2 sec and short with T < 2

sec[64].

Almost all GRBs detected by BATSE had an energy spectrum that could be

well-defined by a Band function, which is two power-laws smoothly connected[52],

however there were several observations of high energy emission inconsistent with

the Band function. The Energetic Gamma-Ray Experiment Telescope (EGRET)[65]

also on board CGRO imaged seven bursts with energy exceeding 30 MeV[66]. This

includes an 18 GeV photon detected 90 minutes after the burst in GRB940217[67]

and a rising late GeV spectral component in GRB941017[68]. The Milagrito, the
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Figure 2.6: This map shows the locations of a total of 2704 Gamma-
Ray Bursts recorded with the Burst and Transient Source Experiment on
board NASA’s Compton Gamma-Ray Observatory during the nine-year
mission. The projection is in galactic coordinates; the plane of the Milky
Way Galaxy is along the horizontal line at the middle of the figure. The
burst locations are color-coded based on fluence, which is the energy flux
of the burst integrated over the total duration of the event. Bright bursts
appear in red, and dim bursts appear in purple, grey indicates bursts for
which the fluence cannot be calculated due to incomplete data. Figure
taken from [54,56].
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prototype for Milagro[69], observed the an excess of photons with energy greater

than 650 GeV from GRB970417A with a statistical significance at the 3σ level[70,71].

However, subsequent searches with Milagro for high-energy gamma-ray emission

from GRBs did not find similar signals[72–74], indicating such events are rare.

The next satellite to make a significant GRB discovery was Beppo-SAX[75], a

hard x-ray telescope which was the first instrument able to localize GRBs to arc-

minutes quickly which allowed follow up in the optical and radio band. GRB970228

was the first GRB localized by Beppo-SAX [76]. Within a year of launch Beppo-SAX

localized GRB970508[77] and GRB971214[78] which allowed redshift measurements,

giving proof of a cosmological origin of GRBs. The afterglow of GRB971214 was

the first observation to reveal the true energy scale of GRBs: 1051 ergs, as well as

the beamed nature of the emission[79].

More recently the Swift and Fermi missions have significantly increased our

knowledge of GRBs. Swift has detected a large sample of GRBs with associ-

ated afterglows; several of these afterglows have revealed extremely high redshifts:

GRB050904 with z ≈ 6.3[80], GRB080913 with z ≈ 6.7[81] and GRB090423 z ≈

8.2[82,83]. Redshifts this high indicate that these bursts were created at the time of

the earliest stars. Swift has also observed the first afterglows from short GRBs[84].

While Fermi has increased our knowledge of the highest energy gamma-rays in

GRBs, it has also detected several GRBs with a high energy power-law component

in addition to the typically observed band function[85–88]. For a more detailed

description of Swift and Fermi see chapter 3.
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2.2 Fireball Model

This section gives a brief description of the Fireball theory of GRBs, for a

more complete review see[89–94]. In the Fireball model there are two distinct en-

gines which convert energy: 1) the progenitor or central engine which converts

gravitational energy into kinetic energy and 2) internal shocks which convert kinetic

energy to gamma-rays.

In the central engine, a cataclysmic event results in the rapid accretion of

matter onto a black hole. Two types of central engines fulfill this criteria: the core

collapse of a massive star (collapsar)[95, 96] or the merger of two compact objects,

either a neutron star–neutron star merger or a neutron star–black hole merger[97].

Accretion induced collapse of a magnetized white dwarf has also been suggested as

a possible central engine[98]. Both kinds of central engines lead to an accretion disk

around a black hole which creates jets of plasma along the spin axis. These jets

contain a plasma of leptons, photons and baryons are optically thick. The energy

injected into this plasma causes the plasma to expand adiabatically, accelerating the

plasma until it reaches a Lorentz factor Γ[99] see figure 2.7. Once this Lorentz factor

is reached the fireball continues to coast at a constant Lorentz factor[100, 101]. At

the photosphere radius rph ' 1011 cm the temperature of the fireball drops below

the pair production threshold and the fireball becomes transparent to gamma-rays

and capable of emitting non-thermal gamma-ray spectra[99, 102]. Accretion onto

the compact object is expected to last longer than the light travel time across the

injection region. This will create a series of sub-shells which cannot communicate
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Figure 2.7: Simple diagram of the Fireball model. The outflow is con-
strained to a narrow jet. The fireball’s Lorentz factor (Γ) increases until
the saturation radius rs ' 108 cm. Then the fireball coasts past the
photosphere rph ' 1011 cm until the internal shock radius ris ' 1014 cm
where Γ decreases due to energy losses in internal shocks. The outflow
then continues to coast until the ambient medium decelerates the fireball
and creates external shocks at res ' 1016 cm. Thermal gamma-rays may
be observed at the photosphere, non-thermal gamma-rays at the inter-
nal shocks and the x-ray, optical and radio afterglow from the external
shocks. Figure from [92].
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with each other, and with different injected energies, hence different bulk Lorentz

factors. These different sub-shells are expected to collide at a radius of ris ' 1014

cm and produce internal shocks. The different bulk Lorentz factor of two shells

is a form of kinetic energy that can be converted to gamma-rays[103, 104]. These

collisions will result in shock fronts. A significant portion of the fireball energy

ξB is expected to build up in comoving magnetic fields due to turbulent dynamo

effects in the shock[105], which will confine charged particles to the acceleration

region. The shocks will also convert a fraction of the fireball’s energy ξe to acceler-

ated electrons with a power-law spectrum by first order Fermi acceleration. There

are no theoretical models which can predict the equipartition fractions ξB and ξe,

however if either were to be much smaller than one they would be inconsistent with

observed gamma-ray emission[106, 107]. The Band function gamma-ray emission is

often attributed to synchrotron emission by the accelerated electrons[108], however

the exact mechanism for efficiently converting electron energy into the non-thermal

radiation remains unclear[109]. The variability of injection by the central engine is

thought to be the cause of the extreme variability observed in the light curves of

GRBs[110,111].

After the internal shocks, the fireball continues to expand. At a much larger

radius res ' 1016 cm, the mass of the Interstellar Medium (ISM) swept up by the

fireball will be on the order of the total fireball energy[102]. Once this occurs the

fireball will decelerate, causing further synchrotron energy loss which is observed as

the afterglow. This deceleration can take weeks to years creating the long timescale

observed in GRB afterglows. As the deceleration occurs, the average energy of the
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fireball decreases which causes the energy of the afterglow photons to decrease over

time.

2.3 Compactness

The most important problem that the Fireball model solves is the compactness

problem. GRB emission has been observed to vary on the order of milliseconds[54,

112] which imply that the sources are compact with a size of approximately r0 ' 107

cm. It was originally observed by Ruderman[113] that GRBs are variable on a very

short time scale which must be longer than the light crossing time of the object,

however, the observed gamma-ray density would result in an optically thick pair

plasma which would have a thermal black body spectrum. The Fireball model

solves this by separating the central engine from the emission region. The bulk

relativistic motion relaxes the constraint on the size of the emission region by a

factor of Γ2 allowing the emission to come from a much larger radius, and sparse

enough to be optically thin[114].

However the time scale variability still leaves constraint on the central engine

of r < 108 cm. The only object which can satisfy the energy requirements (1052

ergs) and size constraints is the rapid accretion of matter onto a solar mass size

black hole after a cataclysmic event. There are two possibilities for the event: 1) a

core collapse of a super massive star at the end of its life or 2) the merger of two

compact objects, either neutron star-neutron star merger or a black hole-neutron

star merger. The dynamics of these two possibilities lead to the conclusion that long
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GRBs are the result of core collapses[95,96], while short GRBs come from compact

mergers[97]. The association of long GRBs with supernova[115, 116] as well as the

observation that long GRBs always come from metal poor, star forming regions of

galaxies[117] leads to the conclusion that long GRBs are a result of core-collapses of

massive stars. Modeling of the dynamics of accretion disks leads to short emission

time scales from compact mergers[118].

2.4 Relativistic Motion

Bulk relativistic motion is necessary to solve the compactness problem. Rel-

ativistic motion was first observed in GRB970508, its radio afterglow varied wildly

until 4 weeks after the burst when it became stable[119]. This was caused by in-

terstellar scattering where irregularities in the local interstellar medium scatter the

incoming radio signal which results in a twinkling of the source. This effect disap-

pears when the angular size of the emission region becomes large enough to prevent

diffraction[120]. Knowing the angular size of the afterglow along with a redshift dis-

tance measurement allowed for an estimate on the size of the afterglow ∼ 1017cm,

indicating that the fireball had expanded at relativistic speeds[121]. This effect has

also been observed with GRB030329[122].

There are three methods for measuring the bulk Lorentz factor. In the first,

the Fireball model predicts that there will be a smooth bump in the light curve of the

afterglow when half of the fireball energy has been dissipated by the medium[123,

124]. This method has been used for many GRBs: Γ ' 1000 for GRB990123[125](see
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figure 2.4), Γ ' 400 for GRB060418 and GRB060607A[126], a constraint of 300 .

Γ . 1400 for GRB080319B[127], Γ ' 300 for a sample of four Swift bursts[128], a

range from 79 to 610 for a sample of 19 bursts[129] and Γ ' 195 for GRB091024[130].

In the second method, observation of thermal photospheric emission can determine

size of photosphere and Γ, this method obtains Γ ' 305 for GRB970828[131], Γ '

384 for GRB990510[131], and Γ ' 750 for GRB090902B[132].

Bursts must have a Lorentz factor high enough so that pair production does

not occur[133, 134]. Lower limits based on opacity to pair production were ob-

tained for bursts observed with EGRET[135–138]. This method gives Γ ' 200−700

for GRB090926A assuming the peak in extended emission is caused by pair pro-

duction[88](the range is caused by uncertainty in the model.) Lower limits were

also reported for other Fermi LAT bursts: 900 for GRB080916C [85], 1200 for

GRB090510[86], and 1000 for 090902B[87], these values should be a factor 3 lower

using the model of [139] to compare with the lower bound of 090926A[88]. It is

important to note that this method actually places a limit on ris = Γ2ctvar, where

tvar is the time scale of the variation in the central engine.

An upper limit on Γ can be obtained by requiring that internal shocks occur

before external shocks[140], by studying the gamma-ray pulse width as a function of

the pulse intensity[141], or by requiring that radiation not decouple from the fireball

plasma[89]. All three requirements give an upper bound on the bulk Lorentz factor

of Γ . 1000.
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2.5 Beamed Emission

Beamed jets are necessary to explain GRBs, since the observed isotropic en-

ergy of many GRBs is ∼ 1054 ergs, which is difficult to explain from core collapses

or from compact object mergers. If a burst is expanding with a Lorentz factor of Γ,

then the light cone of outflow which is off of the line of sight by an angle θ > 1/Γ will

not include the observer, hence the outflow will be indistinguishable from isotropic

expansion[142]. Once the outflow has decelerated such that the edges of the jet be-

come visible, then the jet can expand sideways and the luminosity will decrease with

one power-law steeper than the isotropic expansion resulting in an achromatic jet

break[143, 144]. Recent simulation confirms this simple analytical model[145]. Evi-

dence for afterglows following the break was observed first in GRB980519[146], the

first achromatic break was observed with GRB990510[147], see figure 2.8. Typical

values of the beam opening angle are 2◦ − 14◦, which relax the energy requirement

to the more reasonable value of ∼ 1051 ergs[144, 148]. This value of energy output

is similar to the total output in a standard supernova, albeit in gamma-rays and

within a much shorter time scale. This quantity of energy is also below the maximum

theoretical output available for a collapsar[95,149] or compact merger[150].

2.6 Neutrino Emission

Waxman and Bahcall first derived a neutrino flux from GRBs assuming pγ

interactions in the fireball after protons have been accelerated to UHECR energies

with the same energy density as the electrons necessary to explain the gamma-
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Figure 2.8: Light-curves of the optical afterglow of GRB990510. All
three bands shown display a steepening at about 1 day after the trigger.
This achromatic break is evidence for beamed emission in the GRB.
Figure taken from [147].

26



ray emission[25]. This model was then refined by adding evolution and redshift

losses[151] and synchrotron losses in muons and pions[26]. This analytical model

is consistent with detailed simulations[152–155]. The model used in this analysis

is a further refinement of the Waxman and Bahcall model derived by Guetta et al.

which uses the observed gamma-ray flux and spectrum of each GRB to predict the

neutrino flux and spectrum for each GRB[156]. This model is slightly below an

upper bound on the neutrino flux which is calculated by assuming that all UHECR

production results in neutrinos caused by photo-meson interaction which allow the

protons to escape from the acceleration region known as the Waxman and Bahcall

upper bound[151,157]

Although most GRBs are reported with a power-law, power-law with an ex-

ponential cutoff, or Band function, for simplicity a broken power-law will be used

here, so that the gamma-ray emission of a GRB is given by:

Fγ(Eγ) =
dNγ(Eγ)

dEγdA
= fγ ×


ε

(αγ−βγ)
γ E

−αγ
γ for Eγ < εγ

E
−βγ
γ for Eγ ≥ εγ

(2.1)

Assuming protons are accelerated along with the electrons in the fireball to an E−2

spectrum, then protons will interact with the gamma-rays to produce pions via the

delta resonance.

p+ γ → ∆+ → n+ π+ (2.2)

→ p+ π0 (2.3)
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Charged pions will then decay to neutrinos and associated leptons while neutral

pions will decay into high energy photons.

π+ →µ+ + νµ (2.4)

µ+ → ν̄µ + e+ + νe (2.5)

π0 →γ + γ (2.6)

This produces a neutrino flavor ratio at the source of (νe : νµ : ντ ) = (1 : 2 : 0). The

decay of the neutron will also result in a ν̄e, but since this neutrino only receives

order 10−4 of its parent’s energy it is not considered further. The energy threshold

for ∆-resonance is

E ′p ≥
m2

∆ −m2
p

4E ′γ
(2.7)

where prime indicates energy in the comoving fireball frame. Assuming that most

interactions will occur at or close to the threshold energy, the inequality in equa-

tion 2.7 can be replaced by an equality. This derivation relies solely on the ∆

resonance to produce neutrinos, including other pγ interactions[158,159] or reaccel-

eration of particles[160] will increase the flux and result in a harder spectrum. When

the pion decays into four leptons, the energy is distributed approximately equally.

We assume the fraction of the energy from the proton to pion is approximately

〈xp→π〉 ' 0.2. Switching back to the observer frame the energy of the neutrino is:

Eν =
1

4
〈xp→π〉

m2
∆ −m2

p

4Eγ

Γ2

(1 + z)2
(2.8)

28



Plugging equation 2.8 into equation 2.1 gives:

Fν(Eν) =
dNν(Eν)

dEνdA
= fν ×


εbν

(αν−βν)
Eν
−αν for Eν < εbν

Eν
−βν for Eν ≥ εbν

(2.9)

with αν = 3− βγ and βν = 3− αγ and

εbν =
1

4
〈xp→π〉

m2
∆ −m2

p

4εγ

Γ2

(1 + z)2
(2.10)

= 7× 105 GeV
1

(1 + z)2

(
Γjet
102.5

)2(
MeV

εγ

)
(2.11)

Synchrotron cooling in pions and muons must also be considered[26], the synchrotron

cooling time, ts, for pions and muons is:

t′s =
3m4

πc
3

4σTm2
eE
′
πU
′
B

(2.12)

where σT = 6.65 × 10−25cm2 is the Thompson cross section. The magnetic energy

density is U ′B = B′2/8π. The fraction of the internal energy that goes into magnetic

fields is denoted ξB, so that

ξBLint = 4πR2cΓ2U ′B (2.13)

The radius of the collisions can be estimated from the variability. If two shells

collide with a difference in velocities of ∆v ' c/2Γ2 and a variability of tvar, the

shells collide at a time tc ' ctvar/∆v at a radius of R ' 2Γ2ctvar[161]. Relating the
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internal luminosity to the observed gamma-ray luminosity, ξeLint = Liso, where ξe

is the fraction of total energy that goes into accelerating electrons, the pion lifetime

is:

τ ′π = τ 0
π

E ′π
mπc2

(2.14)

εsν =

√
12πm5

πc
8Γ8ξet2var

σTm2
eτ

0
π(1 + z)2L2

isoξB
(2.15)

εsν = 107 GeV
1

1 + z

√
εe
εB

(
Γjet
102.5

)4(
tvar

0.01s

)√
1052 erg s−1

Lisoγ
(2.16)

The decay probability is approximated by the ratio of cooling time to decay time

t′s/τ
′ ∝ E−2

ν so that the expected neutrino spectrum will steepen by two powers

above εsν so that γν = βν + 2. Adding synchrotron loss gives the final form of the

neutrino spectrum:

Fν(Eν) =
dNν(Eν)

dEνdA
= fν ×



εbν
(αν−βν)

Eν
−αν for Eν < εbν

Eν
−βν for εbν ≤ Eν < εsν

εsν
(γν−βν)Eν

−γν for Eν ≥ εsν

(2.17)

where

αν = 3− βγ, βν = 3− αγ, γν = βν + 2 (2.18)

Since Fermi shock acceleration is independent of particle charge and mass, the nor-

malization of the spectrum is obtained by assuming that the same amount of en-

ergy that went into accelerating electrons also went into accelerating protons. The
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gamma-ray fluence is defined as:

Fγ =

∫ 10 MeV

1 keV

dEγ EγFγ(Eγ) (2.19)

where the finite limits are necessary because some GRBs are reported with gamma-

ray spectra that are divergent if integrated from zero to infinity. The fluence of

neutrinos is then given by:

Fν =

∫ ∞
0

dEν EνFν(Eν) =
1

8

1

fe
fπFγ (2.20)

The factor of 1/8 represents the fact that half of the photo-hadronic interactions

result in leptons (the others produce π0) and of those reactions that produce neu-

trinos the energy is distributed evenly between four leptons. There is also a factor

of 1/2 and a factor of 2 which cancel: the reaction creates 2 muon neutrinos ( νµ

and ν̄µ ) but then neutrinos oscillate from a ratio of (νe : νµ : ντ ) = (1 : 2 : 0) to

(1 : 1 : 1)[162, 163]. However, neutrinos at energies dominated by muon and pion

losses will oscillate to (1.8 : 1.8 : 1)[164]. The 1/fe accounts for the fraction of total

energy in electrons compared to protons. fπ accounts for the fraction of proton

energy lost to pion production, which can be estimated from the fraction of energy

transferred from protons to pions 〈xp→π〉 and the estimated number of photo-meson

interactions Nint:

fπ = (1− (1− 〈xp→π〉)Nint) (2.21)

Nint can be estimated from the size of the shock and the mean free path of a proton
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to photo-meson interactions

Nint =
∆R′

λpγ
= ∆R′nγσ∆ (2.22)

where nγ is the number density of photons which is the ratio of the energy density

to the photon energy in the comoving frame: for R ' 2Γ2ctvar

nγ =
U ′γ
ε′γ
'
(
Lγtvar/Γ

4πR2∆R′

)/(
εγ
Γ

)
(2.23)

=
Lγ

16πc2tvarΓ4∆R′εγ
(2.24)

So that the number of interactions is given by:

Nint =

(
Liso

1052ergs−1

)(
0.01s

tvar

)(
102.5

Γ

)4(
MeV

εγ

)
(2.25)

This model will be used as the expected signal flux for this analysis. There

are a few things to note about this model. The model depends significantly on the

fluence of the individual GRBs such that most of the flux will come from a handful

of bright bursts[165, 166]. The model mainly depends on the measured gamma-

ray flux, the measured cosmic ray flux and the unmeasured number of interactions

between these components (Nint), thus, most of the uncertainty in this model comes

from Nint which depends on Γ and tvar. Muon and pion synchrotron losses were

added here for completeness, however, this does not become a concern until above

107 GeV where the event rate in IceCube is very low.
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This model assumes that the observed gamma-rays are from a baryon dom-

inated jet. An alternative theory is the Poynting flux dominated jet[150, 167–169]

which does not accelerate baryons. If this model is true, then GRBs will not be the

source of either UHECR or TeV scale neutrinos.

This model predicts that neutrinos will be emitted at the same time as the

gamma-rays, and is therefore often called the prompt model. There are other

models which predict neutrino emission from GRBs: low-energy precursor neutri-

nos[170, 171], TeV scale precursor neutrinos[172], low-energy neutrinos in the fire-

ball[173], high-energy neutrinos in the afterglow[174–176], and low-energy neutrinos

in afterglow[177]. All of these theories predict fluxes which result in much lower

observable signal in IceCube than the prompt model and are not considered for this

analysis. Additionally there are theories which use different emission to produce

neutrinos in the fireball which predict prompt fluxes as well: photospheric emis-

sions[178, 179] and synchrotron self-Compton emission[178]. There are also models

in which GRB jets interact with the ejecta of a precursor supernova[180–183]. These

theories are not significantly different from the prompt model to warrant a separate

analysis.
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Chapter 3

Gamma-Ray Detectors

This chapter provides a brief description of the gamma-ray detectors used

in this analysis to observe GRBs. All of these detectors report their findings via

the Gamma-Ray Coordinate Network (GCN)[184]. GCN distributes three kinds of

messages: alerts, circulars, and reports. Alerts are written by the satellite’s fight

software which are machine readable and designed to alert telescopes to immedi-

ately repoint in response to GRBs. Circulars are follow up observations written by

scientists after analyzing data and contain the most accurate position information,

and also may contain fluence measurements and spectral fits. Reports summarize

the results of all of the circulars for a GRB. This analysis relies solely on GCN cir-

culars and reports for all information on GRBs. Using circulars and reports allows

analysis of IceCube data to proceed before GRB catalogs become available.

3.1 Swift

Swift is a satellite designed primarily to study GRBs[185]. It consists of three

instruments: the Burst Alert Telescope(BAT), the X-ray Telescope(XRT), and the

Ultraviolet/Optical Telescope (UVOT). The BAT uses a coded aperture mask to

scan the sky with a field of view of 1.4 sr and an energy response in 15-150 keV[186].

The coded aperture mask works by placing a pattern of lead tiles arranged into an
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array on a plate in front of a detector array. The detector array consists of a gamma

sensitive array of CCD devices. The on-board computer reads out the charge pattern

on the detector array and knowing the pattern of the coded aperture mask it can

reconstruct an image of the gamma-rays incident on the detector.

Swift continuously scans the sky with the BAT. When the on-board computer

detects a gamma-ray transient, it compares it with a catalog of known gamma-ray

sources. If the detected transient is not in the catalog, it slews to point the XRT

and UVOT to the transient. Swift uses momentum wheels to autonomously slew in

the direction of GRBs. Slewing takes 20 to 75 seconds depending on the distance

to the target. BAT localizations are on the order of 15 arc-minute. When the

transient is in the x-ray telescope field of view, Swift searches for an x-ray point

source. The XRT’s energy range is 0.2-10 keV and can localize point sources to

∼ 3.5 arc-sec[187]. If an x-ray source is found, the UVOT will search for an optical

point source in the 170-650 nm band[188]. It can localize an afterglow to a 0.5

arc-sec accuracy. Swift detects an x-ray afterglow in 90% of GRBs and an optical

afterglow in 33% of GRBs[93].

3.2 Fermi

Fermi Gamma-Ray Space Telescope is a wide field of view high-energy gamma-

ray telescope. It consists of two instruments: the Large Area Telescope (LAT) and

the Gamma-Ray Burst Monitor(GBM). The LAT is a pair converter detector with

an energy sensitivity range of 20 MeV to 300 GeV [189]. Gamma-rays enter the
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telescope and produce e+e− pairs and these pairs are tracked with silicon strip

detectors. It also contains a thallium activated cesium iodide [CsI(Tl)] calorimeter.

Although the LAT has a large field of view, its energy threshold is too high to detect

most GRBs. However, the high energy GRBs that it has detected have greatly

improved our knowledge of GRBs. Only three GRBs detected by the LAT are

included in this analysis. The LAT’s spatial resolution allows for better localization

than the GBM alone.

The secondary instrument on Fermi is the Gamma-Ray Burst Monitor (GBM)[190].

It consists of 12 thallium activated sodium iodide [NaI(Tl)] detectors optically cou-

pled with PMTs. These detectors have an energy response of 8 keV - 1 MeV. In

addition, there are 2 bismuth germinate (BGO) detectors with an energy range of

200 keV - 40 MeV overlapping in energy both the NaI(Tl) detectors and the LAT.

The GBM can localize GRBs by utilizing the timing difference between the arrival

times of gamma-rays in different NaI(Tl) detectors and the orientation of the de-

tectors. The angular resolution is on the order of 1◦ − 15◦, which although too

poor for x-ray or optical follow-up is well suited for correlating with neutrinos re-

constructed with IceCube. Fermi was launched on June 15, 2008 and began issuing

GCN circulars on August 10, so there are only bursts observed by Fermi for ∼ 60%

of the realtime of this analysis. Nevertheless, because of the GBM’s all sky coverage,

almost half of the bursts in this analysis were localized solely by GBM.
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3.3 INTEGRAL

INTEGRAL is a satellite in a highly eccentric orbit with an apogee of 0.5 light-

seconds[191]. It is designed to study gamma-rays. It contains three different coded

aperture mask gamma-ray instruments. The Imager on board INTEGRAL (IBIS)

uses a coded aperture mask to image the gamma-ray sky with an energy sensitivity

of 15 keV to 10 MeV[192]. IBIS’s field of view is much smaller than Swift’s so it

was only able to localized five bursts for this analysis. The Anti Coincidence Shield

(ACS) on the SPI instrument consists of 91 BGO crystals[193]. The ACS is designed

to serve as a veto for charged particles and gamma-rays outside the field of view

of the SPI. The ACS consists of 91 BGO crystals with a collective mass of 512 kg.

The ACS was not designed for imaging or spectral analysis of gamma-rays, however

with its significant mass it is a very efficient all-sky GRB monitor. The time series

of hits in the ACS can be used for GRB localizations by IPN (see section 3.7). The

ACS is also used to verify weak GRB detections as seen in the IBIS. In this analysis,

time series from the ACS were used to verify the beginning and end of gamma-ray

emission in bursts where other detectors did not release such time series.

3.4 AGILE

The SuperAGILE instrument on the Agile Spacecraft consists of four square

silicon detectors placed 14 cm from a tungsten coded aperture mask[194]. The

detector can image an area of 0.8 sr in the range 10-40 keV. During IceCube-40

operation SuperAGILE localized 6 bursts in the northern hemisphere
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3.5 Konus-Wind

Konus is a gamma-ray detector on board the GGS-Wind spacecraft[195]. GGS-

Wind is in a halo orbit around the Earth-Sun Lagrange point L1 about 7 light-

seconds from Earth. Its spin is stabilized perpendicular to the ecliptic. Konus-Wind

consists of two hemispherical detectors placed such that the hemispheres remain

pointed perpendicular to the ecliptic. Both detectors consist of a NaI crystal coupled

to PMTs with an energy range 10 keV to 10 MeV. Konus-Wind reveals very little

about the direction of a GRB but can provide very good spectral information for a

burst localized by other means.

3.6 Suzaku WAM

The Suzaku satellite consists of two instruments: the X-ray Imaging Spectrom-

eters and the Hard X-ray Detector. The anti-coincidence shield for the Hard X-ray

Detector consists of 20 BGO detectors which are well suited to detecting gamma-ray

bursts[196]. Referred to as the Suzaku Wide-band All-sky Monitor (WAM) it cov-

ers an energy range from 50-5000 keV[197]. Data is only transmitted to the ground

when the satellite is over Japan so it cannot send GCN alerts immediately after

detecting a burst. Like Konus, WAM data contains no directional information, but

it can be used for timing and spectral information.
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Detector Energy Range Field of View Spatial Resolution
Swift BAT 15 – 150 keV 0.5π sr 1′ – 4′

Fermi LAT 20 MeV – 300 GeV 0.8π sr 0.1◦ – 1◦

Fermi GBM 8 keV – 40 MeV 2π sr 1◦ – 15◦

INTEGRAL IBIS 15 keV – 10 MeV 0.5π sr 1′ – 2′

INTEGRAL SPI-ACS > 75 keV 4π sr —
SuperAGILE 15 – 45 Kev 0.3π sr 1′ – 2′

Konus Wind 10 keV – 10MeV 4π sr —
Suzaku WAM 50 keV – 5 MeV 2π sr —

IPN — 4π sr 0.1◦ – 10◦

Table 3.1: Summary of Gamma-Ray Detectors used in this analysis. Fields of view
are approximate. Spatial resolution are typical values for GRB localization.

3.7 IPN3

The Third Interplanetary Network (IPN3) is a network of satellites that have

gamma-ray detectors[198]. Timing data from multiple detectors can be combined

to localize bursts. At the time of this analysis, IPN’s configuration consisted of

9 spacecraft: AGILE, Fermi , Suzaku, and Swift in low Earth orbit; INTEGRAL

in eccentric Earth orbit with an apogee of 0.5 light-seconds; Wind in halo orbit 7

light-seconds from Earth; MESSENGER traveling to Mercury; and Mars Odyssey

orbiting Mars. The timing information from two satellites will restrict the burst

to an annulus in the sky. Two such annuli will restrict the location to two points

in the sky. Earth occultation can be used to resolve the degeneracy. If one of the

observing satellites is Konus, the ratio of hits in the two hemispheres can also resolve

the degeneracy. Often two of the satellites will be in low Earth orbit, which results

in similar annuli causing the location to be a long skinny banana shaped box.

Table 3.1 shows a summary of the gamma-ray observatories used in this anal-

ysis.
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Chapter 4

IceCube

Neutrinos have cross sections much smaller than all other particles, so in order

to observe neutrinos, it is important to build very large detectors. Although astro-

physical neutrino sources may be emitting neutrinos at lower energies, the search

for astrophysical neutrinos should focus on the TeV scale. There are two reasons

to focus on this scale. First, this is the lowest energy scale in which astrophysical

neutrinos could be seen amongst the ever present background of atmospheric neutri-

nos[199]. Second, this is the energy scale where muon neutrino interactions acquire

a pointing angular resolution and neutrinos can be traced back to their source; the

median angular difference at this scale between the muon secondary and neutrino

primary is ∼ 0.7◦×(EνTeV)−0.7[200]. In addition, at this scale the secondary muons

will have long tracks on the order of 10 km[201]. However, at the flux level predicted

for astrophysical neutrinos, even accounting for the long tracks of muons, the size

of the detector required is on the order of a cubic kilometer to observe astrophys-

ical neutrinos. The only possible way to build such a detector would be to take

advantage of a naturally occurring transparent medium such as deep ocean water

or glacial ice.

The IceCube Neutrino Observatory was built with these design goals in mind[202,

203]. It instruments a cubic kilometer of deep Antarctic glacial ice located near the
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DeepCore 
8 strings-spacing optimized for lower energies
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IceCube Lab
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December, 2010: Project completed, 86 strings

Amanda II Array
(precurser to IceCube)

Figure 4.1: Schematic diagram of IceCube. IceCube consists of 86
vertical strings each containing 60 DOMs. On their surface there are
81 IceTop stations each consisting of two tanks each with two DOMs.
At the center the vertical and horizontal DOM spacing was decreased in
order to create the low-energy sub-detector Deep Core[205]. IceCube’s
now decommissioned predecessor AMANDA-II[206, 207] is also shown.
The Eiffel Tower is shown for size comparison. Figure from [208].

geographic South Pole, as shown in figure 4.1. The ice sheet at this location is ap-

proximately 2.8 km deep. However, above a depth of 1400 m the optical properties

of the ice are dominated by scattering off of hydrate bubbles[204], so IceCube is in-

strumented between a depth of 1450 m and 2450 m. Power and other infrastructure

is provided by the Amundsen-Scott South Pole Station.
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4.1 Hardware

The IceCube detector is constructed by hot water drilling into deep glacial

ice. As the drill is lowered into the ice, it releases hot water to melt the ice and

creates a column of water. Once the drill reaches the bottom of the glacier it is

reeled back up. An IceCube string is then lowered into the column of water. Each

string contains 60 Digital Optical Modules (DOMs) spaced 17m apart. The strings

use a steel cable as a strength element. There is also a communications cable that

connects to each DOM carrying power and communications via twisted pair wires

to each DOM. The bottom of each string is lowered to roughly 2450 m below the

surface.. The string is then anchored in place while the ice refreezes, which typically

takes two to three weeks. Once the water refreezes, the DOM becomes optically

coupled with the ice.

In total, IceCube has 86 strings. 78 of the strings are placed 125 meters apart

in a hexagonal grid pattern, 8 additional strings were placed inside the hexagonal

grid near the center of the array to form a high density region known as Deep

Core[205]. Due to weather constraints at the South Pole, the construction could

only occur during the Austral summer which lasts a few months out of the year.

In between construction seasons, the detector operated with the installed strings

collecting physics quality data. This analysis uses data collected from April 2008 to

May 2009, while IceCube was collecting data with 40 strings, see figure 4.2.

Each DOM (shown in figure 4.3) is housed in a pressure sphere that can

withstand the 300 atmospheres pressure at the bottom of the detector[210]. For
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Figure 4.2: The Geometry of IceCube in its 40 string configuration
with distances between adjacent strings shown. Green circles indicate
the location of in ice strings, while blue circles represent IceTop surface
array tanks. Figure from [209].
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Figure 4.3: Schematic view of an IceCube DOM. Each DOM is a self
contained unit for detecting light. The DOM is housed in a glass pressure
vessel to withstand the pressure of a 2.5 km column of water. The DOM
receives communication and power through a penetrator cable. The
PMT is encased in a mu-metal grid and coupled to the glass with optical
gel. High voltage is supplied by a step up transformer. A flasher board
holds LEDs to transmit light to other DOMs for calibration purposes.
Digitization of the PMT signal, control of the flasher board and high
voltage board, as well as communications with the surface are all handled
by the mainboard. Figure from [211].
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the detecting light, IceCube uses the R7081-02, a 10” hemispherical photomultiplier

tube manufactured by Hamamatsu Photonics, Japan. The PMTs are coupled with

optical gel to the pressure vessel and encased by a mu-metal grid to decrease the

effect of the Earth’s magnetic field on electrons inside the PMT. It has a Bi-alkali

photo-cathode (peak QE 25% at 420 nm) and 10 dynode stages which produce on

the order of 107 gain at a bias of approximately 1400 V. The PMT has a noise rate

of approximately 500 Hz in the low temperature of the glacial ice.

The DOMs each contain four circuit boards[212]. The mainboard contains all

the required circuitry to measure the signal from the PMT, digitize it and commu-

nicate with the surface. It has both a micro-controller and FPGA to quickly process

data. It contains two digitization systems, the fADC and the ATWD. The Fast

Analog to Digital Converter (fADC) digitizes the signal from the PMT every clock

cycle (25 ns). The flasher board contains twelve 405 nm LEDs which are aimed in

various directions. These LEDs can be flashed during special calibration runs. By

analyzing the arrival time and amplitude of light from one flashing DOM to another

receiving DOM, the distance between the two DOMs can be measured as well as the

properties of the ice between the DOMs. The delay board contains one long trace

to delay the signal so data from before the time of the trigger can be digitized. The

high voltage board contains the necessary circuits in order to step up the voltage

supplied from the surface to the voltage required to power the PMT. This variable

voltage supply is controlled by the mainboard. During calibration the voltage is

varied to find a voltage vs gain curve. During normal operation each DOM sets its

high voltage independently so that all the DOMs have the same gain of 107.
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When a signal greater than approximately 0.25 photoelectrons is detected

by the fADC, then the DOM triggers and the DOM triggers the ATWD (analog

transient waveform digitizer) starts capturing data. The ATWD consists of an array

of 256 very low capacitance capacitors. The ATWD continuously connects each

capacitor to the signal for a brief time (3.3 ns) in sequence, so that the capacitors

now hold a time series of the signal in their charge that can be read out later. If

the digitization conditions are met, then the ATWD connects each capacitor to an

analog-to-digital converter in sequence to get a time series of the voltage on the

anode as a function of time, binned in 3.3 ns bins. Digitizing the ATWD takes time

and since most triggers are noise, the data is not necessarily digitized every time

there is a trigger. A launch occurs when the digitization conditions are met. The

DOMs use a system of local coincidence signals between neighboring DOMs on a

string to determine when to launch. If a DOM triggers and one of its two nearest

neighbor DOMs or one of the two next-to-nearest neighbor DOMs triggers within

1000 ns, then the local coincidence condition is met and both DOMs launch. To

increase the dynamic range of the digitizer, each ATWD has three channels with

different gain on the input amplifier. The gains are 16, 2 and 0.25, there is also

a fourth channel that is used only for calibration signals. The channels are read

out in order of high-gain to low-gain and the low-gain channels are only read out if

the higher-gain channel saturated. The digitization process takes 29 µs if all three

channels are read out. Each DOM is equipped with two ATWDs so that if a trigger

occurs while the DOM is digitizing one ATWD then it can use the second ATWD to

capture the second trigger. Once a DOM is finished digitizing the ATWD, it creates
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a packet of data. The packet contains the timestamp of the trigger and digitization

of both the ATWD and the fADC (the fADC was continuously taking data while

the ATWD was digitizing). This packet is then sent to the surface to be analyzed

by the Data Acquisition (DAQ) software.

On the surface, the communication cable of each string is connected to a

computer called a DOMHub. The DOMHub controls the DOMs, provides power,

and holds data sent by the DOMs. Each DOMHub has a buffer in which it stores

the packets of data sent to it by the DOMs.

In order to reconstruct events in IceCube, accurate timing is very important.

The relative time when a photon hits a DOM must be known to order nanosecond

accuracy. Overall timing accuracy has been determined to be at least as good as 3

ns[211] (the same timescale as the width of an ATWD bin). The DOM’s internal

clock signal is generated by a crystal oscillator with a nominal rate of 40 MHz. Due

to clock drift in the oscillator, the DOM’s clock has to be continuously recalibrated.

In order to accomplish this, the DAQ will periodically send a calibration pulse, called

a RAPCal pulse, to each DOM separately. When a DOM receives a RAPCal pulse,

it sends an identical pulse back to the DOMHub. Since the DOM and DOMHub use

identical hardware to send and receive RAPCal pulses (reciprocal hardware) then it

can be assumed that the time it takes to reach the DOMHub from the DOM is half

the round trip time. Using data from RAPCal, both the time offset from travel and

the clock drift of the DOM’s crystal oscillator can be measured and corrected. The

DAQ continuously sends RAPCal pulses and dynamically updates its calculation

for clock drift so that launch times are as accurate as possible.
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When a DOMHub receives a launch from a DOM, it sends the timestamp of the

launch to the trigger system. The trigger system continuously scans the data trying

to form a detector trigger. A detector trigger occurs when more than 8 launches

occur within a 5000 ns window. When a detector trigger occurs all launches within

the window are bundled into a unit called an event. Then if the trigger condition is

met for longer than the trigger window, the event is extended as long as there are 8

events in a window of 5000ns. The trigger system also adds all other hits within a

10µs window before and after the limits of the trigger condition. These events are

written to the Online Processing and Filtering (PnF) system discussed in the next

section. Launches which do not form part of an event are lost when the buffer is

overwritten.

4.2 Online Filter

The PnF system receives events from the DAQ. Every event that the DAQ

event builder assembles gets written to tape at the South Pole. In addition, data

is sent from the South Pole to the University of Wisconsin using NASA’s Tracking

and Data Relay Satellite System (TDRSS). However, the bandwidth available on

TDRSS is significantly less than IceCube’s total output. IceCube is swamped by a

background of downgoing cosmic ray air-shower muons which are the background

for neutrino searches. Downgoing events trigger the 40 string IceCube configuration

at about 1000 Hz while atmospheric neutrinos occur at a rate of about 1 mHz. In

order to meet the bandwidth requirement of TDRSS, the data must be reduced in
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order to send the neutrino stream over the satellite.

The PnF system performs a series of reconstructions discussed in section 4.4

on each event. Neutrino candidates which reconstruct as upgoing pass the filter and

are sent north for immediate analysis, see chapter 6 for more details.

4.3 Simulation

In order to understand how IceCube responds to neutrinos, it is necessary to

produce simulations. The IceCube Collaboration has developed a software package

that simulates both the high energy particle physics processes which IceCube de-

tects and IceCube’s hardware. The IceCube simulation chain starts by generating

a primary particle, for example a neutrino from a GRB. Monte Carlo simulation

techniques are used to properly sample the direction, location and energy space

of the primary particle. In this analysis two types of primary particle event gen-

erators are used for simulation: neutrino-generator for simulating GRB neutrinos

and CORSIKA[213] for cosmic rays. Simulated cosmic rays are not used in the

unbinned analysis discussed in chapter 7, however since the majority of events seen

in IceCube are from cosmic rays, the cosmic ray simulation is useful for verifying

the validity of both the simulation and any processing which is performed on data.

The CORSIKA package generates cosmic ray primaries with the composition and

energy spectrum from the Polygonato model[214] based on the parameterization of

[215], it then calculates all daughter particles from the primary interacting with the

atmosphere. Since muons are the only resultant particles which can penetrate the
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1.5 km of ice between the surface and IceCube, these are the only particles which

are tracked.

Neutrino-generator is used to calculate neutrino interactions in the Earth and

in and around the detector, it is based on code from ANIS[216]. It starts with neutri-

nos sampled uniformly on the surface of the Earth with a power-law spectrum. The

neutrinos are then propagated through the Earth taking into account absorption,

scattering, and neutral current regeneration of neutrinos. This code uses the cross

section from CTEQ5[217] to simulate neutrino-nucleon interactions, see figure 4.4.

The daughter muon and nuclear recoil are calculated based on deep inelastic scat-

tering. The structure of the Earth is taken from the Preliminary Reference Earth

Model[220]. Neutrino-generator then randomly places a neutrino interaction ver-

tex in or near the detector volume and calculates the probability of this interaction

occurring. A Monte Carlo weight is then calculated from this probability and the ex-

pected neutrino spectrum. For atmospheric neutrinos, the Honda 2006 model[221] is

used for pion and kaon decay induced neutrinos and the Naumov RPQM model[222]

used for charmed lepton decay. The Honda 2006 model is based on simulations per-

formed for lower energy neutrino experiments, it is extended to higher energy using

the analytic model[223,224]

φν(Eν) ∝ E−2.7
ν

{
Aπν

1 +Bπν cos(θ)Eν/επ
+

AKν
1 +BKν cos(θ)Eν/εK

}
(4.1)

Where επ = 115 GeV and εK = 850 GeV are the decay constants, the energy where

a particle in an atmospheric air shower is more likely to interact rather than to
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Figure 4.4: Neutrino-nucleon cross section for muon neutrinos as a func-
tion of neutrino energy (Eν). All interactions are calculated using deep
inelastic scattering with CTEQ5[217]. Only charged current (CC) inter-
actions produce muons which can be detected, however neutral current
(NC) interactions must be accounted for in losses while propagating neu-
trinos through the Earth. At low energies (Eν � M2

w/2MN) the cross
section is proportional to Eν , while at higher energies (Eν �M2

w/2MN)
the interaction is damped by the W-boson propagator and the cross sec-
tion becomes proportional to E0.363. Above ∼ 106 GeV the contribution
from valence quarks becomes negligible compared to sea quarks so that
the neutrino and anti-neutrino cross sections become equal[218,219].
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decay. The values Aπν ,Bπν ,AKν and BKν are considered free parameters set to get

a smooth transition to the Honda model. This model has been shown to accurately

produce the atmospheric neutrino flux observed in IceCube[208].

In addition to neutrinos generated with random directions, this analysis uses

simulation where each individual GRB is simulated. For each GRB, 105 events are

simulated where the direction of the primary neutrino is in the direction of the GRB

with a random 2-dimensional Gaussian offset, where the width of the Gaussian is

the GRB’s localization uncertainty. The time of the neutrino is generated randomly

from the on-source time of the GRB in question. The losses in the Earth and detector

is calculated identically to the random direction neutrino simulation. Finally, the

GRB simulation is weighted based on the primary spectrum of neutrinos from GRBs

that is derived in section 2.6.

Once the primary has been generated and the daughter muons calculated,

the rest of the simulation chain proceeds identically for both neutrinos and cosmic

rays. Muon propagation above 1 TeV is extremely stochastic and is dominated by

bright events where a significant fraction of the energy is lost[201]. The MMC[225]

package is used to propagate muons. It assumes a baseline continuous energy loss

and randomly adds stochastic energy to the track based on the probability of such

events occurring. The values of energy loss it uses to simulate muons is plotted in

figure 4.5.

Since the muon is moving faster than the speed of light in the medium, the

energy lost by the muon will radiate as Cherenkov radiation[226,227]. Since the ice

in which IceCube was built does not have uniform optical properties, there is no an-
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Figure 4.5: Average energy losses for a muon traveling through ice. The
four types of losses are ionization, bremsstrahlung, photo-nuclear inter-
action and pair production, decay is also shown. Ionization losses are
weakly dependent on energy, while bremsstrahlung, photo-nuclear and
pair production, which dominate at energies above a TeV, are propor-
tional to the muon’s energy. Figure taken from [225].
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alytic solution to approximate photon propagation through the ice. It is impractical

to individually propagate all photons emitted from a muon track. The only way to

obtain a reasonable description of light yield in the DOMs is to propagate a large

number of photons beforehand and histogram their location into tables that describe

the probability of a photon propagating from the track to the DOMs. This is done

by a program called photonics[228]. Photonics breaks all space and time around the

origin into bins. Then it uses Monte Carlo simulation to propagate photons through

the space considering both scattering and absorption which are both functions of

depth in the ice. As the photon propagates, equidistant recording points are gener-

ated along its path. The probability of observing a photon emitted from the origin is

calculated as the number of counting points in each bin normalized by the total num-

ber of counting points generated. Since the ice model is not uniform, this procedure

must be repeated for each location where light is to be emitted. However, since the

ice model only varies in the vertical direction (shown in figure 4.6), the horizontal

symmetry can be exploited and this procedure is only repeated by moving the light

source in the vertical direction. This procedure creates the cascade tables which are

used for calculating the light yield from the stochastic, point-like light emission in

the muon’s track. To calculate the light yield from continuous muon losses, many

small cascades are assembled into a track shape and the cascade tables are added

together and normalized to create a table of light yield as a function of track zenith

angle, position, and time. Both the continuous losses and stochastic losses are used

to calculate light yield at each DOM from the muon whose propagation track was

calculated by MMC.
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Figure 4.6: Maps of optical scattering and absorption for deep South
Pole ice. The depth dependence between 1100 and 2300 m and the wave-
length dependence between 300 and 600 nm (left) for the effective scat-
tering coefficient and (right) for absorptivity are shown as shaded sur-
faces, with bubbles contributing to the scattering and the pure ice con-
tributing to the absorption superimposed as (partially obscured) steeply
sloping surfaces. The dashed lines at 2300 m show the wavelength de-
pendences: a power-law due to dust for scattering and a sum of two
components (a power-law due to dust and an exponential due to ice) for
absorption. The dashed line for scattering at 1100 m shows how scatter-
ing on bubbles is independent of wavelength. The slope in the solid line
for absorptivity at 600 nm is caused by the temperature dependence of
intrinsic ice absorption. Figure from [204].
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Discrete photon hits incident on the PMT surface are calculated from the

probabilities obtained from photonics tables. In addition to the pulses caused by

direct photon hits incident on the photocathode, other pulses may appear in the

PMT: pre-pulses, after-pulses, late-pulses, and noise pulses[229] which are simulated

as well. Hits are then converted to an analog current on the PMT’s anode, which is

then propagated through the DOM’s front end electronics simulation to a voltage

as measured by the DOM’s two analog-to-digital converters. Then the digitization

is simulated, as well as the DOM’s triggering and logic to create a launch. Launches

which do not meet local coincidence conditions are discarded. All of the launches

from each DOM are combined and evaluated using software to simulate the DAQ.

The simulation is then stored in a file with an identical format as is used for data,

which allows data and simulation to be processed and reconstructed using identical

processing software.

4.4 Event Reconstruction

The process of turning the data recorded by the DOMs into the direction and

location of a track is called reconstruction. Figure 4.7 shows visual representation of

IceCube events along with their reconstruction. The energy loss of a muon traveling

through IceCube and the behavior of the light as it propagates through the ice are

stochastic processes. The basic strategy will be to use a series of statistical estima-

tors, starting with the simplest, least CPU intensive reconstruction. This is then

followed by more complex, more accurate and more CPU intensive reconstructions.
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Along the way, events that do not look like desirable events will be cut from consid-

eration and will not be reconstructed with the more CPU intensive reconstructions.

4.4.1 Hit Reconstruction

The data collected by the fADC and ATWD can be used to calculate the

number of photoelectrons by each DOM. A photoelectron is an electron that is

created in the photocathode of the PMT and represents a discrete amount of charge

recorded by the DOM. The time series of voltages on the anode of the PMT will

be transformed into reconstructed photoelectron pulses, called reco-pulses. These

reco-pulses contain the time that the pulse occurred, the number of photoelectrons

contained in the pulse, and the width of the pulse. In order to convert from voltage to

number of photoelectrons, the gain of the PMT as well as the gain of the transformer

and amplifiers which couple the anode to the digitizers must be known.

First, each capacitor in the ATWD has an offset or pedestal voltage, which

must be measured separately for each ATWD by shorting the ATWD (setting the

voltage to zero) and measuring the charge. Once the pedestal is known the pedestal

can be subtracted from each readout to get a corrected value. Next, effects in the

front-end electronics must be compensated. The ATWD is inductively coupled to

the anode of the PMT with a transformer. Early DOMs had a high inductance which

resulted in pulses with a large number of photoelectrons to undershoot zero as the

voltage dropped after the pulse, an effect known as transformer droop. After this
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(a) Muon Neutrino Candidate (b) High Energy Cosmic Ray Muon Bundle

(c) Coincident Cosmic Ray Muon Bundles (d) Simulated Electron Neutrino Cascade

Figure 4.7: Visual representation of events in the IceCube detector.
The colored spheres indicates observed hits where the color represents
the time of the hit with red being earlier and blue later. The size of
the sphere indicates the number of hits. The MPE reconstruction (sec-
tion 4.4.4) is shown as a red line. (a) An upgoing muon neutrino candi-
date. (b) A downgoing high energy muon bundle. (c) Two downgoing
cosmic ray muon bundles hit the detector in such a way that the MPE
reconstruction incorrectly reconstructs the event as upgoing. (d) Simu-
lated 3 EeV electron neutrino cascade.
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effect was identified, the front-end electronics were modified to reduce this effect,

but there is still a noticeable inductance in the circuit. Thus, to reconstruct the

current on the anode, the transfer function of each DOM’s input circuit must be

corrected[230]. Finally, the high voltage and gain of the DOM are used to express

the voltage measuring the DOM as a function of photoelectrons.

Next a feature extraction algorithm is used to turn the time series into discrete

pulses. This algorithm has a DOM response template which predicts the voltage

as a function of time for a pulse at a given time and amplitude[231] The time of

the pulse is assumed to be the extrapolation of a straight line to the baseline of

the rising edge of the pulse. Then the height of the pulse is used to determine how

many photoelectrons are contained in the pulse. The feature extraction algorithm

identifies upward slopes in the calibrated waveform as initial guesses for the time

and amplitude of pulses. Then it uses an iterative Bayesian unfolding algorithm[232]

to find the best match between the template and the observed waveform. Figure 4.8

shows an example of results from the feature extraction algorithm. A series of

recopulses is saved with the corresponding time and charge of each pulse found for

every DOM which launched in the event.

Since IceCube’s trigger window includes all hits which occur within 10µs of

the beginning or end of a trigger, there are often noise hits which are unrelated to

the muon which triggered the event. To remove theses noise hits a procedure called

time window cleaning is performed. The algorithm slides a time window with a

constant length along the events time axis until it finds the time window with the

most reco-pulses and keeps only the reco-pulses within this window. Based on the
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Figure 4.8: A sample waveform is shown with the red dotted line. Each
sample represents approximately 3.3 ns. Each reconstructed pulse is
represented as a different color solid line. Figure from [231].

size of the detector, it was determined that 6µs was longer than physically related

reco-pulses could be separated in time and was therefore chosen as the length of the

time window.

4.4.2 LineFit

The first reconstruction performed is called LineFit. LineFit makes the as-

sumption that the light generated by a muon is a plane wave traveling in the same

direction as the muon. This nonphysical assumption has the advantage of offering

an analytic solution; a χ2 minimization of a plane wave hitting a series of detectors

can be solved exactly. For a series of detectors each located at ~ri, hit at a time ti,

60



and a muon with a vertex ~R, and velocity ~V the solution is

~V =
〈~riti〉 − 〈~ri〉〈ti〉
〈t2i 〉 − 〈ti〉2

(4.2)

~R = 〈~ri〉 − ~V 〈ti〉 (4.3)

Although LineFit’s median angular resolution is ∼ 5◦, it is analytic and therefore it

is very quick to perform and can be used to seed subsequent reconstructions which

require an initial first guess.

4.4.3 SPE

Reconstructions which use more realistic light propagation models than Line-

Fit do not have closed form analytic solutions, so all further reconstructions use the

method of maximum likelihood estimation. If the probability of observing a hit at

time t on a DOM at location ~r from a muon with vertex ~R, zenith angle θ, azimuth

angle φ, and energy E is

P (~ri, ti|~R, θ, φ, E) (4.4)

then the likelihood of observing a hit at t1 at ~r1 and t2 at ~r2 etc. is

L(~r1, t1, . . . , ~rn, tn|~R, θ, φ, E) =
n∏
i=0

P (ri, ti|~R, θ, φ, E) (4.5)

The most likely path of the muon is obtained by maximizing the logarithm of like-

lihood function with respect to ~R, θ, and φ for an observed ~r1, . . . , ~rn and t1, . . . , tn.
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Since the MINUIT[233] software package does not have functions to maximize func-

tions, only functions to minimize functions, the negative of the log of likelihood will

be taken and this method will hereafter be referred to as minimum log-likelihood or

least log-likelihood.

Although this method is the most accurate estimator, it has numerous poten-

tial pitfalls. Numeric minimizers require a first guess and move along the parameter

space until they find a local minimum, they do not look for the global minimum. The

minimizers may also get stuck in saddle points or extremely flat regions even though

a good minimum may be available elsewhere. A PDF that describes all aspects of

light propagation in ice, in addition to requiring intensive CPU computation, would

be very complicated and create a likelihood space that is very bumpy and hard

for the minimizer to navigate. For this reason a simplified PDF to describe light

propagation was developed. This function, called the Pandel function, was derived

by analyzing isotropic monochromatic light[234,235] shown in figure 4.9.

ppandel(tres) =
(tres)

d/λ−1

Γ(d/λ)
(

1
τ

+ cmedium
λa

)−d/λ exp

[
−tres

(
1

τ
+
cmedium
λa

)]
(4.6)

Where tres is the time a photon is measured to hit a DOM minus the time expected

for an unscattered photon, tgeo:

tres = thit − tgeo (4.7)

The Pandel function is a modified form of the gamma distribution[236]. The un-
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Figure 4.9: Comparison of the Pandel function (dashed curves) with
the detailed simulation (black histograms) at two distances d from the
muon track. The Pandel function offers a good analytic model for light
propagation. Figure taken from [235].

scattered photon time from a Cherenkov cone can be calculated from geometry, see

figure 4.10:

tgeo = t0 +
V̂ · (~ri − ~r0) + d tan θc

cvac

(4.8)

λa is the scattering length, τ and λ are unspecified parameters that were empirically

determined:

τ = 557ns, (4.9)

λ = 33.3m, (4.10)

λa = 98m, (4.11)

deff = a0 + a1d, (4.12)

a0 = 3.1− 3.9 cos(η) + 4.6 cos2(η)m, (4.13)

a1 = 0.84 (4.14)
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Figure 4.10: The Geometry used to reconstruct the photon travel time.
For a muon which travels through ~r0 at time t0 and emit light in a
Cherenkov pattern with angle θc[226, 227], the expected hit time for an
unscattered photon is given by equation 4.8. Figure taken from [235].
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Where it is necessary to replace d with deff to account for the fact that light traveling

toward the bottom of a DOM can hit the PMT directly, while light traveling in the

opposite direction must be scattered in the reverse direction to hit the PMT. The

time it would take an unscattered photon to hit the DOM from the Cherenkov cone

based on geometry is tgeo. When a photon is observed to hit a DOM the residual

time, tres, is defined as the hit time minus tgeo:

This is a good function to approximate photon arrival time, but it has a few

drawbacks. It is zero for all tres < 0 and can be singular at t = 0 for smaller values

of d. Because of both effects in the PMT, when signals are propagated through

the PMT faster than expected and the errors in the time calibration procedure, it

is not uncommon to get hits with negative tres. To accommodate this, the Pandel

function is convolved with a Gaussian. This allows for negative values of tres < 0

and removes the possible discontinuity at tres = 0.

pconv(tres) =

∫ ∞
−∞

1√
2πσJitter

exp

[
−
(
tres − t
σJitter

)2
]
ppandel(t)dt (4.15)

Where σJitter is the width of the Gaussian to convolved with the Pandel function.

In theory, σJitter should be the total uncertainty in the hit time. However, there

are other reasons why an event may have a hit such as a noise hit or a PMT pre-

pulse. For this analysis, it was found empirically that σJitter = 15 ns gives the best

reconstructions.

There are two reconstructions which compensate for the fact that the mini-

mizer may pick a local minimum and not the global minimum. The first is the half
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sphere reconstruction which performs two minimizations: one confined to the upgo-

ing hemisphere and the other confined to the downgoing hemisphere and it picks the

minimum with the lowest value. In the second, thirty two directions are randomly

selected for the initial value of the minimization and the best minimization is picked.

Since performing minimization based reconstructions accounts for the majority of

the computer time used to reconstruct data, the number of iterations needs to be

optimized. For the 40 string configuration, the best trade off between computer time

spent minimizing and finding the global minimum was found to be 32 iterations.

Both of these techniques will prevent reconstructions which are in directions very

far from correct, but will not improve the angular resolution of reconstructions that

were correct the first time.

4.4.4 MPE

The PDF used for reconstruction in section 4.4.3 is correct only if a single

photon hits the DOM. However, if multiple photons hit the DOM it is still simpler

to use only the first photon from each DOM in the reconstruction. This is justified

since the first photon is less likely to have scattered significantly, therefore it contains

more information than later photons. MPE is a correction to SPE given the Bayesian

prior that the photon you are looking at is the first of N, not a random photon. The

correct PDF for the first photon, when a DOM is hit by n photons, is:

MPE(tres) = n · SPE(tres) ·
[∫ ∞

tres

SPE(t)dt

]n−1

(4.16)
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Figure 4.11: Comparison between the angular resolution of different
reconstructions. Left: the angle difference (∆Ψ) between a simulated
muon track and the reconstructed direction. Right: same plot zoomed
in the low angle portion. LineFit has a soft peak at a larger angle
than the minimization based reconstructions as well as a much larger
tail. SPE with 32 iterations is almost identical to SPE with a single
iteration at small angles but shows significant improvement at larger
angles. Since MPE uses SPE with 32 iterations as its seed, its large
angle behavior is very similar to SPE with 32 iterations, but it shows
significant improvement at smaller angles.

Computing this integral is computationally intensive, however, accurate approxima-

tions[237,238] have been devised that allow this PDF to be calculated in a reasonable

amount of time. Using a minimization with this PDF can be more accurate if it is

close to the correct solution, but since it is more complicated, it will often have more

local minimum. To solve this, a reconstruction with SPE is performed followed by

the MPE reconstruction using the results of the SPE fit as a seed, so that MPE

fits are run with only one iteration. A comparison between the MPE, SPE with 32

iterations, SPE with one iteration, and LineFit is shown in figure 4.11.

67



4.4.5 Paraboloid

The paraboloid fit is a reconstruction designed to estimate the angular uncer-

tainty of a minimization based reconstruction[239]. It starts with the results of an

MPE reconstruction, then forms a grid of points in a 4◦ by 4◦ region of zenith and

azimuth space. For each point on the grid, paraboloid does a 3 parameter MPE

fit, where zenith and azimuth directions are fixed, but the X,Y, and Z location of

the vertex are varied. It then creates a two dimensional function of log-likelihood

in zenith and azimuth space. Near the 2-dimensional minimum the log-likelihood

function should have a paraboloid shape. The paraboloid reconstruction fits this

space to a paraboloid using a χ2 minimization. When the log-likelihood function is

half the value at the minimum, it should correspond to the 1σ contour line. Thus,

paraboloid calculates the 1σ error ellipse around the minimum. Paraboloid diago-

nalizes this ellipse to find the major axis length and the minor axis length. For well

reconstructed events, the ellipse should have a low eccentricity, and it is simpler to

deal with one error radius denoted σν .

σν ≡
√

1

2
(σ2

1 + σ2
2) (4.17)

Where σ1 and σ2 are the semi-major axis and the semi-minor axis. σν is taken as

an overall measure of event reconstruction quality. Due to a mismatch between the

Pandel function and the real arrival time distribution of photons, there was a slight

energy dependent mismatch between the paraboloid error and the true error, this

was corrected using a method developed by the point source working group[240].

68



4.4.6 Bayesian Fit

Some reconstructions are not designed to be the best estimator of a parameter.

In order to identify events that have been erroneously reconstructed as upgoing

but were caused by downgoing events, the Bayesian Reconstruction is used. The

Bayesian reconstruction is intentionally biased in the zenith direction. Using Bayes’s

theorem

P (θ|a) =
P (a|θ)P (θ)

P (a)
(4.18)

and interpreting P (a|θ) as the convolved pandel function from section 4.4.3 and

P (θ) as the probability of observing a background event with zenith angle θ:

P (θ) = A0 (cos θ)A1 exp

(
− A2

cos θ

)
(4.19)

Where A0,A1, and A2 are fit empirically to the observed distribution of downgoing

cosmic ray muons and P(a) ensures proper normalization. The probability of an

event with track parameters a and with zenith angle θ can be calculated. Using this

P (θ|a) as the PDF in a minimization reconstruction will result in a reconstruction

that is biased in the zenith direction to the downgoing region. Events that were

caused by downgoing events but were erroneously reconstructed by SPE as upgoing

often lie in shallow minimum so that their biased reconstruction will usually result

in a minimum of similar depth or deeper. Events caused by true upgoing particles

will be poorly reconstructed when biased in this fashion so that the depth of the

minimum will be significantly worse than with the unbiased function. Thus the
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difference between the depth of the SPE32 reconstruction and the depth of the

Bayesian weighted reconstruction will become a powerful cut parameter to separate

upgoing from downgoing events.

4.4.7 Energy Reconstruction

All of the preceding reconstructions were used to reconstruct the direction

of muon events. Since the spectrum of GRB neutrinos is expected to be harder

than the background of atmospheric neutrinos, an energy reconstruction will help

to differentiate signal from background. Energy reconstruction is possible because

above ∼ 1TeV muon losses are dominated by processes whose cross section is pro-

portional to the energy of the muon (see figure 4.5), thus the energy loss will be a

good proxy for the total muon energy. Reconstruction of the energy of the muon is

performed by reconstructing the average energy loss per unit track length (dE/dX)

of the muon[241, 242]. This energy of the muon as it travels through the detector

is a lower bound on the original neutrino’s energy as the neutrino’s interaction ver-

tex may have occurred far from the detector resulting in energy losses between the

vertex and the detector. Since muons may lose a significant fraction of their energy

on a length scale the size of IceCube, the energy of the muon in a particular event

is dependent on the location of the muon during the event. It has been determined

that the energy of the muon as it makes its closest approach to the event’s center of

gravity (CoG) is the most suitable definition of the muon’s energy, denoted Eµ,CoG.

The center of gravity for an event is defined as the mean of the locations of all
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DOMs which were hit in that event.

The preceding reconstructions all used the arrival time of the first photon for

each DOM, as the first photon is most likely to have not scattered than the subse-

quent photons, thus the first photon carries more information about the direction

of the muon than later photons. To reconstruct the energy loss of the muon, all

observed photons must be accounted for in order to get an accurate measure of

the amount of energy deposited in the ice by the muon. In addition, the preceding

reconstructions used a PDF that assumed light propagation that is uniform through-

out the detector. This assumption does not affect timing as much as it affects the

number of photons that arrive. In order to successfully reconstruct the energy, it

is necessary to account for the depth dependence of scattering and absorption of

the ice. To accomplish this, photon reconstruction or photorec tables were created.

These tables contain the PDF of photon arrival binned in time, the distance of

the DOM from the muon track, the muon track zenith angle, and the z position.

Photorec tables are based on the photonics tables which are used for simulation

discussed in section 4.3, but they differ in two ways: they are more coarsely binned

so that a typical computer can load the entire table into memory at once, and they

simultaneously account for stochastic and continuous energy losses which are han-

dled separately in photonics tables. The energy reconstruction uses a 1 dimensional

likelihood reconstruction to estimate the average energy loss along the track ob-

tained from the MPE fit. Thus, having an accurate direction reconstruction before

attempting energy reconstruction is very important to getting an accurate energy.

The exact relationship between dE/dX and Eµ,CoG must be determined from
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simulation. Since there is a large spread in this relationship, confidence inter-

vals[243–245] are used. Using simulation discussed in section 4.3 weighted with

the spectrum from section 2.6, the distribution of dE/dX for each value of Eµ,CoG

is calculated and 1σ (68%) central confidence limits are calculated, see figure 4.12.

Splines are used to create a continuous function to convert dE/dX to the Eµ,CoG

and find the 1σ error estimate. These functions would have been used as an estimate

of the energy of individual neutrino events had any significant events been observed.

72



10−1 100 101 102 103 104

Photorec dE/dX [GeV/m]

102

103

104

105

106

107

E
µ
,C

oG
[G

eV
]

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Figure 4.12: The energy resolution of the detector is measured using
simulation. On the y-axis is the simulated muon’s energy as it passes
closest to the center of gravity of the hits it causes (Eµ,CoG). The y-axis
is the reconstructed energy loss per unit length of the muon (dE/dX).
The color map shows the density of simulated neutrino events weighted
to the expected GRB spectrum. The black error bars show the full-
width/half-max of the distribution of dE/dX for each Eµ,CoG bin. The
black line shows the spline fit to the center of each dE/dX distribution.
Inverting the error bars to be errors on measuring the energy gives errors
on measuring the energy of ∆ log(Eµ,CoG) ∼ 0.3− 0.4
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Chapter 5

GRB Selection

Although the satellites that observe GRBs produce catalogs of bursts, these

catalogs are often not available within the timescale needed to analyze IceCube

data in a timely fashion. Thus, this analysis was performed with a custom catalog

of GRBs produced from data gathered in GCN circulars[184].

This catalog includes bursts that occurred during the 410 days between April

5, 2008 and May 20 ,2009, when IceCube was operating in its 40 string configura-

tion. During this time there were 277 bursts reported via GCN, of those 128 had a

declination in the Northern Hemisphere. Several of the Fermi GRBs were removed

from the catalog because they did not report a gamma-ray fluence or because the

burst was extremely weak and poorly localized. Four bursts with no fluence mea-

surement were kept, three of them were detected by SuperAGILE, which does not

report fluence measurements, and one Fermi GBM burst detected, GRB081110,

where Fermi reported only that it was bright and hard[246].

5.1 Detector Stability

It was necessary to remove certain bursts because IceCube was not operating

in a state to record reliable data. GRB080521 and GRB090515 were removed be-

cause they occurred during calibration runs which used the DOM LED flashers, and
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GRB081113 occurred while IceCube was down for maintenance. During GRB090422

and GRB090423, IceCube was running a test mode in the 59 string configuration.

These bursts were treated as 59 string data and were considered in the 59 string

analysis instead of this analysis.

Several GRBs needed special checks to ensure high quality data was obtained.

For example, several hours after GRB081024A a door was left open in the IceCube

lab which caused the computers running in the server room to freeze. This resulted

in data loss, however, there is no discernible effect on data within 1 hour of the

burst. The Dust Logger is a laser apparatus that is lowered into the IceCube hole

before the new string is deployed. It shines laser light horizontally into the ice and

measures the level of reflected light to produce a map of the density of dust in the

ice. The Dust Logger was operated 25 minutes after GRB090107A occurred, the

extra light in the detector caused the data acquisition system to crash, but there

is no indication of any detector problems before the dust logger was used. In the

run in which GRB090401A occurred, string 70 suffered communication problems

and many hits from string 70 were lost, but the rest of the detector was operating

normally. Since the impact of this problem was minimal, it was decided that this

GRB would be included in the analysis without further modification.

Since, in some instances, this analysis examines data during segments of time

which are short compared to the standard eight hour run, extra care must be taken

to make sure the detector was not acting anomalously for these segments. In order

to examine this, the rate of the muon filter (discussed in section 6.1) is used to indi-

cate any anomalies. The normal muon filter rate is dominated by misreconstructed
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downgoing atmospheric air shower muons. This rate is dependent on the density of

the upper atmosphere[247,248], because, in order for an air shower to create a muon,

a charged meson must decay, and in a denser atmosphere, charged mesons are more

likely to interact with an air nucleus rather than decay[249]. This effect, shown in

figure 5.1, creates a seasonal variation in the muon filter rate with an amplitude of

approximately 20% of the maximum rate. Thus, the rate fluctuates and is maximum

during the austral summer when the atmosphere is less dense, and minimum during

the austral winter when the atmosphere is denser. To look for any variations in the

detector’s performance on the scale of minutes, all of the events within a two hour

time window about the bursts were histogrammed as a function of time into bins

with a width of one minute. The results, shown in figure 5.2, indicate no unusual

behavior.

Data from June 2008 suffered from a bug in the online cascade filter, which

did not affect any of the data used in this analysis. However, data from this period

was reprocessed from tape. This caused some data losses due to physical damage to

the tape, which resulted in a few 3 minute segments of data becoming corrupt. Two

such gaps were found close to GRBs: one instance during GRB080607 and another

instance fifteen minutes before GRB080603A. In the case of the former, the data

was replaced by the original satellite transmitted data with the bug in the cascade

filter. In the latter case, no action was taken as it was outside the on-source time

window. No further anomalies in the rate were observed.

Any detector anomaly should also become apparent by looking at the distribu-

tion time intervals between subsequent events (∆t). If the events occur randomly in
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Figure 5.1: The green circles indicate the muon filter rate for all Ice-
Cube runs flagged as good runs during the 40 string operations which
fluctuates with the downgoing muon rate. The seasonal variation due
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Figure 5.2: The Muon Filter rate vs time for a two hour time window
about several example GRBs. The overall rate is calculated by doing a
1 dimensional χ2 fit to a constant function. These plots were used to
find any pathological behavior in the detector on the order of minutes.
Vertical blue lines indicate the time bound of the GRB reported in the
GCN circular. Vertical green lines indicate the run boundary as reported
by the first and last event of the run, while red lines represent the DAQ
transition from one run to another.
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time with a rate r, then the distribution of ∆t should be the Poissonian probability

of discovering one event with rate r:

ppoisson(1; r) = re−r∆t (5.1)

Any detector outages would show up as a significant outlier. Using this technique

no significant gaps in data were discovered. Examples of ∆t histograms are shown

in figure 5.3.

5.2 Burst Parameters

After removing the bursts where IceCube was not operating properly, there

remained a total of 117 bursts. Table 5.1 shows the complete catalog containing all

information taken from GCN circulars. The catalog was assembled by considering

all GCN circulars and reports for each GRB.

The start time and stop time, T1 and T2 respectively, are relative to the nominal

trigger time T0. These values are the earliest and latest time that any satellite

performed a spectral fit to data or reported observing gamma-rays. If more than

one satellite observed gamma-rays, T1 and T2 may have come from different satellites.

Values of T1 and T2 were verified by examining the light curves produced by the

satellites, see figure 5.4.

GCN circulars report GRB trigger times in Universal Time (UT), while Ice-

Cube measures event times in Coordinated Universal Time (UTC). Although the

maximum discrepancy between these two time systems is < 0.9 s, several bursts in

79



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆t [sec]

100

101

102

103

104

105
GRB080408

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆t [sec]

100

101

102

103

104

105
GRB080409

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆t [sec]

100

101

102

103

104

105
GRB080426

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆t [sec]

100

101

102

103

104

105
GRB080430A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆t [sec]

100

101

102

103

104

105
GRB080503

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆t [sec]

100

101

102

103

104

105
GRB080506A

Figure 5.3: The time difference between two events, ∆t, are plotted
for six GRBs. The distribution of ∆t should be a negative exponential
(Poisson probability of one event). The histogram is fit to a exponential.
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Figure 5.4: Example of light curves from GRBs. Vertical axis is arbi-
trary and scaled independently for each satellite. T1 and T2 are shown as
vertical black lines. Light curves were obtained from satellites’ respective
web pages[250].
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the sample have durations lasting less than this and require time correction. Times

reported by INTEGRAL and Konus-Wind were corrected for the gamma-ray’s time

of flight from the detector to the Earth using the positions of the GRB and the

satellite[251].

The Right Ascension (RA), Declination (Dec) and positional uncertainty σGRB

come from whichever circular reported the lowest positional uncertainty except for

bursts localized by the GBM in which case the Fermi GBM burst catalog[252] was

used. Positional uncertainties reported as 90% confidence intervals are scaled to 68%

confidence intervals assuming a two dimensional Gaussian PDF. For bursts where

IPN localization gave the best position, the positional uncertainty was determined

as one third of the distance to the farthest corner of the reported 3σ error box.

GRBs can be divided into several different categories, Short-Hard Bursts

(SHB) and Long-Soft Bursts (LSB) are the main division. SHBs typically have

short durations, a harder spectrum, and little to no spectral lag, while long bursts

have a long duration, softer spectrum, and long spectral lag. The long group is

further broken down into x-ray flashes(XRF), x-ray rich bursts (XRR), and regular

GRBs (referred to as LSB), where XRF are weaker bursts with softer spectra, while

XRR represent an intermediate class between XRF and LSB. Although the mech-

anism which creates the prompt emission in different classes is believed to be the

same, the energetics which effect neutrino production can be significantly different.

Therefore, it is necessary to treat the classes differently in assigning parameters.

A burst was assigned to a category if it was identified as such in a GCN

circular or report. GRB080515 was the only burst identified as an XRF[253]. De-
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spite their short duration, GRB080426[254] and GRB081228[255] were identified as

long based on their spectral lag and soft spectra. Many GRBs were identified as

short based on their hard spectrum and low spectral lag including GRB080503[256],

GRB081024A[257], GRB081209[258], GRB081211B[259], GRB081216[260],

GRB090227B[261], and GRB090426[262]. Bursts with T90 < 2 sec which were

not identified as either type were classified as SHBs. These include GRB080702,

GRB081024B, GRB081102B, GRB081105B, GRB081119, GRB081204B, GRB081223,

GRB081229A, GRB090108A, GRB090206A, GRB090219, GRB090328B, where T90

is the time interval over which 90% of the GRBs fluence occurs. All other bursts

were classified as LSB.

If spectral parameters are available from more than one satellite, the parame-

ters were taken preferentially using the following order: Fermi GBM, Konus-Wind,

Suzaku WAM, and finally Swift. Since the theory discussed in section 2.6 is based on

broken power-laws, but the spectral fits reported by satellites are reported as either

simple power-laws, power-laws with an exponential cutoff, or a Band function, the

parameters are adjusted to broken power-law parameters. For bursts where spec-

tral information was not available and bursts where the best fit was a power-law

or power-law with exponential cutoff which do not contain all spectral information

needed, average values from the BATSE catalog[54, 263] were used. Although this

analysis used a sample of GRBs from many different detectors, each with their own

systematic biases, it was decided to use the BATSE catalog to determine average

parameters. The BATSE catalog is the largest GRB catalog and covers a very wide

energy range and is widely used in the literature for neutrino emission. The sample
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of GBM bursts, which constitutes the majority of bursts in this analysis, should

be similar to the BATSE catalog. A discussion on the validity of using average

parameters can be found in [264]. For bursts with simple power-laws fits, αγ was

set to the measured power-law, εγ is assumed to be 200 keV for LSB and 1000 keV

for SHB with βγ = αγ + 1. For bursts with an exponential cutoff, εcutoff is used for

εγ, and βγ is assumed to be αγ + 1. The broken power-law which best represents a

Band function has εγ = εband(αγ − βγ)/(2 + αγ)/e[265] where e is Euler’s number.

The normalization of the gamma spectrum is found by setting the fluence of the

broken power-law equal to the fluence in the observed energy band. The one XRF

in the sample was fit to a Band function and did not require the use of average

parameters for the spectrum. For the four bursts with no fluence measurement the

fluence normalization was set to fγ(1MeV ) = 7.41MeV−1 cm−2 which is equivalent

to a fluence of Fγ = 5.8× 10−5 erg cm−2.

For bursts with redshift measurements, the value from whichever circular

claimed the smallest uncertainty on the redshift was used. Average values are used

for bursts with no measurements. Since only a few BATSE bursts had observed

redshifts, the BATSE catalog could not be used to determine average values for red-

shift. For LSB and XRF, the average value of z = 2.15 was taken from a catalog of

77 Swift bursts[266]. At the time these parameters were chosen, there had only been

19 SHBs with measured redshift. The average of these was used for SHB z = 0.50.

The neutrino flux is dependent on the density of photons at the source which

was expressed in the model derived in section 2.6 as Liso, the isotropic luminos-

ity. For bursts with a redshift measurement, the isotropic luminosity in the GRB’s
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reference frame is calculated as

Liso =
4πD2

LFγ
T90(1 + z)

(5.2)

where DL is the cosmological luminosity distance, which can be calculated from the

burst’s redshift, z, using the standard model of cosmology[267,268]:

DL(z) =
c

h0

(1 + z)

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

(5.3)

This equation assumes a flat universe (Ωk = 0) and neglects radiation. The cos-

mological parameters are taken from the Wilkinson Microwave Anisotropy Probe 7

year data: h0 = 70.3km/s/Mpc, ΩΛ = 0.729 and Ωm = 1−ΩΛ[269]. For bursts with

no redshift measurement, average values were used. Liso = 1052 ergs was used for

LSB and Liso = 1051 ergs for SHB and XRF.

Since the predicted neutrino flux depends on Γ4, this is by far the most im-

portant parameter. The current state of measurements is reviewed in section 2.4,

but only three bursts in this sample have measured Γ. A method for estimating the

boost factor from the spectral information has been proposed[156], but if bursts were

misaligned this would lead to a misinterpretation of the boost factor. It was decided

that it would be safer to use a constant value for all bursts. Since the Lorentz factor

is constrained to 100 < Γ < 1000, the geometric mean Γ = 316 was used as the

value for all bursts. The time scale of variation in the central engine’s output, tvar,

is estimated to be 10 ms based on simulation of LSB fireballs[270], while SHB are
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assumed to vary on a shorter timescale so tvar = 1 ms is used. There is no theory to

determine the equipartition fractions ξe and ξB but based on typical values of the

observed gamma-ray break energy, they cannot be too far below one[89]. Values of

0.1 are typical in the literature[156,271–273] and are what is used here.

The distribution of the parameters used are shown in figure 5.5. An individual

neutrino spectrum was then calculated for each of the 117 bursts in the sample

according to section 2.6, the results are shown in figure 5.6.
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Figure 5.5: The distribution of different burst properties used in this
analysis.
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Figure 5.6: The neutrino spectra, including oscillations, of the five
brightest GRBs are shown (thin cyan lines) along with eight randomly
selected bursts (thin green lines). A single burst with Waxman and
Bahcall parameters[274], assuming a cosmic ray energy density of 1044

erg Mpc−3 yr−1, is shown by a thin dashed blue line. The sum of all
117 individual bursts is shown as a thick solid red line along with the
Waxman and Bahcall prediction for 117 bursts in a thick dashed blue
line.
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Table 5.1: Catalog of GRB parameters as measured by satellites compiled from GCN notices and circulars. GRBs are named after the
day they were detected, in year-month-day format, for example GRB080409 occurred on April 9, 2008. For dates with more than one
burst, a letter suffix is added. T0 denotes trigger time in UT. T1 and T2 are the start and stop of the gamma emission relative to T0

in seconds. RA and Dec are the Right Ascension and Declination of the GRB in decimal degrees as measured by the observation with
the smallest σGRB, where σGRB is the spatial resolution (68% uncertainty) of the GRB location, z is the redshift. fγ is the gamma-ray
fluence at εγ in MeV −1cm−2, εγ is the spectral break in MeV, and αγ and βγ are the spectral indices. fν is the neutrino fluence at ebν in
GeV −1cm−2, εbν and εsν are breaks in the neutrino spectrum in TeV, and αν , βν and γν are the neutrino spectral indices. † denotes that
the value was not measured and an average value was substituted.

Name T0 (UT ) T1 T2 RA Dec σGRB z fγ εγ αγ βγ fν εbν εsν αν βν γν

080408 18:12:48 0.0 20.0 114.7 33.3 0.4′′ 2.15† 1.85e+02† 0.20† 1.0† 2.0† 6.68e-14 0.35 3.17 1.0 2.0 4.0

080409 01:22:57 -12.5 11.0 84.3 5.1 1.4′′ 2.15† 3.58e+00 0.20† 2.1 3.1† 3.45e-16 0.35 3.17 -0.1 0.9 2.9

080426 13:23:22 1.0 3.2 26.5 69.5 1.3′′ 2.15† 4.78e+01 0.05 1.8 3.8† 1.05e-16 1.28 3.17 -0.8 1.2 3.2

080430A 19:53:02 -0.2 21.4 165.3 51.7 0.4′′ 0.77 1.18e+01 0.20† 1.7 2.7† 5.70e-18 1.12 24.44 0.3 1.3 3.3

080503 12:26:13 0.6 221.0 286.6 68.8 0.2′′ 0.50† 5.43e−01 1.00† 2.0 3.0† 8.45e-16 0.31 2.10 0.0 1.0 3.0

080506A 17:46:21 26.0 189.0 329.4 39.0 0.4′′ 2.15† 1.06e+01 0.20† 1.9 2.9† 1.08e-15 0.35 3.17 0.1 1.1 3.1

080507 07:45:00 0.0 49.0 233.7 56.4 0.5′′ 2.15† 1.04e+02 0.42 0.9 2.9† 2.02e-13 0.17 3.17 0.1 2.1 4.1

080513 05:14:32 -21.1 11.1 163.3 28.2 11.0′ 2.15† 1.25e+02 0.22 1.5 3.5† 1.86e-14 0.32 3.17 -0.5 1.5 3.5

080514B 09:55:56 0.0 13.2 322.8 0.7 0.4′′ 2.15† 6.88e+02 0.11 0.6 2.5 2.77e-14 0.64 3.17 0.5 2.4 4.4

080515 06:01:13 -1.8 24.8 3.2 32.6 2.7′′ 3.20 1.59e+03 0.03 0.9 2.9† 7.96e-16 1.59 1.99 0.1 2.1 4.1

080517 21:22:51 0.1 69.3 102.2 50.7 1.3′′ 2.15† 7.03e+00 0.20† 1.5 2.5† 9.71e-16 0.35 3.17 0.5 1.5 3.5

080524 04:13:00 -2.0 8.0 268.4 80.1 1.8′ 2.15† 6.04e+00 0.20† 1.1 2.1† 1.77e-15 0.35 3.17 0.9 1.9 3.9

080603A 11:18:11 0.0 180.0 279.4 62.7 0.2′′ 1.69 1.74e+02 0.20† 1.0† 2.0† 2.35e-14 0.48 4.78 1.0 2.0 4.0

080603B 19:38:13 0.2 75.6 176.5 68.1 0.2′′ 2.69 1.60e+02 0.10 1.2 3.2† 3.20e-15 0.50 3.57 -0.2 1.8 3.8

080604 07:27:01 -27.1 67.3 237.0 20.6 0.4′′ 1.42 7.37e+00 0.20† 1.8 2.8† 4.44e-18 0.60 23.04 0.2 1.2 3.2

080605 23:47:57 -4.7 30.9 262.1 4.0 0.4′′ 1.64 1.65e+02 0.25 1.0 3.0† 5.53e-14 0.40 2.16 -0.0 2.0 4.0

080607 06:07:27 -5.9 154.7 194.9 15.9 0.4′′ 3.04 1.70e+02 0.42 1.1 3.1† 2.13e-12 0.10 0.78 -0.1 1.9 3.9

080613A 09:35:21 0.0 30.0 213.3 5.2 0.4′′ 2.15† 2.26e+01 0.20† 1.0† 2.0† 8.13e-15 0.35 3.17 1.0 2.0 4.0

080625 12:28:31 -5.0 80.0 298.4 56.3 0.4′′ 2.15† 3.42e+00 0.50 1.7 3.7† 3.59e-15 0.14 3.17 -0.7 1.3 3.3
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Table 5.1: GRB Catalog (continued)

Name T0 (UT ) T1 T2 RA Dec σGRB z fγ εγ αγ βγ fν εbν εsν αν βν γν

080701A 10:13:37 -2.1 25.2 45.8 75.5 1.2′′ 2.15† 3.42e+00 0.20† 2.2 3.2† 3.33e-16 0.35 3.17 -0.2 0.8 2.8

080702A 11:50:43 0.7 1.2 313.1 72.3 1.3′′ 0.50† 6.65e−02 1.00† 1.3 2.3† 1.16e-16 0.31 2.10 0.7 1.7 3.7

080707 08:27:53 -1.1 27.3 32.6 33.1 0.8′′ 1.23 4.86e+00 0.20† 1.8 2.8† 3.61e-18 0.70 21.21 0.2 1.2 3.2

080710 07:13:10 -96.1 44.1 8.3 19.5 0.4′′ 0.84 1.92e+01 0.20† 1.5 2.5† 3.00e-18 1.03 47.66 0.5 1.5 3.5

080726 01:26:10 0.0 12.0 20.4 13.9 3.5′ 2.15† 1.85e+02† 0.20† 1.0† 2.0† 6.68e-14 0.35 3.17 1.0 2.0 4.0

080727B 08:13:24 0.8 10.3 276.9 1.2 1.3′′ 2.15† 4.17e+01 0.28 0.8 2.9† 2.44e-14 0.25 3.17 0.1 2.1 4.2

080727C 23:07:35 -2.9 116.7 32.6 64.1 1.1′′ 2.15† 1.84e+02 0.14 0.9 2.9† 1.21e-14 0.49 3.17 0.1 2.1 4.1

080810 13:10:12 -20.9 111.7 356.8 0.3 0.4′′ 3.35 5.85e+01 0.31 0.9 2.9† 2.26e-13 0.12 1.70 0.1 2.1 4.1

080816A 12:04:18 -1.0 69.0 156.2 42.6 2.0◦ 2.15† 4.95e+02 0.15 0.6 2.6† 4.91e-14 0.48 3.17 0.4 2.4 4.4

080818B 22:40:49 -1.3 10.0 98.1 7.4 7.3◦ 2.15† 9.46e+01 0.08 1.3 3.3† 6.83e-16 0.88 3.17 -0.3 1.7 3.7

080822B 21:02:52 1.0 65.0 63.6 25.8 2.5′ 2.15† 5.06e−01 0.20† 2.5 3.5† 5.17e-17 0.35 3.17 -0.5 0.5 2.5

080830 08:50:16 -3.0 28.0 160.1 30.8 2.5◦ 2.15† 4.42e+01 0.28 0.9 2.9† 2.43e-14 0.25 3.17 0.1 2.1 4.1

080903 01:12:23 -10.2 68.3 86.8 51.3 1.1′′ 2.15† 1.83e+02 0.06 0.8 2.8† 6.37e-16 1.17 3.17 0.2 2.2 4.2

080916B 14:44:47 -3.0 36.0 163.7 69.1 3.6′′ 2.15† 8.41e+00 0.20† 1.5 2.5† 1.24e-15 0.35 3.17 0.5 1.5 3.5

080920 06:25:48 -6.0 79.0 121.6 8.9 5.4◦ 2.15† 3.19e+01 0.16 1.4 3.4† 1.95e-15 0.43 3.17 -0.4 1.6 3.6

080925 18:35:55 -8.1 21.9 96.1 18.2 1.2◦ 2.15† 1.55e+03 0.05 0.5 2.3 5.65e-15 1.36 3.17 0.7 2.5 4.5

080927 11:30:32 -1.3 20.2 61.3 27.4 4.6◦ 2.15† 3.25e+03 0.01 0.7 1.7 5.94e-16 3.17 6.22 1.3 3.3 5.3

081003A 13:46:12 -12.0 18.0 262.4 16.6 2.8′′ 2.15† 6.94e+00 0.20† 1.0† 2.0† 2.50e-15 0.35 3.17 1.0 2.0 4.0

081003B 20:48:08 0.0 30.0 285.0 16.7 1.1′ 2.15† 1.04e+02 0.20† 1.0 2.0† 3.75e-14 0.35 3.17 1.0 2.0 4.0

081003C 15:27:17 -4.0 51.0 259.1 35.4 6.9◦ 2.15† 3.39e+01 0.30† 1.4 2.4† 1.77e-14 0.23 3.17 0.6 1.6 3.6

081009 03:20:58 -0.1 49.3 250.5 18.4 1.0◦ 2.15† 1.99e+04 0.03 0.1 3.4 5.61e-15 2.31 3.17 -0.4 2.9 4.9

081011 00:28:50 -0.4 9.5 220.3 33.5 0.4′′ 2.15† 2.19e+00 0.20† 1.5 2.5† 3.33e-16 0.35 3.17 0.5 1.5 3.5

081022 14:23:48 -8.5 208.1 226.6 12.4 1.0′ 2.15† 2.66e+01 0.20† 1.7 2.7† 3.16e-15 0.35 3.17 0.3 1.3 3.3

081024A 05:53:08 -0.8 1.2 27.9 61.3 1.3′′ 0.50† 3.00e−01 1.00† 1.2 2.2† 5.86e-16 0.31 2.10 0.8 1.8 3.8

081024B 21:22:41 -0.5 0.0 322.9 21.2 9.6′ 0.50† 1.55e−01 1.00† 1.2 2.2† 3.00e-16 0.31 2.10 0.8 1.8 3.8

081025 08:22:02 61.8 90.1 245.4 60.5 4.7′′ 2.15† 4.14e+01 0.25 0.3 2.4† 3.21e-14 0.28 3.17 0.6 2.6 4.7
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Table 5.1: GRB Catalog (continued)

Name T0 (UT ) T1 T2 RA Dec σGRB z fγ εγ αγ βγ fν εbν εsν αν βν γν

081028A 00:25:00 30.1 442.3 121.9 2.3 1.1′′ 3.04 4.89e+02 0.06 1.2 3.2† 9.31e-16 0.74 5.89 -0.2 1.8 3.8

081102A 17:44:39 -19.7 63.3 331.2 53.0 1.1′′ 2.15† 1.09e+03 0.03 0.4 2.4 6.81e-16 2.16 3.17 0.6 2.6 4.6

081102B 08:45:00 0.3 1.3 225.3 22.0 8.6◦ 2.15† 6.58e−01 1.00 1.1 3.1† 1.16e-14 0.07 3.17 -0.1 1.9 3.9

081105B 14:43:51 0.2 0.3 215.8 38.7 11.4◦ 0.50† 1.20e−01 1.00† 1.2 2.2† 2.51e-16 0.31 2.10 0.8 1.8 3.8

081107 07:42:01 -0.1 1.8 51.0 17.1 3.5◦ 2.15† 6.12e+02 0.03 -0.2 2.8 2.73e-16 2.17 3.17 0.2 3.2 5.2

081110 14:25:43 0.0 20.0 111.7 21.4 1.8◦ 2.15† 1.85e+02† 0.20† 1.0† 2.0† 6.68e-14 0.35 3.17 1.0 2.0 4.0

081119 04:25:27 -0.4 0.1 346.5 30.0 15.2◦ 0.50† 1.86e−01 1.00† 1.3 2.3† 3.38e-16 0.31 2.10 0.7 1.7 3.7

081122A 12:28:12 -0.8 26.2 339.1 40.0 1.0◦ 2.15† 8.66e+01 0.20 0.8 2.8† 1.90e-14 0.35 3.17 0.2 2.2 4.2

081126 21:34:10 -21.1 46.2 323.5 48.7 0.4′′ 2.15† 3.53e+01 0.32 0.8 2.8† 3.02e-14 0.22 3.17 0.2 2.2 4.2

081127 07:05:08 -30.3 9.7 332.1 6.9 1.2′′ 2.15† 2.87e+00 0.20† 2.1 3.1† 2.77e-16 0.35 3.17 -0.1 0.9 2.9

081128 17:18:44 -68.3 63.4 20.8 38.1 1.3′′ 2.15† 5.18e+02 0.05 1.1 3.1† 6.02e-16 1.56 3.17 -0.1 1.9 3.9

081203A 13:57:11 -68.3 405.7 233.0 63.5 0.4′′ 2.15† 2.85e+01 0.58 1.3 3.3† 7.06e-14 0.12 3.17 -0.3 1.7 3.7

081203B 13:52:02 -33.1 50.4 228.8 44.4 0.4′′ 2.15† 2.91e+02 0.26 1.2 3.2† 8.61e-14 0.28 3.17 -0.2 1.8 3.8

081204B 12:24:26 -0.3 -0.1 150.8 30.5 10.2◦ 0.50† 2.55e−01 1.00† 1.2 2.2† 5.26e-16 0.31 2.10 0.8 1.8 3.8

081206A 06:35:53 -6.1 15.4 120.1 32.8 6.4◦ 2.15† 3.69e+01 0.18 0.1 2.1† 1.38e-14 0.39 3.17 0.9 2.9 4.9

081207 16:18:47 9.1 66.5 112.4 70.5 1.2◦ 2.15† 4.22e+02 0.31 0.7 2.4 4.86e-13 0.23 3.17 0.6 2.4 4.3

081209 23:31:56 0.3 0.7 45.3 63.5 4.9◦ 0.50† 2.22e+00 0.30 0.5 2.0 2.66e-16 1.05 2.10 1.0 2.5 4.5

081211B 06:15:02 0.0 102.0 168.3 53.8 1.4′′ 0.50† 3.71e−01 1.00† 1.7 2.7† 5.17e-16 0.31 2.10 0.3 1.3 3.3

081215A 18:48:37 -1.9 13.4 125.6 54.0 1.0◦ 2.15† 6.00e+01 0.12 0.6 2.1 4.70e-15 0.60 3.17 0.9 2.4 4.4

081216 12:44:00 -0.1 0.8 129.2 7.6 4.4◦ 0.50† 6.11e+00 0.51 0.7 2.2 2.75e-15 0.60 2.10 0.8 2.3 4.3

081217 23:34:49 0.0 18.4 116.8 26.8 2.0◦ 2.15† 3.95e+02 0.09 0.6 2.7 7.19e-15 0.76 3.17 0.3 2.4 4.4

081223 10:03:57 0.1 0.6 112.5 33.2 3.8◦ 0.50† 5.98e+00 0.28 0.6 2.6† 3.72e-16 1.11 2.10 0.4 2.4 4.4

081224 21:17:55 0.0 20.0 201.7 75.1 1.0◦ 2.15† 6.94e+00 0.45 0.8 2.8† 1.70e-14 0.16 3.17 0.2 2.2 4.2

081226C 03:44:52 -3.2 11.1 193.0 26.8 2.4◦ 2.15† 1.18e+02 0.08 1.0 3.0† 1.06e-15 0.86 3.17 -0.0 2.0 4.0

081228 01:17:40 0.7 3.6 39.5 30.9 2.0′′ 2.15† 5.22e−01 0.20† 2.1 3.1† 5.03e-17 0.35 3.17 -0.1 0.9 2.9

081229 04:29:02 -0.2 0.1 172.6 56.9 8.8◦ 0.50† 9.97e−01 0.81 0.4 2.4† 1.50e-15 0.38 2.10 0.6 2.6 4.6
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Table 5.1: GRB Catalog (continued)

Name T0 (UT ) T1 T2 RA Dec σGRB z fγ εγ αγ βγ fν εbν εsν αν βν γν

090102 02:55:45 -13.0 20.2 128.2 33.1 0.8′′ 1.55 5.61e+01 0.45 0.9 2.9† 1.09e-13 0.24 2.69 0.1 2.1 4.1

090107A 04:48:04 0.5 13.2 302.4 4.7 1.7′ 2.15† 2.39e+00 0.20† 1.7 2.7† 2.78e-16 0.35 3.17 0.3 1.3 3.3

090107B 16:20:36 -2.0 27.3 284.8 59.6 1.3′′ 2.15† 5.16e+01 0.11 0.7 2.7† 1.50e-15 0.66 3.17 0.3 2.3 4.3

090108A 00:29:02 0.2 1.1 260.8 46.0 3.8◦ 0.50† 1.39e+02 0.04 0.5 2.0 2.04e-16 2.10 8.22 1.0 3.0 5.0

090109 07:58:30 -3.3 0.8 129.6 51.8 9.8◦ 2.15† 4.15e−01 1.00 1.5 3.5† 3.33e-15 0.07 3.17 -0.5 1.5 3.5

090111 23:58:21 -2.2 26.3 251.7 0.1 1.2′′ 2.15† 2.40e+00 0.20† 2.4 3.4† 2.40e-16 0.35 3.17 -0.4 0.6 2.6

090112B 17:30:15 0.0 11.0 192.3 25.4 1.7◦ 2.15† 3.06e+02 0.07 0.8 2.4 2.33e-15 1.03 3.17 0.6 2.2 4.2

090113 18:40:39 -0.7 10.2 32.1 33.4 1.2′′ 2.15† 8.85e+00 0.20† 1.6 2.6† 1.13e-15 0.35 3.17 0.4 1.4 3.4

090118 13:54:02 66.0 85.0 49.8 18.4 5.0′′ 2.15† 6.31e+00 0.20† 1.4 2.4† 1.16e-15 0.35 3.17 0.6 1.6 3.6

090126A 02:01:15 0.0 60.0 3.7 81.4 1.6′′ 2.15† 1.85e+02† 0.20† 1.0† 2.0† 6.68e-14 0.35 3.17 1.0 2.0 4.0

090126B 05:26:22 -4.4 5.9 189.2 34.1 3.6◦ 2.15† 1.94e+02 0.05 1.0 3.0† 2.78e-16 1.48 3.17 0.0 2.0 4.0

090131 02:09:21 -1.8 49.2 352.3 21.2 1.0◦ 2.15† 5.21e+03 0.03 1.3 2.3 2.38e-15 2.42 3.17 0.7 1.7 3.7

090206 14:52:42 0.1 0.7 156.2 8.8 8.7◦ 0.50† 1.23e+00 0.71 0.7 2.6† 1.07e-15 0.44 2.10 0.4 2.4 4.3

090207 18:39:10 -1.2 16.2 252.7 34.9 3.8◦ 2.15† 1.19e+00 1.00 1.6 3.6† 8.19e-15 0.07 3.17 -0.6 1.4 3.4

090219 01:46:18 -0.0 0.6 26.5 59.2 5.2◦ 0.50† 3.04e−01 1.00† 1.4 2.4† 4.92e-16 0.31 2.10 0.6 1.6 3.6

090222 04:17:09 -2.1 15.3 118.6 45.0 4.3◦ 2.15† 3.07e+01 0.16 1.0 3.0† 2.43e-15 0.45 3.17 0.0 2.0 4.0

090227B 18:31:01 0.3 0.8 11.8 32.2 1.8◦ 0.50† 6.65e+00 1.42 0.5 3.0 3.80e-14 0.22 2.10 -0.0 2.5 4.5

090228B 23:25:01 -1.4 5.8 357.6 36.7 3.3◦ 2.15† 1.58e+01 0.15 0.7 2.7† 1.38e-15 0.48 3.17 0.3 2.3 4.3

090301A 06:55:55 -16.9 72.3 338.1 26.6 0.7′ 2.15† 5.31e+02 0.25 0.9 2.6 2.29e-13 0.28 3.17 0.4 2.1 4.1

090301B 07:33:37 -0.6 4.6 352.8 9.5 5.0◦ 2.15† 3.85e+00 0.55 1.0 3.0† 1.28e-14 0.13 3.17 -0.0 2.0 4.0

090305B 01:14:35 0.2 3.2 135.0 74.3 5.4◦ 2.15† 1.16e+01 0.26 0.5 1.9 1.55e-14 0.27 3.17 1.1 2.5 4.5

090306C 05:52:05 -3.7 6.5 137.0 57.0 4.1◦ 2.15† 2.53e+01 0.11 0.6 2.6† 8.46e-16 0.66 3.17 0.4 2.4 4.4

090313 09:06:27 -20.9 67.0 198.4 8.1 0.4′′ 3.38 1.08e+01 0.20† 1.9 2.9† 1.38e-15 0.18 3.20 0.1 1.1 3.1

090320B 19:13:46 -7.3 52.1 183.4 49.8 9.5◦ 2.15† 7.30e+01 0.07 1.1 3.1† 4.07e-16 0.98 3.17 -0.1 1.9 3.9

090323 00:02:42 -1.4 154.2 190.7 17.1 0.4′′ 3.57 1.07e+02 0.70 0.9 2.9† 1.71e-11 0.05 0.61 0.1 2.1 4.1

090328B 17:07:04 0.8 1.1 155.7 33.4 7.9◦ 0.50† 6.26e−01 1.05 0.9 2.5 1.48e-15 0.30 2.10 0.5 2.1 4.1
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Table 5.1: GRB Catalog (continued)

Name T0 (UT ) T1 T2 RA Dec σGRB z fγ εγ αγ βγ fν εbν εsν αν βν γν

090401A 00:00:59 -9.0 160.4 350.9 29.8 0.7′ 2.15† 1.57e+02 0.22 1.3 3.3† 2.63e-14 0.32 3.17 -0.3 1.7 3.7

090404 15:56:30 -34.8 95.0 239.2 35.5 1.3′′ 2.15† 1.26e+01 0.20† 2.3 3.3† 1.25e-15 0.35 3.17 -0.3 0.7 2.7

090408B 19:46:38 5.4 11.0 44.0 26.6 29.4′ 2.15† 2.52e+03 0.19 0.7 2.7 5.29e-13 0.37 3.17 0.3 2.3 4.3

090409 06:54:01 0.4 5.5 302.1 1.1 9.6◦ 2.15† 1.09e+01 0.14 1.2 3.2† 4.64e-16 0.51 3.17 -0.2 1.8 3.8

090410 16:57:52 -58.6 151.4 335.0 15.4 1.3′ 2.15† 1.06e+02 0.20† 1.2 2.2† 2.60e-14 0.35 3.17 0.8 1.8 3.8

090411B 23:47:44 -7.0 21.8 38.5 5.1 2.4◦ 2.15† 3.01e+02 0.07 0.8 2.0 4.14e-15 1.01 3.17 1.0 2.2 4.2

090417B 15:20:03 279.0 617.4 209.7 47.0 3.5′′ 2.15† 1.93e+01 0.20† 1.9 2.9† 1.99e-15 0.35 3.17 0.1 1.1 3.1

090418A 11:07:40 -8.3 61.3 269.3 33.4 0.4′′ 1.61 1.70e+01 0.61 1.3 3.3† 1.74e-14 0.17 4.62 -0.3 1.7 3.7

090418B 08:59:02 20.2 145.0 225.9 17.2 1.3′ 2.15† 6.13e+02 0.12 1.2 3.2† 1.55e-14 0.60 3.17 -0.2 1.8 3.8

090424 14:12:09 -0.8 103.5 189.5 16.8 0.5′′ 0.54 1.28e+03 0.12 0.9 2.9 6.44e-16 2.48 17.10 0.1 2.1 4.1

090425 09:03:30 -0.0 80.6 118.6 68.1 2.1◦ 2.15† 1.80e+02 0.14 1.6 3.6† 6.92e-15 0.50 3.17 -0.6 1.4 3.4

090426 12:48:47 0.2 1.5 189.1 33.0 0.5′′ 2.61 6.04e−02 1.00† 1.9 2.9† 3.38e-14 0.05 0.16 0.1 1.1 3.1

090428A 10:34:38 -0.1 2.5 210.1 39.5 4.2◦ 2.15† 3.36e+01 0.10 0.6 2.6† 7.90e-16 0.73 3.17 0.4 2.4 4.4

090428B 13:15:11 -9.1 15.4 0.8 11.5 3.9◦ 2.15† 3.27e+02 0.07 1.9 3.9† 1.22e-15 1.08 3.17 -0.9 1.1 3.1

090429B 05:30:03 -4.1 2.8 210.7 32.2 0.4′′ 2.15† 7.41e+01 0.04 0.5 2.5† 1.02e-16 1.67 3.17 0.5 2.5 4.5

090429C 12:43:25 -1.3 11.7 260.0 54.3 4.8◦ 2.15† 1.41e+00 1.00 1.4 3.4† 1.28e-14 0.07 3.17 -0.4 1.6 3.6

090429D 18:03:57 -12.7 1.6 124.4 7.9 5.0◦ 2.15† 1.18e+01 0.22 0.9 2.9† 3.23e-15 0.32 3.17 0.1 2.1 4.1

090511 16:25:16 -4.7 4.5 161.9 51.3 7.0◦ 2.15† 4.72e+00 0.39 0.9 3.0† 6.57e-15 0.18 3.17 0.0 2.0 4.0

090518 01:54:44 -2.1 7.6 120.0 0.8 1.1′′ 2.15† 4.76e−01 1.00 1.6 3.6† 3.27e-15 0.07 3.17 -0.6 1.4 3.4

090519 21:08:56 -12.0 60.8 142.3 0.2 0.4′′ 3.85 2.72e+01 0.20† 1.0 2.0† 6.75e-14 0.15 1.48 1.0 2.0 4.0

93



Chapter 6

Event Selection

IceCube is bombarded with a steady stream of downgoing muons from cosmic

ray air showers. These downgoing muons trigger IceCube’s multiplicity trigger at

a rate of about 1 kHz in the 40 string configuration. In order to use IceCube as a

neutrino telescope, a procedure must be developed to reject downgoing muons and

accept only upgoing neutrino induced muons. The next most abundant source of

events in IceCube is atmospheric muon neutrinos which occur at a rate of about

1 mHz from all directions in the sky. Atmospheric neutrinos are indistinguishable

from neutrinos from astrophysical sources (aside from their energy spectrum.) They

are considered an irreducible background on the intended signal of astrophysical

neutrinos.

Although the muon reconstructions discussed in section 4.4 are highly accu-

rate, a very small fraction of events will be misreconstructed as upgoing. Since the

actual upgoing sample of atmospheric neutrinos occur at a rate 106 times smaller

than the small fraction of misreconstructed downgoing events, misreconstructed

downgoing events will still overwhelm the neutrinos. In order to reduce the sample

to a pure sample of atmospheric and astrophysical neutrinos, a series of quality cuts

are developed to reject misreconstructed events. Processor time and satellite band-

width from the South Pole must be considered. The basic strategy is to perform a
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series of reconstructions starting with the simplest, least CPU-intensive reconstruc-

tions, and then progressing to more complex, more CPU-intensive reconstructions.

Between each level of reconstruction, events that are clearly downgoing based on the

previous level of reconstruction will be cut out of the analysis and not reconstructed

in subsequent levels.

The result of this analysis will be based on an unbinned likelihood method

where a significance is assigned to each individual event. However, before this

analysis can be performed it is necessary to remove obvious background so as to

constrain the analysis to a sample of events which are mostly neutrinos. The goal

of this analysis is discovery, so all decisions and optimizations are made with the

goal of increasing the chance of discovery. The procedure for optimizing the quality

cuts for discovery on the full unbinned likelihood method is possible but computa-

tionally intensive. Instead, quality cuts were optimized with a procedure where the

unbinned likelihood method is approximated by a discrete analysis referred to as

the binned method. This chapter will describe the optimization of cuts using the

binned method.

6.1 Muon Filter

Since there is insufficient bandwidth from the South Pole to transfer all events

that trigger IceCube, filters are applied immediately after the DAQ assembles the

event. The muon filter looks for upgoing events by running three reconstructions:

LineFit which is used as a seed for the other two reconstructions, a single iteration
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of the SPE fit, and the half sphere reconstruction. In order for an event to pass

the muon filter it must contain 10 hit DOMs after time window hit cleaning (see

section 4.4.1) and both the single SPE fit and the hemispherical SPE fit must recon-

struct with a zenith angle of θSPE32,Zenith ≥ 80◦. This results in a stream of events

occurring at about 22 Hz, which satisfies the satellite bandwidth constraints. Other

filters exist for finding other classes of events including cascade events, downgo-

ing contained, extremely high energy events, IceTop events, and low energy events.

These filters were not used in this analysis and will not be discussed further.

6.2 Off-line processing

The data is sent via satellite to University of Wisconsin’s data warehouse.

From there every event that passed the Online Muon Filter is then reconstructed

with a 32 iteration SPE fit. Based on this reconstruction, another quality cut called

the good upgoing track cut, is applied. This cut keeps events which reconstruct with

a θSPE32,Zenith ≥ 80◦ and with rlogl < 12, where rlogl is the reduced log-likelihood,

the value of the minimum log-likelihood divided by the number of degrees of freedom.

The number of degrees of freedom is the number of DOMs used in the reconstruction

minus the number of reconstructed parameters. Events that are well reconstructed

should be at the bottom of a deep valley in the likelihood space and hence have a

smaller rlogl, while events that reconstruct poorly often contain a shallow minimum

and have a larger rlogl. A comparison of data and simulation which pass this criteria

is shown in figures 6.1 and 6.2, these cuts are still very far from neutrino level so no
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comparison to neutrino simulation is made.

If an event passes the cuts described above further reconstructions are per-

formed: the Bayesian weighted zenith reconstruction discussed in section 4.4.6 for

further discrimination between upgoing and downgoing tracks, the MPE reconstruc-

tion from section 4.4.4 for increased angular resolution, the paraboloid fit from sec-

tion 4.4.5 for direction uncertainty estimation, and finally Photorec dE/dX from

section 4.4.7 for energy estimation.

6.3 Final Cuts

The good upgoing track cuts reduces the background to a rate of about 2.5

Hz. Strong cuts are still needed in order to reduce the data set to a sample on the

order of atmospheric neutrinos. The following four variables were found to be the

best cut variables for separating signal from background:

Ndir The number of DOMs with direct hits, where a direct hit is defined as a hit with

−15ns > tres > 75ns, where tres is the residual time defined in section 4.4.3.

A large fraction of hits from a well reconstructed events are expected to be

within this threshold, while an event where the reconstructed direction is in a

different direction than the true track will have very few direct hits.

Ldir The length of direct hits, using the same definition of direct hit, Ldir is the

length along the reconstructed track from the point where the first direct

hit was emitted to the point where the last direct hit was emitted. A well

reconstructed track is expected to have direct hits evenly spaced along the
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Figure 6.1: Comparison of data and simulation after the good upgoing
track cut. Data is shown in black, CORSIKA events containing a single
air shower in cyan, CORSIKA simulation with two air showers in blue,
the sum of single and double CORSIKA air showers in green. Good
agreement is seen in most variables. Disagreement is seen in Ndir >
10, this discrepancy is not well understood. However, the agreement is
acceptable in the region where the final Ndir cut is made.
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Figure 6.2: Comparison of data and simulation after the good upgoing
track cut. Data is shown in black, CORSIKA events containing a single
air shower in cyan, CORSIKA simulation with two air showers in blue,
the sum of single and double CORSIKA air showers in green. Good
agreement is seen in most variables. The disagreement seen in the z
coordinate of center of gravity is suspected to be a result of improper
modeling of ice properties as a function of z.
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track, so there should be a long distance between the first and last direct hit.

A poorly reconstructed event will usually have what direct hits they do have

close together.

rlogl The value of the log-likelihood value at the minimum is an indicator of how

good the reconstruction is. Well reconstructed events will often have deep

minima, while poor reconstructions will often be in shallow minima. However,

since the log-likelihood is the sum of PDFs for each hit, events with more

hits will have a larger log-likelihood value. To compare events with different

numbers of hit DOMs, the log-likelihood value is divided by the number of

degrees of freedom. This is the number of hits minus the number of free

parameters, where the five free parameters are 3 position parameters and 2

direction parameters.

BayesianRatio The Bayesian ratio is the ratio of the minimum log-likelihood value

of the zenith weighted Bayesian reconstruction to the unbiased reconstruction.

A good reconstruction is expected to occupy a deep valley in likelihood space,

while a poor reconstruction is expected to occupy a shallow valley. Biasing

the reconstruction so that it finds a minimum in the downgoing direction will

greatly affect a likelihood value that found a deep valley, while hardly affecting

a likelihood value that was poor to begin with. Well reconstructed events are

expected to have a much poorer zenith weighted reconstruction compared to

the unbiased reconstruction, and therefore a much higher log-likelihood value

than the biased reconstruction. While poor reconstructions are expected to
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have more similar values for the biased and unbiased reconstructions. There-

fore, the log of the ratio of the unbiased reconstruction likelihood to the biased

reconstruction likelihood should be higher for well-reconstructed events.

6.4 Optimizing cuts

In order to find the optimum cuts, the Model Discovery Potential (MDP)

method is used[275, 276]. This procedure requires doing a full analysis for each

point in the cut parameter space that one wishes to investigate. The unbinned

likelihood used in the final analysis that will be described in chapter 7 is too slow to

effectively use the MDP procedure. Instead, a simplified binned analysis was used

to determine the optimal cuts.

In the simplified procedure, an event is considered to be from a GRB if it falls

within a set time bin and space bin reducing the result to a counting experiment.

The time bin was defined to be the T100 time window plus 15 sec on each side. The

spatial bin was defined as a circular bin centered on each GRB with a 5◦ radius. The

mean number of observed signal events which fall into the bin for a given cut level,

µs, is calculated from neutrino simulation weighted by the GRB neutrino spectra

calculated in section 5.2. The mean number of background events, µb, is calculated

using six months of data excluding runs which occurred at the same time as GRBs.

The MDP is then calculated based on µs and µb. First, the critical number of

events required to obtain a discovery, ncrit, assuming only background with discovery
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threshold α is calculated:

Ppoisson(≥ ncrit|µb) < α (6.1)

Since this is a counting experiment, Poisson statistics are used. The least detectable

signal, µlds, is the signal required to obtain a p-value less than the discovery threshold

with statistical power 1− β:

Ppoisson(≥ ncrit|µb + µlds) = 1− β (6.2)

The model discovery potential is the least detectable signal at a certain cut level

divided by the expected signal at the same cut level:

MDP =
µlds
µs

(6.3)

The cut level which minimizes the MDP has the greatest probability of discovering

the given model.

For a 5σ discovery potential (α = 2.9×10−7) and a statistical power of 1−β =

90%, as shown in figure 6.3 the location in cut parameter space with the lowest

discovery potential was found to be:

• rlogl < 8

• Ndir ≥ 5

• Ldir > 175

• Bayesian Ratio > 26
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Figure 6.3: The model discovery potential as a function of a 2-
dimensional slice of the 4-dimensional cut parameter space. The lower
the model discovery potential the larger the chances of discovering the
model. The global minimum is marked with red lines to obtain the op-
timal cut at rlogl < 8 and Bayesian Ratio > 26. The jumps in the
potential are a result of the discrete nature of the Poisson distribution:
in the top left region of the plot 2 events are required for a discovery, 3
events in the middle, and 4 events in the bottom right.
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After these cuts the background is significantly reduced to 1.5 mHz. These cuts

were also found to be close to the optimum cut using the model rejection factor

method[277] which finds the parameters most likely to set the lowest limit. A

summary of the rates at each cut level is shown in table 6.1. The effects of these

cuts on neutrino simulation and off-source data are shown in figures 6.4, 6.5, and 6.6.

These cuts reduce the predicted signal from 4.2 total events for all cataloged GRBs

to 2.8 events. It is important to note that although it appears that a significant

fraction of the signal is removed with these cuts, most of the removed events are

events where, although the neutrino was able to trigger the detector, the hit pattern

left behind is such that there was insufficient information to properly reconstruct

the direction of the neutrino. This can be seen in figure 6.7 where the signal events

which are cut have large angular separation between the original direction and the

reconstructed direction.

Data and simulation were compared after the final cuts were applied and are

seen to be consistent. Plots of this comparison are shown in figures 6.8 and 6.9.

After the final cuts the median angular resolution of the signal simulation is 0.95◦;

the cumulative point spread function is shown in figure 6.10. The resultant effective

area of the detector for this analysis is 100 m2 at 105 GeV, the peak of the neutrino

Cut Data Rate
Trigger 1100 Hz
Muon Filter 22 Hz
Good Upgoing Cut 2.5 Hz
Final Cuts 1.5 mHz

Table 6.1: Summary table of filter rates.
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Figure 6.4: Results of model discovery potential cuts are shown. Neu-
trino simulation is in red and off-source data is shown in black. The y
axis is arbitrary; signal and background are normalized separately. The
blue vertical lines represent the optimal cut values.
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Figure 6.5: Two dimensional plots showing the cut parameter space.
Neutrino simulation is to the left and off-source data to the right. Cuts
are shown as red lines.
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Figure 6.6: Two dimensional plots showing the cut parameter space.
Neutrino simulation is to the left and off-source data to the right. Cuts
are shown as red lines.

107



0 5 10 15 20 25 30 35 40

Ndir

0

2

4

6

8

10

∆
Ψ

[d
eg

]

Signal

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 200 400 600 800 1000 1200

Ldir

0

2

4

6

8

10

∆
Ψ

[d
eg

]

Signal

0.000

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

6.0 6.5 7.0 7.5 8.0 8.5 9.0

rlogl

0

2

4

6

8

10

∆
Ψ

[d
eg

]

Signal

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 20 40 60 80 100

Bayesian Ratio

0

2

4

6

8

10
∆

Ψ
[d

eg
]

Signal

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 6.7: Signal event cut variables vs Delta Angle. Delta Angle is the
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of the simulated event. Although some signal events are eliminated by
the cuts, they have a very broad delta angle distribution signifying that
they are poorly reconstructed signal events.
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Figure 6.8: Comparison between data and simulation after final cuts.
Data is shown in black with error bars. Single, double, and triple down-
going air showers simulated with CORSIKA are shown in cyan, blue,
and light blue. Atmospheric neutrinos simulated with neutrino-generator
and weighted using the predicted flux of Honda is in purple. The sum
of expected background events (CORSIKA and Honda) is in green. For
comparison, signal neutrinos using the Waxman and Bahcall flux times
1000 are shown in red. Although the statistics are very low for the
CORSIKA simulation, data-simulation agreement is acceptable.
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Figure 6.9: Comparison between data and simulation after final cuts.
Data is shown in black with error bars. Single, double, and triple down-
going air showers simulated with CORSIKA are shown in cyan, blue,
and light blue. Atmospheric neutrinos simulated with neutrino-generator
and weighted using the predicted flux of Honda is in purple. The sum
of expected background events (CORSIKA and Honda) is in green. For
comparison, signal neutrinos using the Waxman and Bahcall flux times
1000 are shown in red. Although the statistics are very low for the
CORSIKA simulation, data-simulation agreement is acceptable.
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Figure 6.10: Cumulative Point Spread Function of simulated signal
events ∆ψ where ∆ψ is the angle between the simulated neutrino pri-
mary and the MPE reconstruction. The median ∆ψ is 0.95◦.

111



spectrum. A plot of the effective area as a function of energy and zenith angle is

shown in figure 6.11. The simulation samples available for downgoing air showers is

limited in size, but is enough to get a rough estimate on the composition of the final

event sample. The final sample consists of approximately 15% single downgoing

muons, 45% multiple coincident downgoing muons, and 40% atmospheric neutrinos.

It is important to note that there is little reason to cut any harder than nec-

essary in order to get the misreconstructed background on the same order as the

irreducible atmospheric neutrino background. Cuts designed to identify coincident

downgoing muons, such as split reconstructions, were considered in addition to the

cuts listed above but judged to remove too much signal. Most of the misrecon-

structed downgoing events will have a reconstructed energy that is lower than ex-

pected from signal. Adding this as a cut parameter was also considered but the

energy will be used in the unbinned method in chapter 7, thus, adding an explicit

cut on energy did not improve the sensitivity of the experiment.
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Figure 6.11: Effective Area of IceCube as a function of neutrino energy
and zenith angle (θZ) after all quality cuts. Effective Area rises sharply
with energy between 100 GeV and 100 TeV due to increasing neutrino
cross section, increasing muon track length, and increasing light yield.
At higher energies the neutrino cross section becomes less dependent on
neutrino energy (see figure 4.4), as well as the increased track length and
light yield contributing less to detection efficiency. In addition, neutrino
losses in the Earth before reaching the detector attenuate the signal at
higher zenith angles.
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Chapter 7

Unbinned Likelihood Method

This analysis uses an unbinned likelihood method to determine the significance

of the experimental measurement. In a binned analysis, the test statistic is the num-

ber of discrete events which pass a certain criteria and the significance of observing

each number is determined by Poisson statistics. An unbinned analysis differs by

assigning a real number value of how signal-like and how background-like each event

is. This method is based on the unbinned likelihood analysis developed to look for

steady state point sources in IceCube[278]. Only events which passed the quality

cuts obtained in chapter 6 are used in the unbinned analysis. The signal-likeness

and background-likeness of each event can be expressed as a probability such that

given an event is signal, the probability of observing such an event with property

x is S(x) and, likewise, given an event is background, the probability of observing

such an event with property x is B(x), where x can be any measured property of an

event. This method is more sensitive to signal, as signal events which have a high

S(x) and a low B(x) will be more significant than observing an additional signal

event in Poisson statistics. This method is also more robust against false discover-

ies, as background events with high B(x) and low S(x) will be less significant than

observing an additional background event in Poisson statistics.

A function is needed to convert an observation of N events with properties
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{xi} = x1, x2, . . . , xN , where N is unknown before the observation is made, and

probabilities S(x) and B(x) into a single test statistic. This function, which is based

on the principle of maximum likelihood is derived in appendix A. The definition of

the signal and background probabilities used in this analysis are described in the next

section. There is no analytic probability distribution function that will represent

the distribution of the test statistic. Instead, the distribution of the test statistic is

derived numerically using a large number of pseudo-experiments as described below

in section 7.2.

7.1 Definition of probabilities

In order for this analysis to significantly distinguish a GRB neutrino from back-

ground, S(xi) and B(xi) must be as different as possible. The most straightforward

separation are spatial and temporal differences; a neutrino must come from the same

direction as the GRB in question. For temporal separation, this analysis assumes

that neutrinos are generated in the fireball and thus arrive at the same time or close

to the same time as the gamma-ray emission. In addition, the energy spectrum of

GRBs is expected to be much harder than the background of atmospheric neutri-

nos and misreconstructed cosmic ray air showers. Thus, the signal and background

probabilities will each be defined as the product of three normalized PDFs.

S(xi) = PDF S
sig(~xi)× PDF T

sig(ti)× PDFE
sig(Ei) (7.1)

B(xi) = PDF S
bg(~xi)× PDF T

bg(ti)× PDFE
bg(Ei) (7.2)
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where each term is a normalized PDF with subscripts denoting signal or background

and superscripts representing space, time, or energy. ~xi represents the spatial coor-

dinate of an event, ti represents the time of an event, and Ei represents the energy

of an event.

7.1.1 Spatial PDF

The spatial PDF for signal is defined as a 2-dimensional Gaussian

PDF S
sig(~xi) =

1

2πσ2
i

exp

(
− r2

i

2σ2
i

)
(7.3)

where ri is the angular difference between the direction of the GRB and the recon-

structed direction of event i. The width of the Gaussian is a combination of the

localization error of the GRB, σGRB (defined in section 5.2), and the paraboloid

error of neutrino direction reconstruction, σν (defined in section 4.4.5).

σ2
i = σ2

GRB + σ2
ν (7.4)

The background spatial PDF is constructed by creating a 2-dimensional his-

togram of the direction of all off-source events, shown in figure 7.1. A 2-dimensional

spline was fit to the histogram using the statistical error as the fitting tolerance. Dis-

continuities within PDFs are undesirables, thus the three copies of the histogram

were tiled in the azimuthal direction so that near azimuth=0◦ the spline fit will

take bins near azimuth=360◦ into account and vice versa. Similarly, the bins at the
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Figure 7.1: The normalized background PDF. The color indicates the
probability that an event with spatial reconstruction (Zenith,Azimuth)
is a background event. This PDF was created by histogramming all
off-source events in detector coordinates and fitting to a 2-dimensional
spline. The map was repeated three times in the azimuthal direction
to avoid a discontinuity at Azimuth=0. An additional bin (not shown)
was created at Zenith=180◦ to avoid a discontinuity at the pole. The
Azimuthal asymmetry is a result of the geometrical asymmetry in the
detector.
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North Pole (zenith = 180◦) were replaced with a single bin with the average value.

7.1.2 Time PDFs

The signal time PDFs are constructed assuming continuous emission during

the prompt gamma-ray phase of the GRB and no emission at any other time. In

order to avoid discontinuity in the PDF and to account for any timing errors that

might occur on the order of one second, Gaussian tails are added to the PDF. The

width of the Gaussian tails are set to T100 = T2−T1 unless T100 < 2s or T100 > 30s in

which case the width is set to 2s or 30s. The minimum width of 2 seconds was chosen

because it is an upper bound of all possible timing errors, while a maximum of 30

seconds is imposed as 30 seconds is believed to be an upper bound on the difference

in time between any gamma-ray emission and neutrino emission for bursts lasting

longer than 30 seconds. Example time PDFs are shown in figure 7.2.

Changes in the atmosphere over the course of the year result in a seasonal

variation in the downgoing cosmic ray air showers[247,248]. This results in approx-

imately 10% variation in the background rate at final cut level (shown in figure 7.3)

This could in principle be introduced as a seasonal change to the background time

PDF, but the effect on the analysis is very small. The background PDF is set to

be a constant across the entire time window at all times of the year. The seasonal

variations will be considered a systematic error on the background.
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Figure 7.2: Example Time PDFs for T100 = 0.1, 10, 100, 1000 s. The
PDF is flat during the prompt gamma emission phase of the GRB. Gaus-
sian tails are added to the beginning and end of the phase in order to
smooth the PDF as well as account for any timing errors or extended
emission. The width of the Gaussian tail is T100 if 2 s < T100 < 30 s
otherwise it is 2 s or 30 s.
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Figure 7.3: Seasonal variations in the atmosphere cause variations in the
rate of off-source data at the final cut level. The amount of background
fluctuation is∼ 10%. Rather than include this into the unbinned method
as a probability, this is treated as a systematic error.
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7.1.3 Energy PDF

Since individual atmospheric neutrino events are indistinguishable from astro-

physical neutrinos, no reconstruction quality cuts can be used to remove this irre-

ducible background. The mechanisms for creating high energy neutrinos in GRBs

predict a much harder spectrum than the observed atmospheric neutrino spectrum,

thus to increase the sensitivity of this experiment energy will be incorporated into

the likelihood. Adding an energy term to the likelihood will optimize the analysis

for whichever spectrum is chosen as the signal PDF, and since the atmospheric spec-

trum is so soft, any signal PDF harder than the atmospheric spectrum will result

in a significant gain in sensitivity for any signal spectrum harder than atmospheric.

The energy loss per unit length estimator dE/dX from section 4.4.7 will be

used as the energy proxy. The spectrum of reconstructed energy losses from the GRB

simulation described in section 4.3 was used to construct the signal energy PDF. Off-

source data was used to get the background PDF, however there is not enough data

to get a statistically significant PDF from data above an energy loss of 10 GeV/m

( Eµ,CoG & 3 × 105GeV). Instead, atmospheric neutrino simulation is substituted

for data above dE/dX > 10GeV/m. This is justified even though the fraction

of atmospheric neutrinos in the sample is around 45%, because misreconstructed

downgoing events usually have photorec values significantly smaller that 10 GeV/m.

Both signal and background energy PDFs are shown in figure 7.4. Since the

PDFs are never evaluated individually, and only the ratio PDFE
sig(E)/PDFE

bg(E) is

ever evaluated, the two PDFs are first divided and then fitted with a spline to make
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Figure 7.4: Energy PDF obtained by normalizing the observed energy
spectra of signal and background. Red indicates the energy PDF of sig-
nal. Green indicates the energy PDF of atmospheric neutrinos. Black
indicates the energy PDF of off-source data. The background PDF is
constructed by using off-source data for dE/dX < 10 GeV/m and at-
mospheric simulation for dE/dX > 10 GeV/m
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Figure 7.5: The ratio of the signal to background PDF in green with
statistical error bars. The spline fit used to evaluate the PDF ratio of
events is shown in red. Note the feature above dE/dX > 103 GeV/m
is not a statistical fluctuation. The GRB spectrum softens for energies
above ∼ 107 GeV where the GRB spectrum is dominated by synchrotron
losses in pions and muons.

the PDF ratio shown in figure 7.5.

7.2 Probability Trials

The distribution of the ratio S(xi)/B(xi) for all events in the off-source sample

and for the simulated signal is shown in figure 7.6. In order to obtain a p-value for

the experiment, a test statistic must be defined. The likelihood function derived in
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in red, while off-source data events are blue. The signal events peak
sharply around 103, while background events are flat below 1 and drop
off sharply above 1.
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appendix A is used.

lnLR({xi};ns) = −ns +
N∑
i=1

ln

(
nsS(xi)

〈nb〉B(xi)
+ 1

)
(7.5)

The sum over i refers to all N events which pass the final level of quality cuts in

the on-source time window. 〈nb〉 is the number of background events expected to be

in the on-source time window, which is found from off-source data to be 33.7. The

estimator for the number of signal events, n̂s, is the value of ns which maximizes

LR. We define the test statistic, T , as the value of LR({xi};ns) at the maximum:

T = LR({xi}; n̂s) (7.6)

This is the value that will be used to determine the significance of the experiment.

The null PDF is determined by taking 108 pseudo-experiments where back-

ground data is given randomized times. To save processing time when performing

random pseudo-experiments, an additional cut of Si/(nbBi) > 1 is performed. This

is justified because more than 99% of signal occurs in this region while it excludes

90% of background, as values of Si/(nbBi) � 1 do not affect the value of the test

statistic significantly. The processing time saved is significant.

An alternative method of obtaining the null PDF is suggested by Wilks’ theo-

rem[279] which states that the distribution of 2T should be a χ2 distibution. How-

ever, as pointed out by Braun et al.[278], this only applies when there is a suffient

number of events with high signal probabilites. Thus when using Wilks’ theorem
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Figure 7.7: The differential null PDF is the normalized distribution
of the test statistic, T , obtained from randomized pseudo-experiments.
Note: the large spike at T = 0 indicates there is a 96% chance that no
events will pass the Si/(nbBi) > 1 cut and result in a test statistic of 0.
The 3, 4, and 5 sigma discover thresholds are shown in dark green, light
green, and red respectively.

to characterize the background, it is still nescessary to use pseudo-experiments to

characterize part of the distribution. In addition, the Si/(nbBi) > 1 cut removes

the χ2 distribution behavior, such that using Wilks’ theorem actually increaces the

time it takes to calculate the null PDF. It was for this reason that Wilks’ theorem

was not used.

The obtained null PDF is shown in figure 7.7. The five sigma significance
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threshold is determined as the value of T such that 28 of the 108 pseudo-experiments

exceed it.

Next, to determine an estimator for the signal flux, pseudo-experiments are

performed with simulated signal superimposed on background with randomized

times. The signal simulation is reweighted with an overall signal strength µ such

that µ = 1 corresponds to the signal strength calculated in section 2.6. The shape of

the energy spectrum of each burst, as well as the relative flux magnitudes between

different bursts, remains unchanged. µ values from 0 to 3 in steps of 0.001 are eval-

uated. Several traces with different signal strengths are shown in figure 7.8. From

these distributions, one-sided 90% confidence intervals[243–245] are constructed as

follows: for each value of µ, a confidence belt is found such that, for repeated ex-

periments, the probability of observing a test statistic greater than T1(µ) is 90%.

This function is then inverted so that µ1(T ) is a function of T such that for an

observed value of T , µ1(T ) is an upper limit for µ at the 90% confidence level. A 2-

dimensional representation of the test-statistic distribution for each value of µ with

the 90% upper limit is shown in figure 7.9. It was decided to use one sided intervals

rather than Feldman and Cousins’ unified approach to two sided intervals[280] be-

cause, in the event of a discovery, the 90% confidence interval might be inconsistent

with the observed energy spectrum.

To illustrate the power of this method, note that, in order to make a 5 sigma

discovery, a test statistic of T ≥ 11.0 is required. The probability of making a

discovery as a function of µ for a given discovery threshold is shown in figure 7.10:

at µ = 1 the chance of a 5σ discovery is 0.76. No single event in the background
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Figure 7.8: The Signal PDFs were constructed similarly to the null
PDFs shown in figure 7.7, except that, in addition to background data,
simulated GRB neutrinos are added. The GRB neutrino events are
reweighted by a signal strength factor, µ, from the weights calculated
in section 2.6. The signal PDFs are only calculated from 106 pseudo-
experiments, resulting in lower statistics. The signal PDFs for multiple
µ values are shown, as well as the null (µ = 0) PDF.
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sample has sufficient signal to background ratio to result in a 5σ discovery. However,

many events in the signal simulation sample with a primary neutrino energy > 100

TeV, would constitute a 5σ discovery as the sole observed event. This shows the

power of incorporating the energy into the likelihood method since, without energy

in the likelihood, at least two events would be necessary for a 5σ discovery.

The distribution of T , assuming an experiment in which a single event is

observed, versus the properties of that event are shown in figures 7.11 and 7.12.

As expected there is a strong energy dependence on the test statistic. The most

significant background event in the background sample has a test statistic of T =

8.2 below the five sigma discovery threshold, while many signal events above 100

TeV will result in a five sigma discovery as a single event. Additionally, rlogl

and BayesianRatio are correlated with T even though these quality cuts were not

incorporated into the likelihood analysis.
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Figure 7.11: The distribution of T assuming a single event is observed
as a function of various variables. Signal is on the left and background on
the right. ∆Ψ is the angular difference between the MPE reconstruction
and the GRB in question. σν is the paraboloid positional uncertainty.
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Figure 7.12: The distribution of T assuming a single event is observed as
a function of different variables. Signal is on the left and background on
the right. Note that signal events exist above the 5σ discovery threshold
of T = 11.0 while no single background event is above this threshold.
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Chapter 8

Results

In order to prevent bias in this analysis, a blind analysis was utilized. In

a blind analysis, the method for determining the significance of the experiment is

determined before the analyzer looks at data in its final form. In this analysis,

blindness is achieved using the hidden box method[281] where all data in a defined

on-source region is kept blinded. The on-source region was defined to be all data

during the same run as that of a GRB. (Runs can last up to eight hours.) The

function used to convert on-source data into a test statistic, as well as the null

PDF and 90% confidence limit, was determined solely from off-source data without

looking into the on-source region. This analysis was reviewed extensively by the

IceCube collaboration before unblinding was approved. Once approval was obtained,

the on-source data analyzed and the significance and upper limit were determined.

The on-source data contained 36 events over the entire sky compared with

the expected 〈nb〉 = 33.7. The closest of these events to a GRB in the on-source

time window was 26◦ from GRB081126. Since all events were all far from their

corresponding GRB, all of these events had S/(nbB) < 1. This results in a test

statistic of T = 0 and n̂s = 0 which corresponds to a p-value of 1. As shown on

the green line in figure 7.9, observing no events sets a 90% upper-limit on the signal

strength of µ = 0.802, excluding the predicted model.
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8.1 Systematics

Since this analysis relied on off-source data to describe the background, the

systematic uncertainties on the final limit are minimal. Systematics are incorporated

into the final limit using a Bayesian marginalization procedure[282–284] where sys-

tematic uncertainties are given a Bayesian treatment which are used to calculate

frequentist confidence intervals. For each systematic uncertainty, a Bayesian prior

is assigned which estimates the bounds of the actual value for that variable; for

example a Gaussian centered at the best known value with a width of the quoted

uncertainty. The experiment was then repeated for several different values for each

systematic variable and the full frequentist plane calculated. The frequentist planes

are averaged together weighted by the value of their Bayesian prior. The 90% upper

limit is then calculated from the resulting frequentist plane. Since each repetition

takes large quantities of computer processing power, systematics were only varied

one at a time. Each systematic was given a Gaussian distribution for its Bayesian

prior except for the ice model. In this case, each ice model had an equal prior.

The only source of uncertainty from the background is the seasonal variation

discussed in section 7.1.2. The amplitude of this variation is ∼ 10%, and the effect

on the final limit is estimated by repeating the entire analysis with the probability

of a background event occurring in the on-source window of each GRB modified by

a value between −20% and +20%.

There were also several sources of systematic uncertainty associated with un-

certainties in parameters used in simulating the signal that affects the final limit.
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Inaccuracies in simulating the propagation of photons through ice can result in inac-

curacies in the simulation. The analysis was repeated using signal simulation with

three different ice models: the original AHA ice model described in section 4.3, the

half-stretched ice model, and the SPICE1 ice model. The half-stretched ice model is

based on the AHA model with the scattering and absorption values in regions with

clean ice were decreased by 100% but unchanged in regions with dirtier ice[285].

This model was motivated by studies which indicated that the clean ice was cleaner

than AHA predicted. The SPICE1 model is a different ice model based on fitting

the amplitude instead of the timing of flasher data[286,287]. The quantum efficiency

of DOM’s PMT directly impacts the amount of light detected by the DOM, the un-

certainty of the quantum efficiency is estimated to be ±10% [210]. Uncertainties in

the neutrino cross section are on the order of 3% [288]. Changing the neutrino cross

section involves competing effects; a lower cross section will result in fewer interac-

tions near the detector but will also result in fewer neutrinos lost while propagating

through the Earth. Seven different cross section values were used and the changes

in the limit were mostly effected by a few high energy events which propagated

without loss through the Earth. As with the neutrino cross section, changing the

muon interaction cross section also involves competing effects: higher cross sections

result in more light detected while lower cross sections result in longer, but dimmer,

tracks. The uncertainties of muon energy loss at the energies considered are on

the order of 2-3%[225,289]. All five muon cross sections were varied in lock-step in

values between −3% and +3%.
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Systematic Variable σBaysianPrior Simulated Range
DOM Quantum Efficiency 10% 85%-115%
Neutrino Cross Section 2% 97%-103%
Muon Energy Loss 2% 97%-103%
Background Rate 10% 80%-120%

Table 8.1: Summary of systematic uncertainties. σBaysianPrior is the width of the
Gaussian used to calculate the Bayesian prior. The third column indicates the
range over which frequentist planes were calculated.

The width of the Gaussian used in Bayesian prior and the range of the different

values of the systematic uncertainties are listed in table 8.1. The frequentist plane

was calculated separately for each point in systematics space, and the limits set by

these points in systematics space are shown in figure 8.1. A single frequentist plane

was then created by adding all planes together weighted by their Bayesian prior

and dividing by a normalization factor. A new one-sided 90% confidence interval is

constructed as in section 7.2 which accounts for systematic uncertainties. The final

signal strength limit after accounting for systematics increases by 0.020 to µ = 0.822

and is shown in figure 8.2 along with the results of other searches and theoretical

expectations.

8.2 Summary

This thesis looked for neutrinos originating from gamma-ray bursts in an at-

tempt to determine the origin of UHECR. Cosmic rays with energies in excess of

1018.6 eV are observed on earth and must be accelerated by very strong shocks with

high magnetic fields. Gamma-ray bursts are a leading candidate for the origin of

these cosmic rays because the shocks necessary to accelerate the cosmic rays are a
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Figure 8.1: Each plot shows the limit set by this experiment through
varying a single systematic variable. The horizontal axis shows the pa-
rameter which was varied and the vertical axis shows the limit obtained.
The limits obtained here only represent one point in systematic vari-
able space. These limits are combined using Bayesian marginalization
to obtain a single limit which accounts for all systematics. The muon
and neutrino cross sections contribute to competing effects with different
Monte Carlo statistics which accounts for the shape of the curve.
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Figure 8.2: The flux limit set by this analysis including systematic error
is shown in solid red along with the predicted model shown in dotted
red. For comparison the IceCube 22 string limit[28] is shown in solid
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Bahcall flux[274] in dotted green. The left axis denotes fluence scaled to
117 bursts. The right axis denotes quasi-diffuse flux assuming a total of
667 uniformly distributed bursts per year.
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natural part of the fireball model, the leading theory to explain the observed gamma-

ray emission. In addition, the aggregate energy flux observed by gamma-ray bursts

and UHECR are the same order of magnitude. Since the observed flux of UHECR

interacting with the observed flux of gamma-rays in the fireball environment will

create an observable neutrino flux, but the gamma-rays and electrons alone will not

produce neutrinos, observing neutrinos in coincidence will provide strong evidence

that GRBs are the source of UHECR.

Gamma-ray bursts are believed to be the violent death of massive stars where

∼ 1051 ergs of non-thermal gamma-rays are emitted on the time scale of seconds

to minutes. The fireball model explains how this occurs. Gamma-rays bursts can

have one of two progenitors: 1) a super massive star collapses into a black hole or

2) either a neutron star-black hole system or a double neutron star collide to create

a black hole. In either case a black hole is created in an environment which leads

to very rapid accretion. This accretion creates a plasma at the rotational poles

of the black hole which expands under radiation pressure to relativistic speeds.

Collisions between different subshells of the plasma will create shock fronts which

cause the first order Fermi acceleration of electrons. As the plasma spreads out it

becomes transparent to gamma-rays at a certain radius. Past this radius, accelerated

electrons can then radiate non-thermally to create the observed gamma-ray emission.

The shells of plasma then interacts with the interstellar medium which causes the

observed x-ray, optical, and radio afterglow. If hadrons are present in the fireball

then they should be accelerated by the same shocks which accelerate the electrons.

The accelerated hadrons should then interact with the gamma-rays through the
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delta resonance to create pions which decay to neutrinos.

To search for neutrinos in coincidence with GRBs the IceCube Neutrino ob-

servatory was used in a half-complete, 40 string configuration. 117 bursts were

observed in the northern hemisphere by satellites while IceCube was operating in

its 40 string configuration. Neutrinos are distinguished from cosmic ray muons in

IceCube by selecting only upgoing events. Since the rate of misreconstructed down-

going events was much higher than the rate of neutrinos, quality cuts were devised

to separate these two classes of events. In order to optimize quality cuts a neutrino

signal spectrum had to be chosen. The chosen spectrum was obtained by calculating

the resulting neutrinos expected from the observed cosmic ray spectrum of protons

interacting with the observed gamma-ray spectrum through the ∆ resonance. The

quality cuts were then optimized for discovery using a simplified binned analysis

that assumed Poisson statistics, with off-source data used as background and sim-

ulated neutrinos with the calculated spectrum for the signal. After applying the

quality cuts the remaining sample of off-source data contained approximately 45%

atmospheric neutrino and 55% misreconstructed cosmic ray muon events.

To look for neutrinos in coincidence with gamma-ray bursts an unbinned max-

imum likelihood analysis was used. In this method, for each event observed, the

probability that an event is from a GRB is calculate in both the spatial and tempo-

ral coordinates. In addition, since the spectrum from GRBs is believed to be much

harder than the atmospheric neutrino background, energy is added as a third prob-

ability. The product of all probabilities of all events in the sample are combined to

form the likelihood that the sample contains emission from gamma-ray bursts. This
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likelihood was then used as the test statistic. The off-source data was then used to

calculate the distribution of the test statistic assuming a no source hypothesis by

performing 108 pseudo-experiments. From this distribution a five sigma discovery

threshold was obtained. Then neutrino simulation weighted with the energy flu-

ence theory of Guetta et al. was injected into pseudo-experiments to obtain a 90%

confidence limit as a function of the test statistic.

After approval by the collaboration the on-source data was unblinded. No

events were observed in coincidence with GRBs setting an upper limit on the flu-

ence of 82% of the model after including systematic errors. The limit is plotted in

figure 8.2, where the shape of the limit is obtained by adding the individual fluxes

from each GRB (figure 5.6) and multiplying by the signal strength limit. The limit

is only set between the energies where 5% and 95% of the expected signal events

are present: 37 TeV and 2.4 PeV.

8.3 Outlook

The previous best limit was obtained from IceCube’s predecessor, AMANDA,

from over 400 GRBs which occurred from 1997 to 2003[29] using the Waxman and

Bahcall flux[274] as the expected signal. This analysis was able to outperform the

AMANDA analysis despite having one quarter fewer bursts than the AMANDA

analysis due to IceCube’s much larger effective area and better angular resolution.

The IceCube detector was completed in December 2010 with a total of 86 strings.

Simulations show that the complete IceCube detector is about a factor of 2 more
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sensitive due to the larger instrumented volume and greater lever arm to reconstruct

muons.

The IceCube 22 string analysis, also shown in figure 8.2, was performed on

only 44 bursts despite the 22 string configuration operating over a similar real time

as this analysis. This analysis had significantly more GRBs because of the launch of

the Fermi satellite which sees about 250 bursts per year in the entire sky. Although

only operating for 2/3 of the real-time of this analysis, almost half of the GRBs

in this analysis were observed solely by the GBM, thus it contributed significantly

to the limit set. While the GBM’s angular resolution is far too large for afterglow

follow up studies, it is well suited for neutrino coincidence studies.

In parallel to this analysis a second GRB analysis was performed on the same

data by Nathan Whitehorn. This model-independent analysis took a very different

approach to the problem, as instead of optimizing on an existing neutrino emission

model it sought to maximize acceptance. Instead of looking for neutrinos during

and close to the prompt phase of the GRB, the model-independent analysis looked

for neutrinos on timescales from 10 seconds to 1 day around the GRB. This was ac-

complished by starting with an interval of −10 to +10 seconds from the trigger time,

then expanding the time window by one second increments in both directions to ±1

day, looking for a significant excess of neutrinos at each iteration. High correlation

between adjacent time windows reduces the trials correction to the significance of

any excess to only a few hundred.

To ensure that no events were missed due to incorrect assumptions, the model-

independent analysis was designed to maximize the number of signal neutrinos in
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the final analysis instead of the significance of an excess. Instead of being selected by

hard cuts, events were weighted by their probabilities of being signal neutrinos[290].

The model-independent analysis was performed on all events which passed the muon

filter, which totaled 161 million events. To avoid assuming a signal neutrino spec-

trum, the model-independent analysis made no attempt to reject the small low-

energy background from atmospheric neutrinos. Each probability was the product

of the event’s point-spread probability density function (equation 7.3) and the prob-

ability that the event was a neutrino, determined by dividing smoothed histograms

of detector data and neutrino simulation in several variables related to reconstruc-

tion accuracy. These probabilities were then summed in each time window to form

the expectation of the on-source signal neutrino density, which was then compared

to the expected background value obtained by scrambling the observed data in time.

Of the events observed, the three most significant occurred at −2249, −3594, and

−6430 seconds respectively, and were low energy (∼ 1 TeV) neutrinos consistent

with the atmospheric neutrino background.

These model-dependent and model-independent analyses are very complemen-

tary to each other. The model-dependent analysis is more sensitive to emission dur-

ing the prompt phase of the GRB and more sensitive to harder neutrino emission

models. While the model-independent is more sensitive to emission on different time

scales than the prompt phase and has higher acceptance for lower quality neutrino

events. Due to the complimentary nature of these two analyses, we can be confident

that between these two analyses no neutrino events were missed. The results of both

of theses analyses were published in Physical Review Letters [291].
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Since the unblinding of this analysis the results of the 59 string GRB analyses

have also become available[292]. The model-dependent search which was performed

by Peter Redl on the 59 string data was very similar to the analysis presented in

this thesis. Nathan Whitehorn repeated his model-independent analysis on the 59

string data as well. Neither of these analyses resulted in a significant observation

and set a limit of 26% of the model fluence.

Although this analysis has rejected the neutrino emission model presented in

section 2.2 using these specific parameters, neutrino emission from gamma-ray bursts

is still far from being ruled out. The parameters used in this analysis were selected

because they are consistent with GRBs being the source of UHECR. Every effort

has been made to model the neutrino emission as accurately as possible, however,

unknown quantities still dominate the calculations. If the GRB rate follows the

star formation rate, the peak contribution to the fluence would come from bursts

at z ≈ 1 instead of the average value of z ≈ 2 as used for most bursts in this

analysis, this discrepancy results in a 50% error in the calculated fluence[293]. The

uncertainty caused by not knowing the bulk Lorentz factor is even greater. Although

observational limits place both upper and lower bounds on Γ, restricting it to a

single order of magnitude, see section 2.2, there is no reason to believe that all

GRB have the same Γ, or even the same Γ among separate peaks within the same

GRB[165, 166]. The neutrino emission model presented here is very sensitive to Γ,

since the total emission is proportional to 1/Γ4. However, more detailed modeling

of GRB shocks shows that competing effects cause the neutrino emission to be less

sensitive to Γ than the model presented here[293, 294]. The neutrino fluence would
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also be less sensitive to Γ if bursts are similar in the comoving frame as suggested

by recent studies[295].

The ultimate goal of this analysis was to investigate whether GRBs are the

source of ultra-high energy cosmic rays. Both Waxman and Bahcall[25, 274] and

Guetta et al.[156] assume that GRBs are the source of UHECR, however, they

differ in how they calculate the expected neutrino flux. Waxman and Bahcall use

the cosmic ray spectrum to calculate the total energy while Guetta et al. use the

energy of the gamma-ray emission. Waxman and Bahcall and Guetta et al. were

assumed to be in agreement because they predicted similar neutrino spectra. Recent

work by Ahlers, Gonzalez-Garcia and Halzen[273] calculates possible neutrino fluxes

under the constraints of the observed gamma-ray spectrum and the observed cosmic

ray spectrum. Their work finds a smaller area of available parameter space (in the

very high Γ region) in which GRBs could be the source of the UHECR than Guetta

et al. assumed in their work. Further work carried out after the results of the 40

and 59 string data were made publicly available predict lower neutrino fluences than

were used in this analysis[154,296,297], although not ruled out by the present limits,

these lower fluences are still testable by 10 years of the complete 86 string detector.

However, recent studies of the variability time scale of GRBs show that they might

be higher than the values used here[298], resulting in higher neutrino fluences. If

further generations of IceCube do not observe neutrinos from gamma-ray bursts,

then it will become increasingly difficult to explain the observed UHECR flux as the

product of GRBs without significantly revising the current models of gamma-ray

burst fireballs. If neutrinos are observed they will confirm GRBs as the source of
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UHECR and their energy spectrum may be used to further understand the nature

of GRBs.
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Appendix A

Derivation of Unbinned Likelihood Function

In this appendix, an estimator for the number of signal events and the signal

strength will be derived. The estimator derived here will rely on the principal of the

maximum likelihood method[299]. In this experiment, the total number of observed

events will not be known before the experiment is performed, so it is necessary

to use a test statistic which not only estimates the number of signal events, but

provides a way to compare results where a different number of events were observed.

In general, the likelihood function is the product of many PDFs. For a given data

sample {x1, x2, . . . , xN} and a probability of obtaining each data point p(x; a), where

a is an unknown parameter, the likelihood is defined as

L({xi}; a) = p(x1; a)p(x2; a) · · · p(xN ; a) =
N∏
i=1

p(xi; a) (A.1)

where {xi} is shorthand for {x1, x2, . . . , xN}. The estimate for a is denoted as â and

is the value of a for which the likelihood function is maximized. The probability of

observing N events under the assumption that the expected total number of events

(nt) is defined by Poisson statistics:

Ppoisson(N ;nt) =
e−ntnN

t

N !
(A.2)
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Interpreting this probability as the first probability in the likelihood function’s prod-

uct and the rest of the probabilities in the product as P (xi), the probability of ob-

serving an event with properties xi. So that the likelihood function of observing N

events with properties {xi} becomes:

L(N, {xi};nt) =
e−ntnN

t

N !
×

N∏
i=1

P (xi) (A.3)

Since the logarithm is a monotonic function, the value which maximizes L will also

maximize lnL and it becomes more convenient to work with the logarithm of the

likelihood than the likelihood. N can be removed from the arguments because it is

the number of elements in {xi}.

lnL({xi};nt) = −nt − lnN ! +N lnnt +
N∑
i=1

lnP (xi) (A.4)

The N lnnt term can be moved inside the sum.

lnL({xi};nt) = −nt − lnN ! +
N∑
i=1

ln[ntP (xi)] (A.5)

Now P (x), the probability of observing an event with observable x, must be

determined. The probability of a signal event having observables x, where x can

denote one or more observables, is denoted S(x), similarly the probability of a

background event having observables x is B(x). Thus, the probability of measuring
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an event with observables x is P (x):

P (x) = p(s)S(x) + p(b)B(x) (A.6)

Where p(s) is the probability of measuring a signal event and p(b) is the probability

of measuring a background event. These probabilities are:

p(s) =
ns

ns + nb
p(b) =

nb
ns + nb

(A.7)

when ns is the number of signal events and nb is the number of background events

such that nt is

nt = ns + nb (A.8)

Rearrange equation A.6 to get

ntP (x) = nsS(x) + nbB(x) (A.9)

Plug equation A.9 into equation A.5, and replace the parameter in the likelihood

function nt with the parameter to be measured, ns. nb can be omitted as a parameter

because it will be replaced with the expected number of background events, 〈nb〉,

measured from off-source data.

lnL({xi};ns) = −ns − 〈nb〉 − lnN ! +
N∑
i=1

ln[nsS(xi) + 〈nb〉B(xi)] (A.10)
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(Contrast this with [278] which replaces nb with N − ns.) The no signal or null

hypothesis of the likelihood can be calculated by setting ns = 0

lnL0({xi}) = lnL({xi}; 0) = −〈nb〉 − lnN ! +
N∑
i=1

ln[〈nb〉B(xi)] (A.11)

Dividing the likelihood by a constant number will not effect the value of the mini-

mum. In this case dividing by the null hypothesis significantly simplifies the form

of the function

lnLR({xi};ns) = ln

(L({xi};ns)
L0({xi})

)
= −ns +

N∑
i=1

ln

(
nsS(xi)

〈nb〉B(xi)
+ 1

)
(A.12)

The estimator for the number of signal events, n̂s, is the value of ns which maxi-

mizes LR
∂LR({xi};ns)

∂ns

∣∣∣∣∣
ns=n̂s

= 0 (A.13)

Define the test statistic, T , as the value of LR({xi};ns) at the maximum.

T = LR(n̂s) (A.14)

This function has several properties which make it well suited for estimating

the number of signal events in a sample. For notation simplicity, the probability

ratio, ri is defined to be

ri =
S(xi)

〈nb〉B(xi)
(A.15)

If {ri} contains a single event then n̂s approaches 1 as r1 goes to∞ see table A.1. If

151



{r1} n̂s T
{101} 0.900000 1.40
{102} 0.990000 3.62
{103} 0.999000 5.91
{104} 0.999900 8.21
{105} 0.999990 10.51
{106} 0.999999 12.82

Table A.1: This table shows the behavior of the likelihood function for experiments
which observe one event. As r1 goes to infinity n̂s approaches 1 and T approaches
ln(r1)− 1.

{ri} n̂s T
{104} 0.9999 8.21
{104, 104} 1.9999 17.81
{104, 104, 104} 2.9999 27.93
{104, 104, 104, 104} 3.9999 38.39
{104, 104, 104, 104, 104} 4.9999 49.10
{104, 104, 104, 104, 104, 104} 5.9999 60.01

Table A.2: This table shows the behavior of the likelihood function for experiments
with different number of events. n̂s approaches the number of events with ri � 1.

all members of {ri} are much greater than one, then n̂s is very close to N where N is

the number of observed events, see table A.2. If values of r are added to {ri} which

are much less than one, then n̂s is hardly effected and n̂s approximately equals the

number of values which are much greater than one. If values are added which are on

the order of 1 they will smoothly transform n̂s from one integer to the next integer,

see figure A.1. This likelihood function then has precisely the properties which are

desired. It will essentially estimate the number of events which have a very high

signal to background ratio providing a smooth transition for events with intermedi-

ate ratios while simultaneously providing comparable results for experiments where

a different number of events were observed.
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Figure A.1: Color map showing the smooth transition of the likelihood
function for an experiment which observes two events, {ri} = {r1, r2}.
On the left is n̂s which is ∼ 0 for r1, r2 � 1, ∼ 1 for r1 � 1 and r2 � 1
or r1 � 1 and r2 � 1, and ∼ 2 for r1, r2 � 1 with smooth transitions
between each of the regions. On the right is the value of the likelihood
at the minimum which is a constant value for r1, r2 � 1 while values in
the rest of the region are essentially additive in the ln(ri).
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Afterglows: Implications for the Initial Lorentz Factor and the Central
Engine,” Astrophys. J. 595, 950 (2003). astro-ph/0302525.

162

http://dx.doi.org/10.1086/342123
http://arxiv.org/abs/astro-ph/0110080
http://dx.doi.org/10.1038/359217a0
http://dx.doi.org/10.1111/j.1749-6632.1975.tb31430.x
http://dx.doi.org/10.1086/170048
http://dx.doi.org/10.1038/27150
http://arxiv.org/abs/astro-ph/9806175
http://dx.doi.org/10.1086/376976
http://arxiv.org/abs/astro-ph/0304173
http://adsabs.harvard.edu/abs/2006AcA....56..333S
http://arxiv.org/abs/astro-ph/0604113
http://dx.doi.org/10.1086/422217
http://arxiv.org/abs/astro-ph/0404566
http://dx.doi.org/10.1038/38451
http://dx.doi.org/10.1016/S1384-1076(97)00031-6
http://arxiv.org/abs/astro-ph/9706084
http://dx.doi.org/10.1086/305467
http://dx.doi.org/10.1086/305467
http://arxiv.org/abs/astro-ph/9709199
http://dx.doi.org/10.1086/422554
http://arxiv.org/abs/astro-ph/0405300
http://dx.doi.org/10.1086/312039
http://arxiv.org/abs/astro-ph/9902009
http://dx.doi.org/10.1086/377363
http://arxiv.org/abs/astro-ph/0302525


[125] A. M. Soderberg and E. Ramirez-Ruiz, “Constraints on the Bulk Lorentz
Factor of GRB 990123,” in Gamma-Ray Burst and Afterglow Astronomy
2001: A Workshop Celebrating the First Year of the HETE Mission, edited
by G. R. Ricker and R. K. Vanderspek, AIP Conf. Proc. 662, 172 (2003).
astro-ph/0203241.

[126] E. Molinari et al., “REM Observations of GRB 060418 and GRB 060607A:
The Onset of the Afterglow and the Initial Fireball Lorentz Factor
Determination,” Astron. Astrophys. 469, L13 (2007). astro-ph/0612607.

[127] J. L. Racusin et al., “Broadband Observations of the Naked-Eye γ-Ray
Burst GRB080319B,” Nature 455, 183 (2008). arXiv:0805.1557.

[128] R. Xue, Y. Fan, and D. Wei, “The Initial Lorentz Factors of Fireballs
Inferred from the Early X-Ray Data of Swift GRBs,” Astron.
Astrophys. 498, 671 (2009). arXiv:0902.2613.

[129] E.-W. Liang et al., “Constraining Gamma-Ray Burst Initial Lorentz Factor
with the Afterglow Onset Feature and Discovery of a Tight Γ0 − Eγ,iso
Correlation,” Astrophys. J. 725, 2209 (2010). arXiv:0912.4800.

[130] D. Gruber et al., “Fermi/GBM Observations of the Ultra-Long
GRB 091024: A Burst with an Optical Flash,” Astron. Astrophys. 528,
A15 (2011). arXiv:1101.1099.

[131] A. Pe’er et al., “A New Method of Determining the Initial Size and Lorentz
Factor of Gamma-Ray Burst Fireballs Using a Thermal Emission
Component,” Astrophys. J. 664, L1 (2007). astro-ph/0703734.

[132] F. Ryde et al., “Identification and Properties of the Photospheric Emission
in GRB090902B,” Astrophys. J. 709, L172 (2010). arXiv:0911.2025.

[133] A. K. Harding and M. G. Baring, “Escape of High-Energy Photons from
Relativistically Expanding Gamma-Ray Burst Sources,” in Gamma-ray
Bursts: Second Workshop, edited by G. J. Fishman, J. J. Brainerd, and
K. Hurley, AIP Conf. Proc. 307, 520 (1994).
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[172] P. Mészáros and E. Waxman, “TeV Neutrinos from Successful and Choked
Gamma-Ray Bursts,” Phys. Rev. Lett. 87, 171102 (2001).
astro-ph/0103275.
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